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Abstract Weakly nonlinear analysis of a two dimensional
sheared granular flow is carried out under the Lees-Edwards
boundary condition. We derive the time dependent Ginz-
burg–Landau equation of a disturbance amplitude starting
from a set of granular hydrodynamic equations and discuss
the bifurcation of the steady amplitude in the hydrodynamic
limit.

Keywords Sheared granular flow · Weakly nonlinear
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1 Introduction

To control flows of granular particles is important in science
and industry [1–4]. However, the properties of granular flow
have not been well understood yet, because they behave as
unusual fluids [5]. This unusual nature is mainly caused by
inelastic collisions between granular particles. Indeed, there
is no equilibrium state in granular materials because of inelas-
tic collisions between grains, which suggests that granular
materials are an appropriate target of nonequilibrium statis-
tical mechanics [6].

Although there are many studies of granular flows on
inclined planes [7,8], the existence of gravity and the role
of bottom boundary make the problem complicated. On the
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other hand, the granular flow under a plane shear is the
simplest and an appropriate situation for theoretical analysis.
Therefore, granular flows under a plane shear have been stud-
ied from many aspects such as the application of kinetic the-
ory [9,10], shear band formation in moderate dense granular
systems [11,12], long-time tail and long-range correlation
function [13–22], pattern formation of dense flow [23–28],
determination of constitutive equation for dense flow [29–
31], as well as jamming transition [32–37].

In this paper, we focus on the shear band formation in mod-
erate dense granular gases observed in the discrete element
method (DEM) simulations [11,12]. It is known that two
shear bands are formed near the boundary and they collide
to form one shear band in the center region under a physical
boundary condition. A similar shear band formation is also
observed under the Lees-Edwards boundary condition. Such
a dynamic behavior of shear bands is reproduced by a simu-
lation of granular hydrodynamic equations [12] derived from
the kinetic theory for granular gases [38–45]. In addition, the
linear stability analyses suggest that a homogeneous state of
the sheared granular flow is almost always unstable [46–52].

Amongst many papers, it is notable that Khain found the
coexistence of a solid phase and a liquid phase of granu-
lar particles in his molecular dynamics simulation of a dense
sheared granular flow [27,28]. He demonstrated the existence
of a hysteresis loop of the difference of density between the
boundary layer and the center region of the container by con-
trolling the value of the restitution coefficient. It should be
noted that the mechanism of an appearance of the subcritical
bifurcation based on a set of hydrodynamic equations, dif-
fers from that observed in the jamming transition of frictional
particles [53].

Recently, Shukla and Alam carried out a weakly nonlinear
analysis of a plane sheared granular flow, where they derived
the Stuart-Landau equation of a disturbance amplitude under

123



698 K. Saitoh, H. Hayakawa

a physical boundary condition starting from a set of granular
hydrodynamic equations [54–56] by the method of Reynolds
and Potter [57]. They found the existence of subcritical bifur-
cations in both relatively dilute and dense systems, while the
supercritical bifurcation appears in other parameter space.
The Stuart-Landau equation, however, does not include any
spatial degrees of freedom and cannot be used to explain the
slow evolution of the spatial structure. We also indicate that
the perturbation is based on the analysis for a finite size sys-
tem, in which the relation between the perturbation parameter
and shear rate becomes unclear, because the shear rate is fixed
to unity in their paper.

In this paper, we derive the time dependent Ginzburg–
Landau (TDGL) equation under the Lees-Edwards boundary
condition [58] as a spatially dependent amplitude equation of
the disturbance fields starting from a set of granular hydro-
dynamic equations [59–64]. To reduce the number of control
parameters, we only focus on the behavior in the hydrody-
namic limit. We discuss the bifurcation in the hydrodynamic
limit from the results of the coefficients of the TDGL equa-
tion. The organization of this paper is as follows. In the next
section, we explain our setup and basic equations of a two
dimensional sheared granular flow. In Sect.3, we summarize
the results of the linear stability analysis. Section 4 is the
main part of this paper, in which we derive the TDGL equa-
tion with the aid of the weakly nonlinear analysis. Finally, we
discuss our analysis and describe our conclusion in Sect.5.

2 Setup and basic equations

Let us introduce our setup and basic equations. To avoid dif-
ficulties caused by physical boundary conditions, we adopt
the Lees-Edwards boundary condition, in which the upper
and lower image cells move to the opposite direction with
the speed U/2 [58]. The geometry of our setup is illustrated
in Fig.1 with the Cartesian coordinate x = (x, y). Because
we adopt the diameter of a granular disk d and U/2 for the

Fig. 1 Geometrical setup of a two dimensional sheared granular flow
under the Lees–Edwards boundary condition. The upper and lower
image cells move to the opposite direction with the dimensionless speed
1. The dimensionless width and height of each cell are W/d and L/d,
respectively

unit of length and speed, respectively, the shear rate U/L is
reduced to ε ≡ 2d/L in this dimensionless unit. In the fol-
lowing, we also use the mass of a granular disk m and 2d/U
as the unit of mass and time, respectively.

We employ a set of hydrodynamic equations derived from
the kinetic theory of granular gases [44]. Although the angu-
lar momentum and the spin temperature are included in the
hydrodynamic equations, we ignore such rotational degrees
of freedom to simplify our analysis. If the friction constant is
small, this simplification can be justified, because the effect
of the rotation of granular particles during the collision can
be absorbed in the normal restitution coefficient [65,66].

We present the derivation of the following set of dimen-
sionless hydrodynamic equations in A:

(∂t + v · ∇) ν = −ν∇ · v (1)

ν (∂t + v · ∇) v = −∇ · P (2)

(ν/2) (∂t + v · ∇) θ = −P : ∇v − ∇ · q − χ, (3)

where ν, v = (u, w), θ, t and ∇ = (∂/∂x , ∂/∂y) are the area
fraction, the dimensionless velocity fields, the dimensionless
granular temperature, the dimensionless time and the dimen-
sionless gradient, respectively. The pressure tensor P, the
heat flux q and the energy dissipation rate χ are given by

P =
[

p∗(ν)θ − ξ∗(ν)θ1/2 (∇ · v)
]
δi j − η∗(ν)θ1/2 D′

i j , (4)

q = −κ∗(ν)θ1/2∇θ − λ∗(ν)θ3/2∇ν, (5)

χ = 1 − e2

4
√

2π
ν2g(ν)θ1/2

[
4θ − 3

√
π

2
θ1/2 (∇ · v)

]
, (6)

respectively. Here, D′
i j (i, j = x, y) is the deviatoric part of

the strain rate

D′
i j ≡ 1

2

(∇ jvi + ∇iv j − δi j∇ · v
)
, (7)

and p∗(ν)θ, ξ∗(ν)θ1/2, η∗(ν)θ1/2, κ∗(ν)θ1/2 and λ∗(ν)θ3/2

are the static pressure, the bulk viscosity, the shear viscosity,
the heat conductivity and the coefficient associated with the
gradient of density, respectively. The explicit forms of them
are listed in Table 1, where we adopt

g(ν) = 1 − 7ν/16

(1 − ν)2
(8)

for the radial distribution function at contact which is only
valid for ν < 0.7 [67–70]. It should be noted that the expres-
sion of κ(ν) in [12] contains an error (see A).

3 Linear stability analysis

In this section, we present the linear stability analysis of a
sheared granular flow under the Lees-Edwards boundary con-
dition. Although the analysis is essentially same as those in
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Table 1 The functions in
Eqs. (4)–(6), where e is the
restitution coefficient

p∗(ν) = 1
2 ν [1 + (1 + e)νg(ν)]

ξ∗(ν) = 1√
2π
(1 + e)ν2g(ν)

η∗(ν) =
√
π
2

[
g(ν)−1

7−3e + (1+e)(3e+1)
4(7−3e) ν +

(
(1+e)(3e−1)

8(7−3e) + 1
π

)
(1 + e)ν2g(ν)

]

κ∗(ν) = √
2π

[
g(ν)−1

(1+e)(19−15e) + 3(2e2+e+1)
8(19−15e) ν +

(
9(1+e)(2e−1)
32(19−15e) + 1

4π

)
(1 + e)ν2g(ν)

]

λ∗(ν) = −
√
π
2

3e(1−e)
16(19−15e)

[
4(νg(ν))−1 + 3(1 + e)

] d
(
ν2g(ν)

)
dν

the previous studies [46–52], it is necessary as the basis of
the weakly nonlinear analysis.

3.1 Linearized equation

We introduce the hydrodynamic field and the homogeneous
solution of Eqs. (1)–(3) as φ ≡ (ν, u, w, θ)T and φ0 ≡
(ν0, εy, 0, θ0)

T, respectively, where the upperscript T rep-
resents the transposition, ν0 is the mean area fraction and

θ0 =
√
π

2

ε2η∗(ν0)(
1 − e2

)
ν2

0 g(ν0)
(9)

is the mean granular temperature. Thus, in the hydrodynamic
limit ε � 1, 1 − e2 is scaled as 1 − e2 = ε2 with the fixed
θ0. The disturbance field is defined as φ̂(x, y, t) ≡ φ − φ0

which is transformed into the Fourier series

φ̂(x, y, t)= AL
∑
ky0

φL
ky0

eiky0 y + ANL
∑
kx �=0

∑
ky0

φNL
k(t)e

ik(t)·x,

(10)

where the upperscripts L and NL respectively represent the
layering mode (kx = 0) and non-layering mode (kx �= 0),
and AI with I = L or NL is the amplitude. The so-called
Kelvin mode is defined as

k(t) ≡ (kx , ky(t)) ≡ (kx , ky0 − εtkx ), (11)

where ky0 ≡ ky(0) and the coefficient φI
k(t) is defined with

the imaginary unit i as

φI
k(t) = (νk(t), iuk(t), iwk(t), θk(t))

T. (12)

We also introduce ϕI
k(t) ≡ (νk(t), uk(t), wk(t), θk(t))

T for the

convenience of the analysis. If we linearize Eqs. (1)–(3),ϕI
k(t)

satisfies

dϕI
k(t)

dt
= L(t)ϕI

k(t), (13)

where the convective term is canceled because of the Kelvin
mode Eq. (11). The time dependent matrix L(t) is decom-
posed as

L(t) = L0(kx , ky0)+ tL1(kx , ky0)+ t2L2(kx , ky0). (14)

The matrices L0(kx , ky0),L1(kx , ky0),L2(kx , ky0) are res-
pectively given by

L0(kx , ky0) =
⎛
⎜⎜⎜⎝

0 ν0kx ν0ky0 0

ε
η′

0
2 ky0 − p′

0kx −ξ0k2
x − η0

2 k2 −ξ0kx ky0 − ε ε
η0
4θ0

ky0 − p0
θ0

kx

ε
η′

0
2 kx − p′

0ky0 −ξ0kx ky0 −ξ0k2
y0 − η0

2 k2 ε
η0
4θ0

kx − p0
θ0

ky0

ε2c1 − 2λ0k2 c2kx − 2εη0ky0 c2ky0 − 2εη0kx ε2c3 − 2κ0k2

⎞
⎟⎟⎟⎠ ,

(15)

L1(kx , ky0)=

⎛
⎜⎜⎜⎝

0 0 −εν0kx 0

−ε2 η
′
0

2 kx εη0kx ky0 εξ0k2
x −ε2 η0

4θ0
kx

εp′
0kx εξ0k2

x ε(2ξ0 + η0)kx ky0 ε
p0
θ0

kx

4ελ0kx ky0 2ε2η0kx −εc2kx 4εκ0kx ky0

⎞
⎟⎟⎟⎠ ,

(16)

L2(kx , ky0)=

⎛
⎜⎜⎝

0 0 0 0
0 −ε2 η0

2 k2
x 0 0

0 0 −ε2(ξ0 + η0
2 )k

2
x 0

−2ε2λ0k2
x 0 0 −2ε2κ0k2

x

⎞
⎟⎟⎠ ,

(17)

where k ≡
√

k2
x + k2

y0 and c1, c2 and c3 are respectively

given by

c1 = η1 −
√

2

π
(g0 + ν0g1)θ

3/2
0 , (18)

c2 = 2p0 − 3

4
ε2ν0g0θ0, (19)

c3 = η0

2θ0
− 3√

2π
ν0g0θ

1/2
0 . (20)

The explicit forms of the coefficients of the Taylor expansion,
i.e. g0, p0, ξ0, η0, κ0, λ0, g1 and p′

0 are respectively given by
Eqs. (84)–(89), (94) and (100) in B.

3.2 Non-layering mode

The solution of Eq. (13) is obtained by the parallel proce-
dure in Refs.[19–21] for the case of the non-layering mode
(kx �= 0). In C, we perturbatively solve Eq. (13) by scaling
the wave number as k(t) = εq(t) and find the components
of ϕNL

q(t) as

νq(t) = − p0

θ0 J
E (2)(t)+ ν0

J
E (3)(t) cosω(t), (21)
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uq(t)=− εt√
1 + (εt)2

E (1)(t)− 1√
1 + (εt)2

E (3)(t) sinω(t),

(22)

wq(t)=− 1√
1 + (εt)2

E (1)(t)+ εt√
1 + (εt)2

E (3)(t) sinω(t),

(23)

θq(t) = p′
0

J
E (2)(t)+ 2p0

J
E (3)(t) cosω(t), (24)

where we defined

E (1)(t) = exp

[
−q2

x ra

(
ε2t + ε4

3
t3
)]
, (25)

E (2)(t) = exp

[
−q2

x rb

(
ε2t + ε4

3
t3
)]
, (26)

E (3)(t) = exp

[
−q2

x rc

(
ε2t + ε4

3
t3
)]
, (27)

and the frequency

ω(t)= qx J

2

[
εt
√

1 + (εt)2+ln
{
εt +

√
1 + (εt)2

}]
. (28)

The positive constants J, ra, rb and rc are respectively given
by Eqs. (122) and (123) in C.

From Eqs. (21)–(24), ϕNL
q(t) decays to zero in the long time

limit as indicated in the previous works [48,50]. Therefore,
the nonlayering mode is linearly stable. It should be, how-
ever, noted that ϕNL

q(t) involving the convective effect is only
necessary for qx �= 0 [19–21]. Thus, we can solve Eq. (13)
for qx = 0 separately in the next subsection.

3.3 Layering mode

In the case of the layering mode (kx = 0), Eq. (13) is reduced
to the eigenvalue problem

L0(0, ky0)ϕ
L
ky0

= σ(ky0)ϕ
L
ky0
, (29)

where σ(ky0) and ϕL
ky0

are the eigenvalue and eigenvector of
L(0, ky0), respectively. We also define the left eigenvector
ϕ̃L

ky0
as

ϕ̃L
ky0

L0(0, ky0) = σ(ky0)ϕ̃
L
ky0
. (30)

In D, we perturbatively solve Eqs. (29) and (30) with the
scaling ky0 = εq and find the dispersion relation

σ(q) = ε2(r2q2 + r4q4), (31)

which is maximum at qc ≡ √−r2/2r4, where r2 and r4 are
given by Eqs. (159) and (161) in D. The right and left eigen-
vectors are respectively given by

ϕL
q ≡ (νq , uq , wq , θq)

T =
(
− p0a(1)2

θ0 J
, a(1)1 , εCϕ1 ,

p′
0a(1)2

J

)T

,

(32)

Fig. 2 The dispersion relation σ(q)/ε2, where the open circles and
the solid line represent the numerical results and Eq. (31), respectively.
The maximum value is given by the scaled wave number qc = 0.057.
Here, we used ε = 0.01, e = 0.99 and ν0 = 0.4

ϕ̃L
q ≡ (ν̃q , ũq , w̃q , θ̃q)

=
(

p′
0ã(1)1

J 2q
− 2p0ã(1)2

J
, ã(1)1 , εC̃ϕ1 ,

p0ã(1)1

θ0 J 2q
+ ν0ã(1)2

J

)
,

(33)

where a(1) = (a(1)1 , a(1)2 )T, ã(1) = (ã(1)1 , ã(1)2 )T,Cϕ1 and C̃ϕ1

are given by Eqs. (157), (168), (163) and (170) in D, respec-
tively.

Figure 2 shows the dispersion relation σ(q)/ε2, where
the open circles and the solid line represent the numerical
results and Eq. (31), respectively. In numerical calculation,
we solved the eigenvalue problem Eq. (29) by LAPACK [71]
with ε = 0.01, e = 0.99 and ν0 = 0.4. In this figure, the
maximum value

σc ≡ σ(qc)

ε2 = r2q2
c + r4q4

c (34)

is given by qc = 0.057. It should be noted that the imaginary
part of σ(q) is always zero.

4 Weakly nonlinear analysis

The linear stability analysis is only useful to know whether
the considered base state is stable. If we are interested in the
structure formation after the base state becomes unstable, we
need, at least, a weakly nonlinear analysis. Let us introduce
a long time scale and long length scales as τ = ε2t and
z = (ξ, ζ ) = ε(x, y), respectively, to characterize the slow
and large scale evolutions of structure. Thus, the derivatives
are replaced by

∂t = ε2∂τ , ∇ = ε(∂ξ , ∂ζ ). (35)

The slow evolution of hydrodynamics variables are
obtained from the evolution of the neutral solution of the
linearized equation. The neutral solution at the most unsta-
ble mode qc = (0, qc) is given by

φ̂n = AL(ζ, τ )φL
qc

eiqcζ + c.c., (36)
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where each component of φL
qc

is the corresponding one in
Eq. (32) at q = qc, and c.c. represents the complex conju-
gate. It is notable that the amplitude AL(ζ, τ ) is independent
of ξ , because the non-layering mode qx �= 0 are linearly sta-
ble. Thus, if we adopt the conventional approach in which the
amplitude equation is obtained from the expansion around the
neutral solution, we cannot discuss the structure evolution in
ξ direction.

If we carry out the weakly nonlinear analysis using φ̂n, the
amplitude equation for AL(ζ, τ ) only depends on ζ , but the
disturbance in the ξ -direction also exists in the two-dimen-
sional granular shear flow. Let us try to introduce a hybrid
approach to involve ξ dependence in shear flow. For this pur-
pose, we may rewrite φ̂(x, y, t) in Eq. (10) in the vicinity of
q = qc as

φ̂n 	 a(ξ, ζ, τ )φL
qc

eiq(τ )·z + c.c., (37)

where the wave number q(τ ) involves the contribution of the
deviation qc, i.e. q(τ ) = qc + δq(τ ). In addition, we need to
include the contribution of the non-layering mode φNL

q(τ ) =
(νq(τ ), iuq(τ ), iwq(τ ), θq(τ ))

T when we are interested in the
case of qx �= 0. Thus, Eq. (37) may be replaced by the hybrid
solution

φ̂h =
[
a(ξ, ζ, τ )φL

qc
+ ANL(ξ, ζ, τ )φNL

q(τ )

]
eiq(τ )·z + c.c.

	 A(ξ, ζ, τ )
[
φL

qc
+ φNL

q(τ )

]
eiq(τ )·z + c.c., (38)

where we have used a strong assumption that the ampli-
tudes a(ξ, ζ, τ ) and ANL(ξ, ζ, τ ) are scaled by the common
amplitude A(ξ, ζ, τ ). If we carry out the weakly nonlinear
analysis using φ̂h instead of φ̂n, the TDGL equation might
depend on ξ . Strictly speaking, we cannot justify the above
hybrid approach between two different modes, i.e., the layer-
ing mode and the non-layering mode. Nevertheless, we will
take into account ξ dependence in the TDGL equation phe-
nomenologically.

Now, let us proceed the explicit calculation of weakly non-
linear analysis. To avoid the confusion from the uncertain part
in the hybrid approach, we first derive the one-dimensional
TDGL equation in Sect. 4.1 for only the layering mode, and
give the hybrid TDGL equation in Sect. 4.2 including the
contribution from the nonlayering mode.

4.1 Weakly nonlinear analysis of the layering mode

In this subsection, we derive the TDGL equation as the ampli-
tude equation for the layering mode at the most unstable
wave number. This subsection consists of three parts. In the
first part, we expand the amplitude AL(ζ, τ ) and the matrix
L0(0, εqc) introduced in Eq. (15). In the second part, we will
derive the TDGL equation at O(ε3) which is sufficient if the
bifurcation is supercritical. In the last part, we will present

higher order calculation which is necessary if the bifurcation
is subcritical.

4.1.1 Expansions of amplitude and matrix

In this part, we prepare the expansions of the amplitude
and the matrix in terms of ε, which is necessary for the
weakly nonlinear analysis. From the straightforward calcu-
lation, AL(ζ, τ ) and L0(0, εqc) can be expanded as

AL(ζ, τ ) = εAL
1 + ε2 AL

2 + ε3 AL
3 + · · · , (39)

L0(0, εqc) = εM1 + ε2M2 + · · · , (40)

where the matrix L0 is introduced in Eq. (15) and

M1 =

⎛
⎜⎜⎝

0 0 ν0qc 0
0 0 −1 0

−p′
0qc 0 0 − p0

θ0
qc

0 0 2p0qc 0

⎞
⎟⎟⎠ , (41)

M2 =

⎛
⎜⎜⎜⎝

0 0 0 0
η′

0
2 qc − η0

2 q2
c 0 η0

4θ0
qc

0 0 −(ξ0 + η0
2 )q

2
c 0

c1 −2η0qc 0 c3 − 2κ0q2
c

⎞
⎟⎟⎟⎠ . (42)

Substituting Eqs. (36) and (39) into Eqs. (1)–(3) and collect-
ing the order of ε, we can obtain a series of terms of equations.

Multiplying the left zero-eigenvector of L0(0, εqc), we
will obtain the amplitude equation. It is not easy to obtain
the left zero-eigenvector in general, but fortunately ϕ̃L

qc
intro-

duced in Eq. (33) plays a role of the zero-eigenvector in the
limit ε → 0 thanks to Eqs. (29) and (30).

4.1.2 The TDGL equation at O(ε3)

The first nonzero terms appear at O(ε2), where the coeffi-
cient of eiqcζ satisfies

M1ϕ
L
qc

= 0, (43)

where ϕL
qc

is introduced in Eq. (32). At O(ε3), the coefficient
of eiqcζ satisfies

ϕL
qc
∂τ AL

1 = M2ϕ
L
qc

AL
1 + D∂2

ζ AL
1 + N3 AL

1 |AL
1 |2, (44)

where D and N3 are given by

D =

⎛
⎜⎜⎝

0
η0uqc/2

(ξ0 + η0/2)wqc

2κ0θqc

⎞
⎟⎟⎠ ,

N3 =

⎛
⎜⎜⎝

0
0

−p′
2ν

3
qc

− (p′
1 + p2)ν

2
qc
θqc/θ0

2νqcwqc(p1θqc/θ0 + p2νqc )

⎞
⎟⎟⎠ , (45)

respectively.
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Table 2 The explicit forms of d̄, β̄, γ̄ , d̄1(τ ) and d̄2(τ )

d̄ = η0
2 ã(1)1 a(1)1 + 2p′

0κ0

θ0 J 3qc

(
p0ã(1)1 + ν0θ0 Jqcã(1)2

)
a(1)2

β̄ = p0

θ3
0 J 4qc

[
2Cϕ1 (p0 p2 − p′

0 p1)
(

p0ã(1)1 + ν0θ0 Jqcã(1)2

)
+ JqcC̃ϕ1 p0{p0 p′

2 − (p′
1 + p2)p′

0}a(1)2

]
a(1)2

2

γ̄ = − 2p3
0 p′

0
θ5

0 J 6qc

{
2p3Cϕ1

(
p0ã(1)1 + ν0θ0 Jqcã(1)2

)
+ Jqc p0 p′

3C̃ϕ1 a(1)2

}
a(1)2

4

d̄1(τ ) =
{( η0

2 + ξ0
)

ã(1)1 uq(τ ) + 2κ0
θ0 J 2qc

(p0ã(1)1 + ν0θ0 Jqcã(1)2 )θq(τ )

}

/
{

1 + 1
J 2qc

(p′
0ã(1)1 − 2p0 Jqcã(1)2 )νq(τ ) + ã(1)1 uq(τ ) + 1

θ0 J 2qc
(p0ã(1)1 + ν0θ0 Jqcã(1)2 )θq(τ )

}

d̄2(τ ) = ξ0ã(1)1 wq(τ )/
{

1 + 1
J 2qc

(p′
0ã(1)1 − 2p0 Jqcã(1)2 )νq(τ ) + ã(1)1 uq(τ ) + 1

θ0 J 2qc
(p0ã(1)1 + ν0θ0 Jqcã(1)2 )θq(τ )

}

Fig. 3 The TDGL coefficients
β̄ and γ̄ for a 0 < ν0 < 0.7 and
b the dilute regime
0 < ν0 < 0.3, where the open
circles and the open squares
represent the numerical results
of β̄ and γ̄ , respectively. The
solid and the broken lines
represent the analytic results of
β̄ and γ̄ , respectively. Here, we
used ε = 0.01

If we multiply the left zero-eigenvector ϕ̃L
qc

to Eq. (44)
introduced in Eq. (33), we obtain the TDGL equation:

∂τ AL
1 = σc AL

1 + d∂2
ζ AL

1 + βAL
1 |AL

1 |2, (46)

where we have used the normalized condition ϕ̃L
qc
ϕL

qc
= 1,

and d and β are given by

d = η0

2
(ũqc uqc + w̃qcwqc)+ ξ0w̃qcwqc + 2κ0θ̃qcθqc , (47)

β = 2θ̃qcνqcwqc

(
p2νqc + p1

θ0
θqc

)

−w̃qc

(
p′

2ν
3
qc

+ p′
1 + p2

θ0
ν2

qc
θqc

)
, (48)

respectively.
Substituting Eqs. (32) and (33) to Eqs. (47) and (48), the

leading terms of ε give

d = d̄, β = εβ̄, (49)

where d̄ and β̄ are listed in Table 2. It is notable that the
coefficient β becomes higher order of ε. Therefore, we need
to rescale the amplitude as

AL
1(ζ, τ ) = ε1/2 AL

1 (ζ, τ ) (50)

and the TDGL equation for AL
1(ζ, τ ) is reduced to

∂τ AL
1 = σc AL

1 + d̄∂2
ζ AL

1 + β̄AL
1|AL

1|2. (51)

The scaling relation Eq. (50) indicates that the amplitude of
φ̂ is extended as

0(i)

(ii)

(iii)

Fig. 4 A schematic image of the subcritical bifurcation of |AL
1|, where

a hysteresis loop is realized by the paths (i), (ii) and (iii)

ε1/2 AL
1(ζ, τ )+ε3/2 AL

2(ζ, τ )+ε5/2 AL
3(ζ, τ )+ · · · ,

(52)

where AL
j = ε1/2 AL

j ( j = 2, 3, . . .). Thus, Eq. (52) con-
verges to zero in the limit ε → 0.

Let us compare Eq. (49) with the numerical result, where
we solve Eq. (29) by LAPACK and calculate β from Eq. (48).
We find σc and d̄ are always positive and Eq. (49) perfectly
agrees with the numerical results (Fig. 3). We find β̄ < 0
in 0 < ν0 < 0.245, thus, a supercritical bifurcation can be
observed in the dilute regime. On the other hand, and a sub-
critical bifurcation, i.e. β̄ > 0 appears in ν0 > 0.245.

It should be noted that there is no hysteresis behavior even
for the subcritical bifurcation. Figure 4 is a schematic image
of the subcritical bifurcation of |AL

1|, where a hysteresis loop
is realized by the paths (i), (ii) and (iii). Because we restrict
our interest to the case of ε > 0 from the definition, the
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paths (i) and (iii) cannot exist. Therefore, such a hysteresis
behavior cannot be observed in the hydrodynamic limit.

4.1.3 Higher order expansions

Because of β̄ > 0 in ν0 > 0.245, we need to proceed our cal-
culation to the higher order expansions. At O(ε4) and O(ε5),
the coefficients of eiqcζ satisfy

ϕL
qc
∂τ AL

2 = M2ϕ
L
qc

AL
2 + D∂2

ζ AL
2

+N3(A
L
1

2
AL

2
∗ + 2AL

2 |AL
1 |2), (53)

ϕL
qc
∂τ AL

3 = M2ϕ
L
qc

AL
3 + D∂2

ζ AL
3

+N3(A
L
1

∗
AL

2
2 + 2AL

1 |AL
2 |2 + AL

1
2

AL
3

∗ + 2|AL
1 |2 AL

3 )

+N5 AL
1 |AL

1 |4 + B(AL
1

2
∂2
ζ AL

1
∗ + 2|AL

1 |2∂2
ζ AL

1 )

+C{AL
1

∗
(∂ζ AL

1 )
2 + 2AL

1 |∂ζ AL
1 |2}, (54)

respectively, where AL
j
∗
( j = 1, 2, 3) represents the complex

conjugate of AL
j and

N5 =

⎛
⎜⎜⎝

0
0

−2p′
3ν

4
qc
θqc/θ0

4p3ν
3
qc
θqcwqc/θ0

⎞
⎟⎟⎠ . (55)

Although the vectors B and C can be written explicitly, we
do not need these analytic forms in later discussion.

Let us introduce the envelope function

ÃL(ζ, τ ) ≡ AL
1 (ζ, τ )+ εAL

2 (ζ, τ )+ ε2 AL
3 (ζ, τ ), (56)

which is used by many authors to derive higher order ampli-
tude equations [72–74]. Summing up Eqs. (44), (53) and (54),
we obtain

ϕL
qc
∂τ ÃL = M2ϕ

L
qc

ÃL + D∂2
ζ ÃL + N3 ÃL| ÃL|2

+ε2N5 ÃL| ÃL|4
+ ε2

[
B( ÃL

2
∂2
ζ ÃL

∗ + 2| ÃL|2∂2
ζ ÃL)

+C{ ÃL
∗
(∂ζ ÃL)2 + 2 ÃL|∂ζ ÃL|2}

]
. (57)

Then, multiplying ϕ̃L
qc

to Eq. (57) we find

∂τ ÃL = σc ÃL + d∂2
ζ ÃL + β ÃL| ÃL|2 + ε2γ ÃL| ÃL|4

+ ε2
[
b( ÃL

2
∂2
ζ ÃL

∗ + 2| ÃL|2∂2
ζ ÃL)+ c{ ÃL

∗
(∂ζ ÃL)2

+2 ÃL|∂ζ ÃL|2}
]
, (58)

where b ≡ ϕ̃L
qc

B, c ≡ ϕ̃L
qc

C and

γ = 2

θ0
ν3

qc
θqc (2p3θ̃qcwqc − p′

3w̃qcνqc ). (59)

Substituting Eqs. (32) and (33) to Eq. (59), the leading terms
of ε give

γ = εγ̄ , b = ε2b̄, c = ε2c̄, (60)

where γ̄ is given in Table 2. Although b̄ and c̄ can be written
explicitly, we do not need such analytic forms in later discus-
sion. It is notable that the coefficient γ becomes higher order
of ε by substituting Eqs. (32) and (33). Thus, the rescaled

envelope function ǍL(ζ, τ ) = ε1/2 ÃL(ζ, τ ) satisfies

∂τ ǍL = σc ǍL + d̄∂2
ζ ǍL + β̄ ǍL| ǍL|2 + εγ̄ ǍL| ǍL|4

+ε3
[
b̄( ǍL

2
∂2
ζ ǍL

∗ + 2| ǍL|2∂2
ζ ǍL)+ c̄{ ǍL

∗
(∂ζ ǍL)2

+2 ǍL∂ζ ǍL∂ζ ǍL
∗}
]
, (61)

where the TDGL equation including the term of ǍL| ǍL|4 is
given in the first line.

Let us compare Eq. (60) with the numerical result, where
we solve Eq. (29) by LAPACK and calculate γ from Eq. (59).
Figure 3 exhibits a complete agreement between Eqs. (59)
and (60). From this result, for 0.245 < ν0 < 0.275, the
growth of disturbance is inhibited by the nonlinear term

εγ̄ ǍL| ǍL|4 and finite steady amplitude can be observed. For
ν0 > 0.275, we need to calculate higher order expansions,
however, it is too complicated to perform in this paper.

4.2 Hybrid approach of weakly nonlinear analysis

In the previous subsection, we have obtained the amplitude
equation for the layering mode. The derivation is straightfor-
ward and the obtained amplitude equation has a reasonable
form. The equation, however, only depends on ζ , and thus,
we cannot discuss the spatial structure along the mean flow
direction ξ . To improve this unsatisfied situation, we adopt
the hybrid approach as mentioned, though it is hard to justify
this approach. Fortunately the contribution of ϕNL

q(τ ) except
for the diffusive mode becomes irrelevant as time goes on.
Thus, ϕ̃L

qc
still can play a role of the left zero-eigenvector in

our calculation.
Let us expand the amplitude of φ̂h into the series of ε as

A(ξ, ζ, τ ) = εA1(ξ, ζ, τ )+ ε2 A2(ξ, ζ, τ )

+ε3 A3(ξ, ζ, τ )+ · · · . (62)

If we use φ̂h instead of φ̂n and multiplying the approximate
left zero-eigenvector ϕ̃L

qc
, we obtain the TDGL equation of

A1(ξ, ζ, τ ) as

∂τ A1 = σc A1 + d1(τ )∂
2
ξ A1 + d2(τ )∂ξ ∂ζ A1 + d∂2

ζ A1

+βA1|A1|2, (63)
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Fig. 5 The time development of d̄1(τ ) and d̄2(τ ). The open circles
and open squares represent the numerical results of d̄1(τ ) and d̄2(τ ),
respectively. The solid and broken lines respectively represent the ana-
lytic results of d̄1(τ ) and d̄2(τ ). Here, we used ε = 0.01, e = 0.99 and
ν0 = 0.4

where we introduced the time dependency in the diffusion
constants

d1(τ ) =
{η0

2
(ũqc uq(τ ) + w̃qcwq(τ ))+ ξ0ũqc uq(τ )

+ 2κ0θ̃qcθq(τ )

}/(
1 + ϕ̃L

qc
ϕNL

q(τ )

)
, (64)

d2(τ ) = ξ0(ũqcwq(τ ) + w̃qc uq(τ ))
/(

1 + ϕ̃L
qc
ϕNL

q(τ )

)
, (65)

which decay to zero because of Eqs. (21)–(24). To obtain (63)
we ignore contributions from ϕNL

q(τ ) except for the diffusion
coefficient, because they exponentially decay to zero.

Substituting Eqs. (21)–(24), (32) and (33), and the intro-
duction of the scaled amplitude

Ā1(ξ, ζ, τ ) ≡ ε1/2 A1(ξ, ζ, τ ), (66)

we find the TDGL equation of Ā1(ξ, ζ, τ ):

∂τ Ā1 = σc Ā1 + d̄1(τ )∂
2
ξ Ā1 + d̄2(τ )∂ξ ∂ζ Ā1 + d̄∂2

ζ Ā1

+β̄ Ā1| Ā1|2, (67)

where the explicit forms of d̄1(τ ) and d̄2(τ ) are listed in
Table 2.

From the parallel argument to obtaining Eq. (61), the
scaled envelope function introduced

Ǎ(ξ, ζ, τ ) ≡ ε1/2{A1(ξ, ζ, τ )+ εA2(ξ, ζ, τ )

+ε2 A3(ξ, ζ, τ )}, (68)

satisfies the TDGL equation of Ǎ(ξ, ζ, τ ):

∂τ Ǎ = σc Ǎ + d1(τ )∂
2
ξ Ǎ + d2(τ )∂ξ ∂ζ Ǎ + d̄∂2

ζ Ǎ + β̄ Ǎ| Ǎ|2
+εγ̄ Ǎ| Ǎ|4, (69)

where we truncated the higher order terms of O(ε3) in
Eq. (69).

Figure 5 shows the time evolution of d̄1(τ ) and d̄2(τ ),
where the analytic results perfectly agree with the numer-
ical calculation of Eqs. (64) and (65) based on LAPACK.
Because d̄1(τ ) and d̄2(τ ) decay to zero, Eqs. (67) and (69)

respectively reduce to Eq. (51) and the first line of Eq. (61) in
the long time limit. This result is consistent with the obser-
vation in the simulation[12] in which the shear band finally
becomes parallel to mean-flow direction, though the mathe-
matical justification of our hybrid approach is difficult.

5 Discussion and conclusion

Let us compare our results with the previous studies [54–
56]. The previous studies only derived Stuart-Landau equa-
tion which is independent of the position, while we obtain
the TDGL equation which can discuss the slow evolution of
long-wave spatial structure. We have demonstrated that the
coefficient of Ǎ| Ǎ|4 can be calculated explicitly based on a
systematic perturbation method in terms of small ε, which
has not been achieved by previous studies. The appearance
condition of the subcritical bifurcation is slightly different
from that of the previous studies. We believe, however, that
the result becomes similar to that of the previous studies, if
we analyze a finite size system around most unstable mode.
On the other hand, it is hard to justify our hybrid approach to
introduce the time dependent diffusion coefficients d1(τ ) and
d2(τ ) in the TDGL equations Eqs. (67) and (69), though the
result seems to be reasonable. The mathematical justification
of the hybrid approach will be our future work.

In conclusion, we have derived the TDGL equation start-
ing from a set of granular hydrodynamic equations. From
our results, we find the homogeneous state is always unstable
and a supercritical bifurcation can be observed in the dilute
regime 0 < ν0 < 0.245. On the other hand, a subcritical
bifurcation is predicted in ν0 > 0.245 and we find the ampli-
tude of disturbance can be converged by the nonlinear term
εγ̄ Ǎ| Ǎ|4 in the range 0.245 < ν0 < 0.275. In the case of
ν0 > 0.275, higher order expansions are necessary, however,
such calculations should be performed in a future work.
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Appendix A: Derivation of the coefficients in Table 1

In this Appendix, we derive the coefficients in Table 1 by
using the dimensionless quantities based on the kinetic the-
ory [44]. At first, the energy sources χαα and χ3 for smooth
disks (β = −1 in Ref.[44]) are

χαα = −ξ(1 − e)

2d2

[
8T − 3π1/2dT 1/2(∇ · u)

]
(70)
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and χ33 = 0, where d, T ≡ m〈(c − u)2〉/2 and u = Uv/2
are the diameter of a disk, the granular temperature and the
velocity field, respectively. It should be noted that we adopt
the different definition for the granular temperature T from
[44] to keep the dimension of the energy. In Eq. (70), the bulk
viscosity ξ is given by

ξ = 4m

π3/2d
(1 + e)ν2g(ν)T 1/2. (71)

where ν and g(ν) is the area fraction and the radial distri-
bution function at contact, respectively. Thus, the factor of
Eq. (70) is given by

− ξ(1 − e)

2σ 2 = −2mν2(1 − e2)

π3/2d3 g(ν)T 1/2. (72)

If we introduce the mass density of the system ρ =
4mν/(πd2) and the mass density of a disk ρp = 4m/(πd2),
Eq. (70) is reduced to

χαα=− 1−e2

2ρpπ1/2d
ρ2g(ν)T 1/2

[
8T −3π1/2dT 1/2(∇ · u)

]
,

(73)

and the energy loss rate is given by

χ = −χαα
2

= 1 − e2

4ρpπ1/2d
ρ2g(ν)T 1/2

×
[
8T − 3π1/2dT 1/2(∇ · u)

]
. (74)

The pressure tensor is given by Pi j = ρT δi j + ρai j +Θi j ,
where

ρai j =− 2mT 1/2

π1/2dg(ν)(5 − 3r)
[1 + νg(ν)(3r − 2)r ] D′

i j ,

(75)

Θi j = (2ρT νg(ν)r −ξ∇ · u)δi j − ξD′
i j + νg(ν)rρai j ,

(76)

with r = (1 + e)/2. Then, we find

Pi j = [p − ξ∇ · u] δi j − ξD′
i j + [1 + rνg(ν)] ρai j , (77)

where the static pressure is given by p = ρT [1 + (1 + e)
νg(ν)]. The second and third terms on the right-hand-side
of Eq. (77) can be rewritten as ξD′

i j − [1 + rνg(ν)] ρai j ≡
ηD′

i j , where the shear viscosity η is given by

η = 4mT 1/2

π1/2d

[
g(ν)−1

7 − 3e
+ (1 + e)(3e + 1)

4(7 − 3e)
ν

+
[
(1 + e)(3e − 1)

8(7 − 3e)
+ 1

π

]
(1 + e)ν2g(ν)

]
. (78)

Therefore, we find Pi j = [p − ξ∇ · u] δi j − ηD′
i j . It should

be noted that Eq. (70) in [44] should be multiplied by rm. The
translational energy flux is given by qα = ρaαββ/2+Θαββ/2,
where ρaαββ/2 and Θαββ/2 are given by Eq. (89) and (100)

in [44], respectively. From Eq. (100) in [44], we rewrite qα
as

qα = 1

2
ρaαββ − ξ∇T + 3

2
rνg(ν) · 1

2
ρaαββ

=
(

1 + 3

2
rνg(ν)

)
1

2
ρaαββ − ξ∇T . (79)

We introduce κρ and λρ as 1
2ρaαββ ≡ −κρ∇T − λρ∇ρ,

where

κρ = 4mT 1/2

σg(ν)r(17 − 15r)π1/2

[
1+ 3

2
νg(ν)r2(4r − 3)

]
,

(80)

λρ = −3σπ1/2(2r − 1)(1 − r)

2νg(ν)(17 − 15r)
T 3/2 d(ν2g(ν))

dν
. (81)

If we write the energy flux qα as qα ≡ −κ∇T − λ∇ρ, we
obtain the heat conductivity κ

κ = κρ

(
1 + 3

2
rνg(ν)

)
+ ξ

= 16mT 1/2

σπ1/2

[ g(ν)−1

(1 + e)(19 − 15e)
+ 3(2e2 + e + 1)

8(19 − 15e)
ν

+
{

9(1 + e)2(2e − 1)

32(19 − 15e)
+ 1

4π

}
(1 + e)ν2g(ν)

]
, (82)

and the coefficient associated with the gradient of density λ

λ = λρ

(
1 + 3

2
rνg(ν)

)
= −3σπ1/2e(1 − e)

8(19 − 15e)

×
[
4g(ν)−1 + 3(1 + e)ν

] 1

ν

d(ν2g(ν))

dν
T 3/2. (83)

We should note that the third term on the right hand side of
Eq. (82) differs from our paper [12]. Indeed, the coefficient
1/4π in the last term on the right hand side of Eq. (82) is
different from 1/2π .

Now, we non-dimensionalize the static pressure, transport
coefficients and the coefficient associated with the gradient
of density with the aid of m, d and U/2 as

p = ρp

(
U

2

)2

p∗(ν)θ, ξ = ρpd
U

2
ξ∗(ν)θ1/2,

η = ρpd
U

2
η∗(ν)θ1/2,

κ = ρpdUκ∗(ν)θ1/2, λ = d

(
U

2

)3

λ∗(ν)θ3/2,

where p∗(ν), ξ∗(ν), η∗(ν), κ∗(ν) and λ∗(ν) are dimension-
less quantities listed in Table 1.
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Appendix B: The Taylor expansion of the functions in
Table 1

The functions in Table 1 are expanded into the Taylor series
as

g(ν) = g0 + g1ν + g2ν
2 + · · · , (84)

θ0ν
−1 p∗(ν) = p0 + p1ν + p2ν

2 + · · · , (85)

θ
1/2
0 ν−1ξ∗(ν) = ξ0 + ξ1ν + ξ2ν

2 + · · · , (86)

θ
1/2
0 ν−1η∗(ν) = η0 + η1ν + η2ν

2 + · · · , (87)

θ
1/2
0 ν−1κ∗(ν) = κ0 + κ1ν + κ2ν

2 + · · · , (88)

θ
3/2
0 ν−1λ∗(ν) = λ0 + λ1ν + λ2ν

2 + · · · . (89)

Similarly, the derivatives are also expanded into the Taylor
series as

θ0ν
−1 dp∗(ν)

dν
= p′

0 + p′
1ν + p′

2ν
2 + · · · , (90)

θ
1/2
0 ν−1 dξ∗(ν)

dν
= ξ ′

0 + ξ ′
1ν + ξ ′

2ν
2 + · · · , (91)

θ
1/2
0 ν−1 dη∗(ν)

dν
= η′

0 + η′
1ν + η′

2ν
2 + · · · , (92)

θ
1/2
0 ν−1 dκ∗(ν)

dν
= κ ′

0 + κ ′
1ν + κ ′

2ν
2 + · · · . (93)

In the following, we show the explicit expressions of the coef-
ficients which are used in the text. The coefficients associated
with the radial distribution function are given by

g1 = 25 − 7ν0

16(1 − ν0)3
, g2 = 34 − 7ν0

16(1 − ν0)4
, g3 = 43 − 7ν0

16(1 − ν0)5
,

g4 = 52 − 7ν0

16(1 − ν0)6
. (94)

The coefficients associated with the static pressure are given
by

p1 = 1

2
(1 + e)(g0 + ν0g1)θ0, p2 = 1

2
(1 + e)(g1 + ν0g2)θ0,

p3 = 1

2
(1 + e)(g2 + ν0g3)θ0. (95)

The coefficients associated with viscosity are given by

ξ1 = 1 + e√
2π
(g0 + ν0g1)θ

1/2
0 ,

η1 =
{

aη − bη
(ν0g0)2

}
(g0 + ν0g1)θ

1/2
0 , (96)

where

aη =
√
π

2

(
(1 + e)(3e − 1)

8(7 − 3e)
+ 1

π

)
(1 + e),

bη =
√
π

2

1

7 − 3e
. (97)

The coefficients associated with the heat conductivity are
given by

κ1 =
{

aκ − bκ
(ν0g0)2

}
(g0 + ν0g1)θ

1/2
0 , (98)

where we have introduced

aκ = √
2π

(
9(1 + e)(2e − 1)

32(19 − 15e)
+ 1

4π

)
(1 + e),

bκ =
√

2π

(1 + e)(19 − 15e)
. (99)

The coefficients associated with the derivative of the static
pressure are given by

p′
0 = 1

2ν0
{(1 + e)ν0 (2g0 + ν0g1)+ 1} θ0, (100)

p′
1 = 1

2ν2
0

{
(1 + e)ν2

0 (3g1 + 2ν0g2)− 1
}
θ0, (101)

p′
2 = 1

2ν3
0

{
(1 + e)ν3

0 (4g2 + 3ν0g3)+ 1
}
θ0, (102)

p′
3 = 1

2ν4
0

{
(1 + e)ν4

0 (5g3 + 4ν0g4)− 1
}
θ0. (103)

The coefficients associated with the derivative of viscosity
are given by

ξ ′
0 = 1 + e√

2π
(2g0 + ν0g1)θ

1/2
0 , (104)

η′
0 = 1

ν0g2
0

[
−aηg1+g2

0

{
cην0 (2g0 + ν0g1)+bη

}]
θ

1/2
0 .

(105)

The coefficients associated with the derivative of the heat
conductivity are given by

κ ′
0 = 1

ν0g2
0

[
−aκg1+g2

0 {cκν0 (2g0+ν0g1)+bκ }
]
θ

1/2
0 ,

(106)

κ ′
1 = 1

ν2
0 g3

0

[
aκ

{
2ν0g2

1 + g0 (g1 − 2ν0g2)
}

+ g3
0

{
cκν

2
0 (3g1 + 2ν0g2)− bκ

}]
θ

1/2
0 . (107)

Appendix C: Solution of linearized equation
for the non-layering mode

In this appendix, we solve the linearized equation for the
non-layering mode (kx �= 0)

∂

∂t
ϕNL

k(t) = L(t)ϕNL
k(t). (108)

At first, we solve the eigenvalue problem

L(t)ψ( j)
k(t) = λ

( j)
k(t)ψ

( j)
k(t), (109)
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where λ( j)
k(t) and ψ( j)

k(t)( j = 1, 2, 3, 4) are respectively the
eigenvalues and the eigenvectors of L(t). If we scale the
wave number as k(t) = εq(t) = ε(qx , qy(t)) and perturbat-
ively solve Eq. (109), the eigenvalues are readily found to
be

λ
(1)
q(t) = −ε2raq(t)2, (110)

λ
(2)
q(t) = −ε2rbq(t)2, (111)

λ
(3)
q(t) = −ε2rcq(t)2 + iε Jq(t), (112)

λ
(4)
q(t) = −ε2rcq(t)2 − iε Jq(t), (113)

which are respectively given by the eigenvectors

ψ
(1)
q(t) =

(
0,

qy(t)

q(t)
,− qx

q(t)
, 0

)T

, (114)

ψ
(2)
q(t) =

(
− p0

θ0 J
, 0, 0,

p′
0

J

)T

, (115)

ψ
(3)
q(t) =

(
ν0

2J
,

i

2

qx

q(t)
,

i

2

qy(t)

q(t)
,

p0

J

)T

, (116)

ψ
(4)
q(t) =

(
ν0

2J
,− i

2

qx

q(t)
,− i

2

qy(t)

q(t)
,

p0

J

)T

. (117)

and the left eigenvectors

ψ̃
(1)
q(t) =

(
0,

qy(t)

q(t)
,− qx

q(t)
, 0

)
, (118)

ψ̃
(2)
q(t) =

(
−2p0

J
, 0, 0,

ν0

J

)
, (119)

ψ̃
(3)
q(t) =

(
p′

0

J
,−i

qx

q(t)
,−i

qy(t)

q(t)
,

p0

θ0 J

)
, (120)

ψ̃
(4)
q(t) =

(
p′

0

J
, i

qx

q(t)
, i

qy(t)

q(t)
,

p0

θ0 J

)
, (121)

where we defined q(t) ≡
√

q2
x + qy(t)2,

J ≡
√

2p2
0/θ0 + ν0 p′

0, (122)

and the positive constants

ra = η0

2
, rb = 2ν0 p′

0κ0

J 2 , rc = ξ0

2
+ η0

4
+ 2p2

0κ0

θ0 J 2 .

(123)

The solution of Eq. (108) is constructed as [19]

ϕNL
q(t)α =

∫
dq′(0)
(2π)2

Gαβ(q(t),q′(0))ϕNL
q′(0)β, (124)

where the indexes α, β(= 1, 2, 3, 4) represent the compo-
nents of ϕNL

q(t) and we used the summation rule for the twice

appearance of β. The Green’s function is given by

Gαβ(q(t),q′(0))=
4∑

j=1

ψ
( j)
q(t)αψ̃

( j)
q′(0)βG( j)(q(t),q′(0))

(125)

with the function G( j)(q(t),q′(0)) satisfying

(
∂

∂t
+ εqx

∂

∂qy(t)

)
G( j)(q(t),q′(0))

= λ
( j)
q(t)G

( j)(q(t),q′(0)). (126)

Such a function G( j)(q(t),q′(0)) is found to be

G( j)(q(t),q′(0)) = (2π)2δ(q′(0)− q(t))

× exp

⎡
⎣

t∫

0

dsλ( j)
q(s)

⎤
⎦ . (127)

If we adoptϕNL
q(0) = ∑4

j=1 ψ
( j)
q(0) for the initial condition [19],

the components of ϕNL
q(t) are given by

νq(t) = − p0

θ0 J
E (2)(t)+ ν0

J
E (3)(t) cosω(t), (128)

uq(t) = − εt√
1 + (εt)2

E (1)(t)

− 1√
1 + (εt)2

E (3)(t) sinω(t), (129)

wq(t) = − 1√
1 + (εt)2

E (1)(t)

+ εt√
1 + (εt)2

E (3)(t) sinω(t), (130)

θq(t) = p′
0

J
E (2)(t)+ 2p0

J
E (3)(t) cosω(t), (131)

where we defined

E (1)(t) = exp

[
−q2

x ra

(
ε2t + ε4

3
t3
)]
, (132)

E (2)(t) = exp

[
−q2

x rb

(
ε2t + ε4

3
t3
)]
, (133)

E (3)(t) = exp

[
−q2

x rc

(
ε2t + ε4

3
t3
)]
, (134)

and the frequency

ω(t)= qx J

2

[
εt
√

1 + (εt)2+ln
{
εt +

√
1 + (εt)2

}]
. (135)
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Appendix D: Perturbative calculation of eigenvalue
problem for the layering mode

In this appendix, we perturbatively solve the eigenvalue prob-
lem of the layering mode

L(0, ky0)ϕ
L( j)
ky0

= σ ( j)(ky0)ϕ
L( j)
ky0

, (136)

where j = 1, 2, 3, 4 and the 4 × 4 real matrix is given by

L(0, ky0)=

⎛
⎜⎜⎜⎝

0 0 ν0ky0 0

ε
η′

0
2 ky0 − η0

2 k2
y0 −ε ε

η0
4θ0

ky0

−p′
0ky0 0 −(ξ0 + η0

2 )k
2
y0 − p0

θ0
ky0

ε2c1 − 2λ0k2
y0 −2εη0ky0 c2ky0 ε2c3 − 2κ0k2

y0

⎞
⎟⎟⎟⎠ .

(137)

Here, λ0 ∼ O(ε2). The wave number is scaled as ky0 = εq

and we expand L(0, ky0), σ
( j)(ky0) and ϕL( j)

ky0
into the series

of ε as

L(0, ky0) = εM1 + ε2M2 + · · · , (138)

σ ( j)(ky0) = εσ
( j)
1 + ε2σ

( j)
2 + · · · , (139)

ϕ
L( j)
ky0

= ϕ
( j)
0 + εϕ

( j)
1 + · · · , (140)

where

M1 =

⎛
⎜⎜⎝

0 0 ν0q 0
0 0 −1 0

−p′
0q 0 0 − p0

θ0
q

0 0 2p0q 0

⎞
⎟⎟⎠ ,

M2 =

⎛
⎜⎜⎜⎝

0 0 0 0
η′

0
2 q − η0

2 q2 0 η0
4θ0

q
0 0 −(ξ0 + η0

2 )q
2 0

c1 −2η0q 0 c3 − 2κ0q2

⎞
⎟⎟⎟⎠ . (141)

Substituting Eqs. (138)–(139) into Eq. (136), we find the
first nonzero terms

M1ϕ
( j)
0 = σ

( j)
1 ϕ

( j)
0 , (142)

at O(ε). From Eq. (142), we find the eigenvalues

σ
(1)
1 = σ

(2)
1 = 0, σ

(3)
1 = −σ (4)1 = i Jq. (143)

The eigenvalues Eq. (143) are given by the eigenvectors

ϕ
(1)
0 = (0, 1, 0, 0)T , (144)

ϕ
(2)
0 =

(
− p0

θ0 J
, 0, 0,

p′
0

J

)T

, (145)

ϕ
(3)
0 =

(
ν0

2J
,− 1

2Jq
,

i

2
,

p0

J

)T

, (146)

ϕ
(4)
0 =

(
ν0

2J
,− 1

2Jq
,− i

2
,

p0

J

)T

, (147)

respectively, and the corresponding left eigenvectors are
given by

ϕ̃
(1)
0 =

(
p′

0

J 2q
, 1, 0,

p0

θ0 J 2q

)
, (148)

ϕ̃
(2)
0 =

(
−2p0

J
, 0, 0,

ν0

J

)
, (149)

ϕ̃
(3)
0 =

(
p′

0

J
, 0,−i,

p0

θ0 J

)
, (150)

ϕ̃
(4)
0 =

(
p′

0

J
, 0, i,

p0

θ0 J

)
, (151)

respectively. The eigenvectors Eqs. (144)–(151) are orthog-
onal and normalized, i.e. ϕ̃( j)

0 ϕ
(k)
0 = δ jk , where j, k =

1, 2, 3, 4 and δ jk is the Kronecker delta. Because the crit-
ical eigenvalue is a real number, we are interested in the case
of σ (1)1 = σ

(2)
1 = 0. However, ϕ(1)0 and ϕ(2)0 are degenerated,

thus we rewrite Eq. (140) as

ϕ
L(l)
ky0

=
{

a(l)1 ϕ
(1)
0 + a(l)2 ϕ

(2)
0

}
+ εϕ

(l)
1 + · · · , (152)

where l = 1, 2 and the coefficients a(l)1 and a(l)2 are deter-
mined later.

At O(ε2) of Eq. (136), we find

M1ϕ
(l)
1 + M2

{
a(l)1 ϕ

(1)
0 + a(l)2 ϕ

(2)
0

}

= σ
(l)
2

{
a(l)1 ϕ

(1)
0 + a(l)2 ϕ

(2)
0

}
. (153)

If we respectively multiply ϕ̃(l)0 (l = 1, 2) to Eq. (153), we
find

M2a(l) = σ
(l)
2 a(l), (154)

where a(l) ≡ (a(l)1 , a(l)2 )
T and

M2 =
(
ϕ̃
(1)
0 M2ϕ

(1)
0 ϕ̃

(1)
0 M2ϕ

(2)
0

ϕ̃
(2)
0 M2ϕ

(1)
0 ϕ̃

(2)
0 M2ϕ

(2)
0

)
. (155)

From Eq. (154), we find the eigenvalues

σ
(1)
2 = − 1

4θ0 J 2

(
f1 −

√
f 2
1 − f2

)
,

σ
(2)
2 = − 1

4θ0 J 2

(
f1 +

√
f 2
1 − f2

)
, (156)

which are given by the eigenvectors

a(1) = ca

(
f3 −

√
f 2
1 − f2, 8ν0θ

1/2
0 η0 Jq

)T

,

a(2) = ca

(
f3 +

√
f 2
1 − f2, 8ν0θ

1/2
0 η0 Jq

)T

, (157)

respectively, where f1, f2, f3 and ca are listed in Table 3.

Because σ (1)2 −σ (2)2 =
√

f 2
1 − f2/2θ0 J 2 > 0, the growth

rate is given by σ (1)2 . If we expand σ (1)2 into the series of the
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Table 3 The functions
f1, f2, f3, f4, f5, f6, ca and c̃a
in the text

Here, ca and c̃a are determined
by the normalized condition of
the eigenvector

f1 = θ0(η0 J 2 + 4ν0 p′
0κ0)q2 + 4η0 p0 + 2ν0 p0c1 − 2ν0θ0 p′

0c3

f2 = 16ν0θ
2
0 η0 p′

0κ0 J 2q4 + 8ν0θ0η0 J 2{p0(c1 − 2η′
0)+ p′

0(η0 − θ0c3)}q2

f3 = θ0(η0 J 2 − 4ν0 p′
0κ0)q2 + 4η0 p0 − 2ν0 p0c1 + 2ν0θ0 p′

0c3

f4 = θ0{8p0 p′
0κ0 + (2p0η

′
0 − p′

0η0)J 2}q2 + 4p0(p0c1 − θ0 p′
0c3)

f5 = {ν0θ0η
′
0 J 2 − 8p2

0κ0 + η0 J 2(p0 + θ0)}q2 + 2p0(2η0 + ν0c1 + 2p0c3)

f6 = f3 − ( f 2
1 − f2)

1/2

ca = −
{

64ν2
0η

2
0q2(p2

0 + θ2
0 p′

0
2
)+ f 2

6

}−1/2

c̃a = −θ0 J 2q
{
(ν2

0 + 4p2
0) f 2

4 + 2(ν0 p0 − 2θ0 p0 p′
0) f4 f6 + (θ2

0 J 4q2 + θ2
0 p′

0
2 + p2

0) f 2
6

}−1/2

scaled wave number q, we find the dispersion relation

σ
(1)
2 = r2q2 + r4q4 + O(q6), (158)

where the coefficients r2 and r4 are respectively given by

r2 = ν0η0(2η′
0 p0 − η0 p′

0 − p0c1 + θ0 p′
0c3)

2ν0(p0c1 − θ0 p′
0c3)+ 4p0η0

, (159)

r4 = −ν0θ0η0{ν0η0 p′
0 − 2p0(η0 + ν0η

′
0)}

4{ν0(p0c1 − θ0 p′
0c3)+ 2p0η0}3

×
[
(c1 − 2η′

0)p0η0 J 2 + 4c3ν0θ0 p′
0

2
κ0 (160)

+p′
0{η2

0 J 2 − 4c1ν0 p0κ0−η0(θ0c3 J 2+8p0κ0)}
]
.

(161)

If we multiply ϕ(n)0 ϕ̃
(n)
0 (n = 3, 4) to Eq. (153), we find

ϕ
(1)
1 as

ϕ
(1)
1 = −

∑
n=3,4

1

σ
(n)
1

ϕ
(n)
0

[
ϕ̃
(n)
0 M2

{
a(1)1 ϕ

(1)
0 + a(1)2 ϕ

(2)
0

}]

≡ Cϕ1(0, 0, 1, 0)T, (162)

where

Cϕ1 = 2p0η0

θ0 J 2 a(1)1

+ (2θ0 p′
0κ0q2 + p0c1 − θ0 p′

0c3)p0

θ
3/2
0 J 3q

a(1)2 . (163)

Therefore, the eigenvector Eq. (140) truncated at O(ε) is
given by

ϕ
L(1)
ky0

= (νq , uq , wq , θq)
T

=
(

− p0

θ0 J
a(1)2 , a(1)1 , εCϕ1 ,

p′
0

J
a(1)2

)T

. (164)

In the same way, we calculate the left eigenvector ϕ̃(l)ky0
of

Eq. (136). Because ϕ̃(1)0 and ϕ̃(2)0 are also degenerated to the

same eigenvalue σ (1)1 = σ
(2)
1 = 0, we write the left eigen-

vector as

ϕ̃
L(l)
ky0

=
{

ã(l)1 ϕ̃
(1)
0 + ã(l)2 ϕ̃

(2)
0

}
+ εϕ̃

(l)
1 + · · · , (165)

where l = 1, 2 and the coefficients ã(l)1 and ã(l)2 are deter-
mined later. At O(ε2), we find

ϕ̃
(l)
1 M1 +

{
ã(l)1 ϕ̃

(1)
0 + ã(l)2 ϕ̃

(2)
0

}
M2

= σ
(l)
2

{
ã(l)1 ϕ̃

(1)
0 + ã(l)2 ϕ̃

(2)
0

}
. (166)

If we respectively multiply ϕ(l)0 (l = 1, 2) to Eq. (166), we
find

MT
2 ã(l) = σ

(l)
2 ã(l), (167)

where ã(l) ≡ (ã(l)1 , ã(l)2 )
T. Then, we solve the eigenvalue

problem Eq. (167) and find

ã(1) = c̃a

(
f3 −

√
f 2
1 − f2,

f4

θ
1/2
0 Jq

)T

,

ã(2) = c̃a

(
f3 +

√
f 2
1 − f2,

f4

θ
1/2
0 Jq

)T

, (168)

where f4 and c̃a are listed in Table 3. If we multiply
ϕ
(n)
0 ϕ̃

(n)
0 (n = 3, 4) to Eq. (166), we find ϕ̃(1)1 as

ϕ̃
(1)
1 = −

∑
n=3,4

1

σ
(n)
1

[{
ã(1)1 ϕ̃

(1)
0 + ã(1)2 ϕ̃

(2)
0

}
M2ϕ

(n)
0

]
ϕ̃
(n)
0

≡ C̃ϕ1(0, 0, 1, 0), (169)

where

C̃ϕ1 = f5

2θ0 J 4q2 ã(1)1

−ν0{4p0κ0q2 − 2η0 − ν0c1 − 2p0c3}
θ

1/2
0 J 3q

ã(1)2 (170)

and f5 is given in Table3. Therefore, the left eigenvector of
Eq. (136) truncated at O(ε2) is given by

ϕ̃
L(1)
ky0

= (ν̃q , ũq , w̃q , θ̃q) =
(

p′
0

J 2q
ã(1)1

− 2p0

J
ã(1)2 , ã(1)1 , εC̃ϕ1 ,

p0

θ0 J 2q
ã(1)1 + ν0

J
ã(1)2

)
.

(171)
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Fig. 6 The components of the
eigenvector a νq , b uq , c wq and
d θq as the functions of q, where
the open circles and solid lines
represent the numerical results
and analytic form Eq. (164),
respectively. Here, we used
ε = 0.01, e = 0.99 and
ν0 = 0.4

Let us compare the analytic form Eq. (164) with the
numerical result. Figure 6 shows the components of the
eigenvector (a) νq , (b) uq , (c) wq and (d) θq as the func-
tions of q, where the open circles and solid lines represent
the numerical results and analytic forms, respectively. From
these results, Eq. (164) well describes the numerical results.
We also confirmed that Eq. (171) well reproduces the results
of the numerical calculations.
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