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a b s t r a c t

In this paper we study a family of efficient, symmetric and linear values for TU-games, described by some
formula generalizing the Shapley value. These values appear to have surprising properties described in
terms of the axioms: Fair treatment, monotonicity and two types of acceptability. The results obtained
are discussed in the context of the Shapley value, the solidarity value, the least square prenucleolus and
the consensus value.
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1. Introduction

It is well known that the Shapley value (Shapley, 1953) for TU-
games can be characterized by the axioms of efficiency, symmetry,
linearity and the null player axiom. In the considerations of this
paperwe replace the last axiom by three other ones: fair treatment,
monotonicity and social acceptability. Roughly speaking, the fair
treatment axiom requires that a player i should be awarded (by a
value) notworse than a player j in a game if for every coalition S not
containing players i and j, the worth of coalition S ∪ i is not smaller
than the worth of coalition S ∪ j. The monotonicity axiom requires
for a value to award each player by at least zero in any monotonic
game. Next, the social acceptability condition imposes a lower and
an upper bound onwhat a null player obtains in unanimity games;
that is, in a unanimity game every null player obtains at least zero,
but at most what a non-null player receives in such a game.

The main purpose of the paper is to study how the family of
efficient, symmetric and linear values for TU-games changes when
we additionally assume some of those three axioms. It turns out
that by adding the fair treatment and the monotonicity axioms to
conditions defining that family, we obtain two subfamilies that can
be described with the help of very surprising formulae. Next these
two subfamilies are studied in terms of the social acceptability. The
results of the paper are illustrated by and applied to the Shapley
value, the solidarity value (Nowak and Radzik, 1994), the least
square prenucleolus (Ruiz et al., 1996) and the consensus value (Ju
et al., 2007).

The organization of the paper is as follows: In Section 2we recall
all the notions as definitions needed together with some auxiliary
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results from the literature. The results obtained in the paper and
their discussion are contained in Sections 3 and 4. Section 5 is
devoted to the proofs.

2. Preliminaries

Let N = {1, 2, . . . , n} with n ≥ 2 be a fixed finite set of n
players, called the grand coalition. Subsets of N are called coalitions
while N is called the grand coalition.

The cardinality of a set X will be denoted by |X |. For brevity,
throughout the paper, the cardinality of sets (coalitions) N, S and
T will also be denoted by appropriate small letters n, s and t ,
respectively. All the set inclusions ‘‘⊂’’ are meant to be weak. Also,
for notational convenience, we will write singleton {i} as i.

A (transferable utility) game (on N) is any function v : 2N
→ R

with v(∅) = 0, where R denotes the set of real numbers. Then
for any coalition S in N, v(S) describes the worth of the coalition
S when all the players in S collaborate. A game v is monotonic if
v(S) ≤ v(T ) for any S ⊂ T ⊂ N . The set of all games v is denoted
by Γ .

For a coalition T ⊂ N , the unanimity game uT is defined by
uT (S) = 1 for S ⊃ T and uT (S) = 0 otherwise, for S ⊂ N .

A value Φ(v) = (Φ1(v), . . . , Φn(v)) on Γ is thought of as a
vector-valuedmappingΦ : Γ → Rn, which uniquely determines,
for each game v ∈ Γ , a distribution of the total wealth available to
all the players 1, 2, . . . , n, through their participation in the game
v. We quickly recall several basic properties a value Φ may have.

A value Φ is called efficient if


i∈N Φi(v) = v(N) for all games
v. If Φ(αv + βw) = αΦ(v) + βΦ(N, w) for all games v and
w and for all reals α and β , a value Φ is called linear. If the last
equality holds for α = β = 1, a value is additive. A player i
is called a null player (dummy player) in game v if v(S ∪ i) =

v(S) (v(S ∪ i) = v(S) + v(i)) for every coalition S ⊂ N \ i. If
Φi(v) = 0 in case of any null player i in game v, we say that a value
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Φ satisfies the null player axiom. If a value Φ satisfies the equality
Φπ i(N, πv) = Φi(v) for all i ∈ N and every permutation π of
the player set N , then we say that Φ satisfies the anonymity axiom,
sometimes also called the symmetry axiom (here πv is defined as
game πv by πv(π(S)) = v(S) for S ⊂ N).

In this paper we will mainly discuss values which verify effi-
ciency, symmetry and linearity. Hence, for brevity, every value sat-
isfying those three properties will be shortly called an ESL-value.

Now we recall four ESL-values, essential for the illustration of
the results obtained in the paper and their application: the Shap-
ley value, the solidarity value, the least square prenucleolus and the
consensus value. The first of these values is standard in cooperative
game theory. The solidarity value was introduced in Nowak and
Radzik (1994). In the recent paper Calvo (2008) proposed two vari-
ations of the non-cooperative model for games in coalitional form,
introducedbyHart andMas-Colell (1996), and found twonew, very
interestingNTU-values: the randommarginal and randomremoval
values. It turned out that for TU-games, the randommarginal value
coincides with the Shapley value and that, which was completely
surprising, the random removal value coincides with the solidarity
value. The third of these values, the least square prenucleolus, is
an interesting proposal of a value presented in Ruiz et al. (1996).
The fourth value, the consensus value, is a new solution recently
proposed by Ju et al. (2007). Below, we describe these four in more
detail.

The Shapley value ΦSh. It is the classical value on Γ (Shapley,
1953) determined by ΦSh(v) = (ΦSh

1 (v), . . . , ΦSh
n (v)), where for

i ∈ N ,

ΦSh
i (v) =


S⊂N\i

s!(n − s − 1)!
n!

[v(S ∪ i) − v(S)]. (1)

It is known that the Shapley valueΦSh onΓ is the unique ESL-value
which satisfies the null player axiom.

The solidarity value ΦSo. This is a value on Γ discussed in
the paper (Nowak and Radzik, 1994). It is an ESL-value uniquely
determined by some modification of the null player axiom, called
A-null player axiom. We quickly recall this axiom. To express it we
need to define, for any non-empty coalition T ⊂ N and a game v,
the quantity

Av(S) =
1
s


k∈S

[v(S) − v(S \ k)], (2)

where s means the cardinality of S. Clearly, Av(S) can be seen as
the average marginal contribution of a member of a coalition S. The
axiom is as follows:

A-null player axiom: If i ∈ N is an A-null player in a game v,
that is, Av(S) = 0 for every coalition S containing player i, then
Φi(v) = 0.

It is shown in Nowak and Radzik (1994) that for v ∈ Γ , the
solidarity value is of the form ΦSo(v) = (ΦSo

1 (v), . . . , ΦSo
n (v)),

where for i ∈ N ,

ΦSo
i (v) =


S∋i

(n − s)!(s − 1)!
n!

Av(S). (3)

It is left to the reader to verify with the help of (3) and (2) that the
solidarity value can be written in the following equivalent form:
For i ∈ N

ΦSo
i (v) =

v(N)

n
−

v(N \ i)
n2

+


S(N\i

s!(n − s − 1)!
n!


v(S ∪ i)
s + 2

−
v(S)
s + 1


. (4)

The least square prenucleolus ΦL. This value (Ruiz et al., 1996) is
defined as the vector ΦL(v) = (ΦL

1(v), . . . , ΦL
n(v)) = (x01, . . . , x

0
n)
minimizing the function

f (x1, . . . , xn) =


∅≠S⊂N


v(S) −


j∈S

xj

2

subject to


j∈N xj = v(N) over (x1, . . . , xn) ∈ Rn. The value ΦL is
an ESL-value.

The consensus valueΦCo. This is an ESL-valueΦCo(v) = (ΦCo
1 (v),

. . . , ΦCo
n (v)) (Ju et al., 2007), uniquely determined by the following

neutral dummy property: For any dummy player i in a game
v, ΦCo

i (v) =
v(i)
2 +

1
2


v(i) +

v(N)−


j∈N v(j)
n


. It is proved that the

consensus value ΦCo is of the form

ΦCo(v) =
1
2
ΦSh(v) +

1
2
E(v), (5)

where ΦSh is the Shapley value and E(v) = {E1(v), . . . , En(v)} de-
notes the equal surplus solution of v, i.e.,

Ei(v) = v(i) +

v(N) −

j∈N

v(j)

n
for i ∈ N. (6)

To end, we quote two very useful results from the literature,
characterizing the class of ESL-values. The first one (Lemma 9 in
Ruiz et al. (1998) is about some unique representation of values.
We write it in the following form:

Proposition 1. A value Φ is an ESL-value if and only if there exists
a unique collection of constants {ρs|s = 1, 2, . . . , n − 1} such that,
for every game v the value payoff vector (Φi(v))i∈N is of the following
form:

Φi(v) =
1
n
v(N) +


S(N
S∋i

ρs

s
v(S) −


S(N
S∌i

ρs

n − s
v(S), i ∈ N. (7)

It is shown in Ruiz et al. (1998) that the least square prenucleolus
ΦL is of the form (7) with constants

ρs =
s(n − s)
n · 2n−2

, s = 1, . . . , n − 1, (8)

whence, by Proposition 1, it follows that ΦL is an ESL-value.
The second result is an equivalent version of Proposition 1 (see

Theorem 3 in Driessen and Radzik (2003)), which we write in the
following form:

Proposition 2. A value Φ is an ESL-value if and only if there exists a
unique collection of constants {bs|s = 1, 2, . . . , n} with bn = 1 such
that Φ is of the form

Φi(v) =


S⊂N\i

s!(n − s − 1)!
n!

[bs+1v(S ∪ i) − bsv(S)]

for i ∈ N, (9)

(here we take b0 ≡ 0, because of v(∅) = 0).

One can easily check that if we rewrite formula (7) with the help
of the new parameters b1, . . . , bn−1, putting there

ρs = bs/
n
s


for s = 1, . . . , n − 1, (10)

then (7) coincides with formula (9).
One can easily see that formula (9) generalizes formula (1) for

the Shapley value, in the sense that themargin contribution [v(S∪

i) − v(S)] has been replaced by a ‘‘modified margin contribution’’
[bs+1v(S ∪ i)− bsv(S)]. Just the representation of ESL-values in the
form (9) is basic for our considerations in the next sections.
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3. First main result

In this section we present two of our main results (Theorems 1
and 2) about the family of ESL-values, defined on the set Γ of all
cooperative games on an arbitrarily fixed grand coalition N . They
discuss very surprising properties of values of the form (9). Because
of their complexity, their proofs are given in the last section. The
obtained results will be applied to the four values, the Shapley
value, the solidarity value, the least square prenucleolus and the
consensus value, introduced in the previous section.

The starting point for our considerations is the family of ESL-
valuesΦ = (Φi)i∈N on Γ with their representation in the form (9).
We begin with introducing the following two desirable properties
of a value.
Fair treatment: Let i, j ∈ N and v ∈ Γ . If v(S ∪ i) ≥ v(S ∪ j) for all
S ⊂ N \ i \ j then Φi(v) ≥ Φj(v).
Monotonicity: Let v be a monotonic game, that is satisfying v(S) ≤

v(T ) whenever S ⊂ T . Then for each player i ∈ N, Φi(v) ≥ 0.
It is worth mentioning that the first property fair treatment

appears in the literature under different names, such as desirability
(see, e.g. Peleg and Sudhölter, 2003), or local monotonocity (see,
e.g. Levinský and Silársky, 2004).

Theorem 1. An ESL-value Φ verifies fair treatment, if and only if the
constants bs in its representation (9) satisfy:

bn = 1 and bk ≥ 0 for k = 1, 2, . . . , n − 1. (11)

Theorem 2. An ESL-value Φ verifies fair treatment and monotonic-
ity, if and only if the constants bs in its representation (9) satisfy:

bn = 1 and 0 ≤ bk ≤ 1 for k = 1, 2, . . . , n − 1. (12)

The above two theorems allow us to conclude the following
corollary.

Corollary 1. (a) The Shapley value and the solidarity value verify fair
treatment and monotonicity.

(b) The least square prenucleolus and the consensus value verify fair
treatment.

(c) The least square prenucleolus and the consensus value do not
verify monotonicity for |N| ≥ 4 and |N| ≥ 3, respectively.

Proof. Since the Shapley value, the solidarity value, the least
square prenucleolus and the consensus value are ESL-values,
therefore each of them has its representation in the form (9) with
some constants bs. Comparing (1) with (9), for the Shapley value
we have

bs = 1 for s = 1, 2, . . . , n, (13)

while by comparing (4) and (9), we conclude that the constants bs
for the solidarity value ΦSo are of the form

bn = 1 and bs =
1

s + 1
for s = 1, 2, . . . , n − 1. (14)

On the other hand, the least square prenucleolus ΦL is of the
form (9) with the constants

bn = 1 and bs =
s

2n−2


n − 1

s


for s = 1, 2, . . . , n − 1, (15)

which easily follows by (8) and (10).
Further, one can easily check that the equal surplus solution

E(v) (described by (6)) has its representation in the form (9) with
the constants

bs =

n − 1 if s = 1,
1 if s = n,
0 if 1 < s < n.

(16)

Hence, using (5), (13) and (16), we immediately see that the
consensus value ΦCo, is also of the form (9), with the constants

bs =


n
2

if s = 1,
1 if s = n,
1
2

if 1 < s < n.

(17)

By (13) and (14), (12) follows. Hence statement (a) is an imme-
diate consequence of Theorem 2.

Further, the fact that the least square prenucleolus and the con-
sensus value verify fair treatment, easily follows from (15), (17),
(11) and Theorem 1. Therefore, statement (b) also is true.

To prove statement (c) for the least square prenucleolus, it suf-
fices to show (because of Theorem 2) that for every n ≥ 4, bs =

s
2n−2


n−1
s


> 1 for some 1 ≤ s ≤ n − 1.

Namely, first consider the case n = 2k with k ≥ 2 and take
s = k. Then bk =

k
22k−2


2k−1

k


and we easily check that b2 = 3

and bk < bk+1 for k ≥ 2. Therefore bk > 1 in case n = 2k ≥ 4. For
the second case n = 2k + 1 with k ≥ 2, we have bk =

k
22k−1


2k
k


,

and similarly as before, we show that bk > 1.
The statement (c) in the case of the consensus value is an im-

mediate consequence of Theorems 1, 2, and (17). �

Remark 1. Theorems 1 and 2 are based on our earlier result of
Proposition 2 with formula (10) from Driessen and Radzik (2003),
and they are the first part of our main results. It should be men-
tioned here that similar results, closely related to these two theo-
rems, were independently obtained (with the help of other tools)
in the (so far unpublished) paper of Malawski (2008). Namely, his
results can be written in the following way:

(1) An ESL-value Φ verifies fair treatment if and only if it is coali-
tionally monotonic, that is satisfying: for every coalition T and
every two games v and w coinciding on all the coalitions S ≠

T , Φi(v) ≥ Φi(v) for each i ∈ T if v(T ) > w(T ) (a consequence
of Lemma 6 there);

(2) An ESL-value Φ is coalitionally monotonic if and only if it is of
the form (7) with constants ρs ≥ 0 for s = 1, . . . , n − 1 (a
consequence of Lemma 3 there);

(3) An ESL-value Φ with the fair treatment andmonotonicity prop-
erties is of the form (7) with constants ρs satisfying 0 ≤ ρs ≤

1/
 n
s


for s = 1, . . . , n−1 (a consequence of Lemmas 6, 3 and

5 there).

Now, one can conclude that the above three statements to-
gether with Proposition 2 and formula (10) imply Theorem 1 and
the part (⇒) of Theorem 2. However, the rest of our results (the
part (⇐) of Theorem2, and Theorems 3 and 4 given in the next sec-
tion) cannot be derived fromMalawski (2008), because they neces-
sarily need the representation of ESL-values given by our Proposi-
tion 2, not present there. In Section 5we directly prove Theorems 1
and 2, without any reference to considerations of that paper.

4. ESL-values and acceptability properties

In this sectionwe continue our considerations about ESL-values,
in the context of two other properties, social acceptability and
general acceptability (defined below). The proofs of Theorems 3 and
4 describing necessary and sufficient conditions for an ESL-value to
have such properties, are given the next section.
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It is well known that the family of unanimity games constitutes
a basis of the space of all TU-games. Besides, every unanimity
game has a very simple and clear structure with two distinguished
groups of the players (the null players and the rest). Thus the
discussion about the properties of values reduced to the family of
unanimity games gives an important extra information about the
behavior of values. Obviously, for any unanimity game uT , every
non-null player i ∈ T can be seen as a ‘‘productive’’ one, while the
null players j ∈ N \ T can be seen as ‘‘non-productive’’. Hence, it is
very reasonable to require that every productive player should be
awarded not worse (by a value Φ in unanimity games uT ) than any
non-productive one. Additionally, from the social point of view,
any non-productive player in uT should be awarded with a payoff
at least zero. This observation leads to the next property of a value
Φ = (Φi)i∈N of TU-games, proposed by Joosten et al. (1994).
Social acceptability: Let uT be any unanimity gamewith ∅ ≠ T ( N .
Then

Φi(uT ) ≥ Φj(uT ) ≥ 0 for all i ∈ T and j ∈ N \ T . (18)

Remark 2. Most of the values of cooperative games discussed in
the literature are socially acceptable, that is, they satisfy (18) for
all unanimity games uT . In an obvious way, the Shapley value,
the τ -value (Tijs, 1981) and the nucleolus (Schmeidler, 1969) are
socially acceptable since they assign 0 to each null player j ∉ T
and 1/|T | to each player i ∈ T in any unanimity game uT . The next
theorem gives necessary and sufficient conditions for ESL-values to
be socially acceptable.

Theorem 3. An ESL-value Φ is socially acceptable if and only if the
constants bs in its representation (9) satisfy:

0 ≤


nt

n − t

n
t


·

n−1
k=t


k
t


bk
k

≤ 1

for t = 1, 2, . . . , n − 1. (19)

Obviously, not every ESL-value is socially acceptable. However,
such values possess this property, when they additionally satisfy
the monotonicity and fair treatment properties. Just this is ex-
pressed by the following corollary of Theorem 3.

Corollary 2. Every ESL-value Φ with constants b1, . . . , bn satisfying
(12) in its representation (9), is socially acceptable.

Proof. Obviously, it suffices to show (19). Because of (12), the first
inequality in (19) is trivial.

One can easily verify with the help of induction that

n−1
s=t

 s
t


·
1
s

=
1
t

·


n − 1

t


for 1 ≤ t < n. (20)

Now, using (12) and (20), for t = 1, 2, . . . , n− 1, we can conclude
as follows:

nt
n − t

n
t


·

n−1
s=t

 s
t

 bs
s

≤


nt

n − t

n
t


·

n−1
s=t

 s
t

 1
s

=


nt

n − t

n
t


·
1
t

·


n − 1

t


= 1.

Therefore (19) holds, which completes the proof. �

Corollary 3. The solidarity value, the least square prenucleolus and
the consensus value are socially acceptable.

Proof. The social acceptability of the solidarity value is an imme-
diate consequence of (14), (12) and Corollary 2.
Further, note that the constants bs for the least square prenucle-
olus and for the consensus value do not satisfy (12) (see (15) and
(17)), and thereby we cannot use the result of Corollary 2.

Let H(n, t) :=
 nt
n−t /

 n
t


·
n−1

s=t

 s
t

 bs
s . For the least square

prenucleolus, the constants bs are of the form (15), and thereby
they satisfy (11). Therefore, for 1 ≤ t ≤ n − 1 we can conclude
for this value as follows:

0 ≤ H(n, t) =
nt

(n − t)2n−2
·

n−1
s=t

 s
t

 
n − 1

s

 n
t



=
nt

(n − t)2n−2
·

n−1
s=t


n − s
n


n − t
s − t



=
t

2n−2
·

n−1
s=t


n − s
n − t


n − t
s − t



=
t

2n−2
·

n−1
s=t


n − 1 − t
n − 1 − s


=

t
2t−1

≤ 1.

Thus (19) holds, and Theorem 3 proves the social acceptability of
the least square prenucleolus.

Now, consider H(n, t) for the consensus value, that is, with the
constants bs of the form (17). Obviously, H(n, t) ≥ 0 for t = 1, 2,
. . . , n − 1. On the other hand, using (18), one can verify that
H(n, 1) = 1 and H(n, t) =

1
2 for all 1 ≤ t < n. Consequently

(19) follows, whence, by Theorem 3, the consensus value also is
socially acceptable. Thus the proof is completed. �

Remark 3. One can see as very desirable the following strengthen-
ing of the property of social acceptability. Namely, it is reasonable
to require also from an efficient value of any unanimity game that a
productive player should be awarded not worse when the number
of all the productive players in the game is smaller. It leads to the
next property for a value Φ = (Φi)i∈N of TU-games.

General acceptability: Let uS and uT be any two unanimity games
with ∅ ≠ S ⊂ T ⊂ N . Then

Φi(uS) ≥ Φi(uT ) for all i ∈ S. (21)

The next theorem gives necessary and sufficient conditions for
an ESL-value to be generally acceptable.

Theorem 4. An ESL-value Φ is generally acceptable if and only if the
constants bs in its representation (9) satisfy:

n−1
k=s

n − k
k

·


k
s


bk ≥ 0 for s = 1, 2, . . . , n − 1. (22)

Theorem 4 immediately leads to the next corollary, which says
(by Theorem 1) that an ESL-value with the fair treatment property
also is generally acceptable.

Corollary 4. Every ESL-value Φ with constants b1, . . . , bn satisfying
(11) in its representation (9), is generally acceptable.

The Shapley value is generally acceptable, because (21) is obvi-
ously satisfied for it. It turns out that the remaining three consid-
ered values also have the same property.

Corollary 5. The solidarity value, the least square prenucleolus and
the consensus value are generally acceptable.

Proof. All the three values are of the form (9)with all the constants
bs > 0 and bn = 1 as it follows from (14), (15) and (17). So, for each
of them, inequalities (22) hold, ending the proof. �
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Remark 4. The properties of fair treatment and monotonicity
of ESL-values are closely related with the social acceptability
and general acceptability. Namely, if an ESL-value verifies fair
treatment, then it also is generally acceptable (a consequence of
Corollary 4 and Theorem 1). However, if an ESL-value verifies fair
treatment andmonotonicity, then it is both socially acceptable and
generally acceptable (a consequence of Corollaries 2 and 4 and
Theorem2). The last two properties are very desirable, and the four
considered values, the Shapley value, the solidarity value, the least
square prenucleolus and the consensus value, possess them aswell
as most values of cooperative games discussed in the literature.
However, there exist ESL-values satisfying the fair treatment
property, which are not socially acceptable. Namely, consider the
α-equal surplus solution of the form Eα(v) = {Eα

1 (v), . . . , Eα
n (v)},

where

Eα
i (v) = αv(i) +

v(N) −

j∈N

αv(j)

n
for i ∈ N.

Obviously, this value generalizes the equal surplus solution E(v)
of the form (6), and is an ESL-value with a clear interpretation.
It is not difficult to verify that for 0 ≤ α ≤ 1 value Eα(v) is
both socially acceptable and generally acceptable, but for α > 1 it
is only generally acceptable, not socially acceptable. One can also
notice that for 0 ≤ α ≤ 1, value Eα(v) is a convex combination
of the equal surplus solution E(v) and the equal division solution
ΦEq(v) =


v(N)

n , . . . , v(N)

n


, in the form Eα(v) = αE(v) + (1 −

α)ΦEq(v). It is also worth mentioning that the class of values
Eα(v), 0 ≤ α ≤ 1, coincides with the subclass φα,1(v), 0 ≤ α ≤ 1,
of some wider class of values φα,β(v), 0 ≤ α, β ≤ 1, which was
recently studied by van den Brink and Funaki (2009).

We end this remark with two interesting facts (in the context
of value Eα(v)). Namely, one can easily verify that in the case of
2-person games (|N| = 2), the Shapley value coincides with the
consensus value and they are equal to 1-equal surplus solution,
while the solidarity value coincides with 1

2 -equal surplus solution.

5. Proofs of Theorems 1–4

Proof of Theorem 1. (⇐) Fix a value Φ and assume that it is of
the form (9) with constants bs satisfying (11). We show that Φ

possesses the fair treatment property.
We know that formula (9) is equivalent to formula (7) with

constants ρs of the form (10). Therefore, we can assume (because
of (11)) that the value Φ is of the form (7) with some constants

ρs ≥ 0 for s = 1, 2, . . . , n − 1. (23)

Let us fix i, j ∈ N and assume that

v(T ∪ i) ≥ v(T ∪ j) for all T ⊂ N \ i \ j. (24)

Then using (7), we can conclude as follows:

Φi(v) − Φj(v) =



S∋i
S∋j

ρs

s
v(S) +


S∋i
S∌j

ρs

s
v(S)

−


S∌i
S∌j

ρs

n − s
v(S) −


S∌i
S∋j

ρs

n − s
v(S)


−



S∋j
S∋i

ρs

s
v(S) +


S∋j
S∌i

ρs

s
v(S)
−


S∌j
S∌i

ρs

n − s
v(S) −


S∌j
S∋i

ρs

n − s
v(S)


=


S∋i
S∌j

nρs

s(n − s)
v(S) −


S∋j
S∌i

nρs

s(n − s)
v(S)

= n

 
T⊂N\i\j

ρt+1

(t + 1)(n − t − 1)
v(T ∪ i)

−


T⊂N\i\j

ρt+1

(t + 1)(n − t − 1)
v(T ∪ j)


,

whence

Φi(v) − Φj(v)

= n


T⊂N\i\j

ρt+1

(t + 1)(n − t − 1)
[v(T ∪ i) − v(T ∪ j)]. (25)

But the last equality, in view of (23) and (24), implies that
Φi(v) ≥ Φj(v). Thus we have proved that Φ has the fair treatment
property, ending the first part of the proof of Theorem 1.

(⇒)Now assume conversely thatΦ is an ESL-value and has the
fair treatment property. By Proposition 2, it follows thatΦ is of the
form (9). We will show that inequalities (11) must hold.

Let us fix i, j ∈ N and S ⊂ N \ i \ j, and define the game ṽ on N
by the following:

ṽ(T ) =


1 if T = S ∪ i,
0 if T ≠ S ∪ i.

Then obviously the game v = ṽ satisfies (24) and (25). Therefore,
by the fair treatment property, Φi(ṽ) − Φj(ṽ) ≥ 0. On the other
hand, (25) leads to the equality: Φi(ṽ) − Φj(ṽ) = n ρs+1

(s+1)(n−s−1) .
Hence ρs+1 ≥ 0, and consequently bs+1 ≥ 0, because of (10).
This, in view of the arbitrarity of the set S, completes the proof of
Theorem 1. �

Proof of Theorem 2. (⇒) Assume that Φ is an ESL-value and
verifies fair treatment andmonotonocity. Obviously, by Theorem1,
Φ is of the form (9) satisfying (11). Therefore,we need to showonly
that

bk ≤ 1 for k = 1, 2, . . . , n − 1. (26)

Let us arbitrarily fix i ∈ N and k, 1 ≤ k ≤ n − 1, and define the
game v̄ on N by the following:

v̄(T ) =

1 if |T | ≥ k + 1 and i ∈ T ,
1 if |T | ≥ k and i ∉ T ,
0 otherwise.

Then, by (9), we can conclude as follows:

Φi(v̄) =


S⊂N\i
|S|≥k

s!(n − s − 1)!
n!

[bs+1v̄(S ∪ i) − bsv̄(S)]

=

n−1
s=k


S⊂N\i

s!(n − s − 1)!
n!

(bs+1 − bs)

=

n−1
s=k


n − 1

s


s!(n − s − 1)!

n!
(bs+1 − bs)

=
1
n

n−1
s=k

(bs+1 − bs) =
1
n
(bn − bk) =

1
n
(1 − bk).

Since the game v̄ is monotonic, therefore, by the monotonocity
property, Φi(v̄) ≥ 0, and consequently bk ≤ 1. This, in view of
the arbitrarity of k, ends the proof of part (⇒) of the theorem.
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(⇐) Assume now that a value Φ is of the form (9) with con-
stants b1, . . . , bn satisfying (12). (We recall that b0 ≡ 0 in (9)).

Let us arbitrarily fix i ∈ N and choose any monotonic game v
on N . In view of Theorem 1, we need to show only that Φ verifies
the monotonicity, that is, Φi(v) ≥ 0.

To begin with, for q = 0, 1, . . . , n−2, we will show the follow-
ing inequalities:

Φi(v) ≥
q!

n(n − 1) . . . (n − q)


S⊂N\i

|S|=n−(q+1)

(1 − bn−(q+1))v(S ∪ i)

+


S⊂N\i

|S|≤n−(q+2)

s!(n − s − 1)!
n!

(bs+1 − bs)v(S ∪ i). (27)

The proof of the inequality (27) will be carried out with the help of
induction. First we will show it for q = 0.

Since v is monotonic, therefore (9) with (12) imply the follow-
ing:

Φi(v) ≥


S⊂N\i

s!(n − s − 1)!
n!

(bs+1 − bs)v(S ∪ i)

which, in turn, is equivalent to the inequality

Φi(v) ≥
1
n
v(N)(1 − bn−1)

+


S⊂N\i

|S|≤n−2

s!(n − s − 1)!
n!

(bs+1 − bs)v(S ∪ i).

One can easily see that the right-hand side of the last inequality co-
incides with the same for (27) with q = 0, and thereby, inequality
(27) holds for q = 0.

Assume now that inequality (27) holds for some 0 ≤ q < n−2.
We will show that this inequality also holds after replacing q by
q + 1.

We easily state that
S⊂N\i

|S|=n−(q+1)


k∈S

v(S ∪ i \ k) = (q + 1)

S⊂N\i

|S|=n−(q+2)

v(S ∪ i).

The monotonicity of the game v and the above equality imply the
following

S⊂N\i
|S|=n−(q+1)

v(S ∪ i) ≥
1

n − (q + 1)


S⊂N\i

|S|=n−(q+1)


k∈S

v(S ∪ i \ k)

=
q + 1

n − (q + 1)


S⊂N\i

|S|=n−(q+2)

v(S ∪ i).

Therefore
q!

n(n − 1) . . . (n − q)


S⊂N\i

|S|=n−(q+1)

(1 − bn−(q+1))v(S ∪ i)

≥
(q + 1)!

n(n − 1) . . . (n − (q + 1))


S⊂N\i

|S|=n−(q+2)

(1 − bn−(q+1))v(S ∪ i).

Hence, using the above inequality and (27) (inductive assumption),
we can conclude as follows:

Φi(v) ≥
(q + 1)!

n(n − 1) . . . (n − (q + 1))

×


S⊂N\i

|S|=n−(q+2)

(1 − bn−(q+1))v(S ∪ i)
+


S⊂N\i

|S|≤n−(q+2)

s!(n − s − 1)!
n!

(bs+1 − bs)v(S ∪ i)

=
(q + 1)!

n(n − 1) . . . (n − (q + 1))

×


S⊂N\i

|S|=n−(q+2)

(1 − bn−(q+1))v(S ∪ i)

+


S⊂N\i

|S|=n−(q+2)

(q + 1)!
n(n − 1) . . . (n − (q + 1))

× (bn−(q+1) − bn−(q+2))v(S ∪ i)

+


S⊂N\i

|S|≤n−(q+3)

s!(n − s − 1)!
n!

(bs+1 − bs)v(S ∪ i)

=
(q + 1)!

n(n − 1) . . . (n − (q + 1))

×


S⊂N\i

|S|=n−(q+2)

(1 − bn−(q+2))v(S ∪ i)

+


S⊂N\i

|S|≤n−(q+3)

s!(n − s − 1)!
n!

(bs+1 − bs)v(S ∪ i).

This implies that inequality (27), after replacing q by q + 1, holds.
Therefore, by the induction principle, it proves the validity of (27)
for q = 0, 1, . . . , n − 2.

Putting now q = n − 2 in (27), we get

Φi(v) ≥
(n − 2)!

n(n − 1) . . . 2


S⊂N\i
|S|=1

(1 − b1)v(S ∪ i)

+


S⊂N\i
|S|=0

(n − 2)!
n(n − 1) . . . 1

(b1 − b0)v(S ∪ i),

which is nonnegative, because 0 ≤ b1 ≤ 1 and b0 = 0. Thus we
have proved that Φi(v) ≥ 0, ending the proof of Theorem 2. �

Proof of Theorem 3. Let ∅ ≠ T ( N, i ∈ T and j ∈ N \ T . Let
Φ be an ESL-value of the form (9). Therefore, it verifies efficiency
and anonymity. However, it implies that for the unanimity game
uT , tΦi(uT )+ (n− t)Φj(uT ) = 1. Hence, one can easily deduce that
Φ is socially acceptable, that is, it satisfies the double inequality in
(18), if and only if

1
n

≤ Φi(uT ) ≤
1
t

for all T and i ∈ T , ∅ ≠ T ( N. (28)

But, using the definition of the game uT and (9),we can conclude
as follows:

Φi(uT ) =


S⊂N\i

s!(n − s − 1)!
n!


bs+1uT (S ∪ i) − bsuT (S)


=


S⊂N\i

s!(n − s − 1)!
n!

bs+1uT (S ∪ i)

=


T\i⊂S⊂N\i

s!(n − s − 1)!
n!

bs+1

=

n−1
s=t−1


n − t

s − t + 1


·
s!(n − s − 1)!

n!
bs+1

=

n−1
s=t−1


s + 1
t


·
bs+1

s + 1

n
t


,
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=

n
k=t


k
t


·
bk
k

n
t


,

whence one can finally get

Φi(uT ) =
1
n

+

n−1
k=t


k
t


·
bk
k

 n
t


. (29)

Now, using (29), one can easily deduce that (28) is equivalent to
(19). Thus the proof is completed. �

Proof of Theorem 4. (⇐) By assumption, Φ is of the form (9).
Obviously, it suffices to show the inequality (21) for ∅ ≠ S ⊂

T ⊂ N with |T | = |S| + 1. Therefore, considering the result of
the sequence of equalities before (29), for s = 1, . . . , n − 1 and
i ∈ S, we can conclude as follows:

Φi(uS) − Φi(uT )

=

n
k=s


k
s


·
bk
k

n
s


−

n
k=s+1


k

s + 1


·
bk
k


n

s + 1



=
bs
s

n
s


+

n
k=s+1


k
s

 n
s


−


k

s + 1

 
n

s + 1


·
bk
k

=
bs
s

n
s


+

n
k=s+1


n − k
n − s

·
bk
k

·


k
s

 n
s



=

n−1
k=s


n − k
k


k
s


bk

 
(n − s)

n
s


≥ 0,

where the last inequality is a consequence of (22).
(⇒) In view of the equalities in part (⇐), the proof is

obvious. �
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