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� A novel spike detection method is presented making use of >2000 templates to find inter-ictal
epileptiform activity in EEGs.

� Vulnerability to the variability in spike morphology is avoided by containing examples of most
common spike morphologies in the database.

� Certainty values paired with each detection allows the reviewer to view most probable events first,
further reducing the load on visual analysis.

a b s t r a c t

Objective: Visual analysis of EEG is time consuming and suffers from inter-observer variability. Assisted
automated analysis helps by summarizing key aspects for the reviewer and providing consistent feed-
back. Our objective is to design an accurate and robust system for the detection of inter-ictal epileptiform
discharges (IEDs) in scalp EEG.
Methods: IED Templates are extracted from the raw data of an EEG training set. By construction, the tem-
plates are given the ability to learn by searching for other IEDs within the training set using a time-shifted
correlation. True and false detections are remembered and classifiers are trained for improving future
predictions. During detection, trained templates search for IEDs in the new EEG. Overlapping detections
from all templates are grouped and form one IED. Certainty values are added based on the reliability of
the templates involved.
Results: For evaluation, 2160 templates were used on an evaluation dataset of 15 continuous recordings
containing 241 IEDs (0.79/min). Sensitivities up to 0.99 (7.24 fp/min) were reached. To reduce false detec-
tions, higher certainty thresholds led to a mean sensitivity of 0.90 with 2.36 fp/min.
Conclusion: By using many templates, this technique is less vulnerable to variations in spike morphology.
A certainty value for each detection allows the system to present findings in a more efficient manner and
simplifies the review process.
Significance: Automated spike detection can assist in visual interpretation of the EEG which may lead to
faster review times.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Epilepsy is estimated to affect around 50 million people
worldwide. With a high temporal resolution that can capture in-
ter-ictal epileptiform discharges (IEDs), EEGs play an important
role in the diagnosis of epilepsy. A major drawback however, is
that reviewing them is time-consuming. Also, the diagnostic yield
is low, partially due to the relative short duration of routine EEG
recordings, and due to this, multiple routine recordings are typi-
cally required before signs of inter-ictal epileptiform activity are
found (Doppelbauer et al., 1993). Given that reviewers have differ-
ent levels of training and experience, a reasonably high inter-
observer reliability is also known to exist (Azuma et al., 2003;
Abend et al., 2011).

Longer recordings have shown to increase the chances of find-
ing inter-ictal epileptiform activity (Faulkner et al., 2012; Agbenu
et al., 2012; Leach et al., 2006; Friedman and Hirsch, 2009). In some
cases this can lead to fewer follow-up recordings and an overall in-
crease in diagnostic efficiency. Unfortunately, longer recordings
also result in more time required for visual analysis, a burden that
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is best avoided. Computerized assistance with the detection of IEDs
can lessen the burden of visual analysis, and as an added benefit,
ensure more consistency between reviews that will lower inter-
rater variability. A large number of detection algorithms have
already been proposed over the last four decades, ranging from
template matching and parametric methods, to mimetic analysis,
spectral analysis and artificial neural networks (see Wilson and
Emerson, 2002; Halford, 2009). A review by Halford (2009) shows
that some techniques have achieved very promising results, but
due to a lack of a common dataset, comparisons between methods
are still hard to make.

One of the main obstacles in IED detection is not only to find the
inter-ictal events, but also to minimize the number of false detec-
tions per minute. If this number is too large, a reviewer will still
be required to inspect most of the data and automated detection
will be of no use. Most methods for this reason use a multi-step pro-
cess to first detect possible events, and then discard artifacts and
non-epileptiform events with additional rules from the set of poten-
tial candidates. Although difficult to compare without a common
dataset, a good benchmark for the feasibility of spike detection
methods in practice are their sensitivities and false detection rates.
Low sensitivities show that reviewers can miss important IEDs if
any are present, and as mentioned, high false detection rates make
evaluating the output of the algorithm more time consuming than a
visual review itself. Although selectivity measures also provide use-
ful information about the algorithm, it does not take into account
the number of IEDs per minute in the dataset, which is critical when
comparing methods from different datasets. Recent methods report
average sensitivities of 0.90 (Nonclercq et al., 2012), 0.65 (De Lucia
et al., 2008), 0.82 (Argoud et al., 2006), 0.93 (Subasi, 2006), 0.78
(Halford et al., 2012), 0.69 (Ji et al., 2011a), and 0.92 (Van Hese
et al., 2008), and average false detections per minute of 6 (De Lucia
et al., 2008), 13.4 (Argoud et al., 2006), 0.92 (Indiradevi et al., 2008),
and 0.09 (Ji et al., 2011a). In most studies that report high sensitiv-
ities, a high false detection rate is present if given, otherwise data
epochs are used instead of continuous EEG, or the number of false
detections are not reported (Nonclercq et al., 2012; Subasi, 2006;
Halford et al., 2012; Indiradevi et al., 2008; Van Hese et al., 2008).
On the other hand, studies with low false detection rates show low-
er sensitivities. This shows the trade off for all methods between
choosing high sensitivities with more false detections, or lower sen-
sitivities with fewer false detections.

Regardless of the many algorithms available, few implementa-
tions have made it to clinical practice. With the aim of achieving
a practical and reliable system for IED detection, we introduce an
automated detection method based on template matching to find
IEDs in EEG recordings. The method is unique in the sense that it
uses a large database of templates extracted from a training set
of example EEGs. Unlike other template matching algorithms that
only rely on a single or a small number of templates to search for
inter-ictal events, our system can match more variations in spike
morphology and is less vulnerable to variability. In addition, the
algorithm is designed to incorporate experience into the templates
from past classifications during training, which can be extended
even further so that they can gain additional experience with
repeated use. The presented method is intended to assist instead
of replace visual inspection, with the aim of significantly reducing
review time for clinicians and neurologists.
1 Available at http://research.ics.aalto.fi/ica/fastica/.
2. Methods

2.1. Subjects and data

An EEG dataset for this study was obtained from the Department
of Clinical Neurophysiology at the Medisch Spectrum Twente (MST)
in the Netherlands. Recordings were made with a standard 20–
30 min protocol using a Brainlab EEG system and standard Ag–AgCl
electrode caps placed according to the international 10–20 guide-
lines. Impedances were kept below 5 kX to reduce polarization
effects. A sample rate of either 250 Hz or 256 Hz was used for each
recording. Afterwards it was band-pass filtered between 0.5–30 Hz,
and downsampled to 100 Hz to increase efficiency of the algorithm.
IEDs were marked and reviewed by experienced electroencepha-
lographers on the channels where they were clearly visible (MvP
and JA). Each IED consisted of one of the following patterns: (i)
spike, (ii) sharp wave, (iii) spike and slow wave, (iv) sharp wave
and slow wave (v) slow wave with absent or very small preceding
spike, or (vi) polyspike and slow wave. IEDs were marked in three
montages: common reference, bi-polar and source.

The dataset consisted of 23 records with 723 IEDs in total and a
combined recording length of 481 min. The patient group con-
sisted of 15 males and 8 females with ages ranging from 4 to 52
(mean 23.2 ± 17.1) years. Thirteen subjects were diagnosed with
generalized epilepsies (4 absence, 1 juvenile myoclonic, 8 idio-
pathic), and the remaining 10 with focal epilepsies (5 temporal
lobe, 1 rolandic, 4 other). The dataset was split into two parts,
one for template collection and training, and the other for an eval-
uation set. Eight EEGs were used for training and 15 for testing. The
training set contained 482 marked IEDs with a total recording
length of 175 min. The testing set contained 241 marked IEDs with
a total recording length of 306 min.

2.2. Preprocessing

Independent component analysis was used to reduce the
influence of eye blink artifacts. After calculating the independent
components with the FastICA algorithm,1 each component was
compared to the electrooculogram (EOG) channel recorded with
the EEG. If a component showed a substantial correlation with the
EOG channel (>0.5), it was removed by setting all its values to zero.
The remaining components were projected back to their channel
space by applying the inverse transform.

2.3. Method outline

The presented method uses a database of templates resembling
typical waveforms of epileptiform activity, and finds matches be-
tween the templates and inter-ictal events in the EEG. The main
concepts that make this method different from others are the fol-
lowing: (i) a substantially larger set of templates is used, (ii) the
templates are designed to have experience by remembering past
classifications and using this to improve future predictions, and
(iii) an agreement system is used to combine detected events from
multiple templates and thus lower false detections. The sections
that follow give a detailed outline of the various parts of the meth-
od, which can be divided into template collection, learning, and
detection. An illustrative summary of the template collection and
learning phase is shown in Fig. 1, and one for the detection phase
in Fig. 2.

2.4. Template collection

Starting with a blank database, templates are added using a
training dataset. For each EEG in the training set, a collection of
epochs is extracted at the locations where IEDs were marked by
the reviewers. Each epoch represents a template and is added to
the database. Three montages are used during collection: common
reference, bi-polar, and source. Templates are extracted per chan-
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Fig. 1. Outline of the template extraction and learning steps. After the templates are trained, each of them contributes to the detection by nominating possible IEDs.
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nel, i.e. if an IED is marked over two channels in the common ref-
erence montage and one channel in the bi-polar montage, three
templates will be created. Single spikes or sharp waves were not
included as templates, due to a high degree of false detections.
An example of extracted templates is shown in Fig. 3. Note that
they also have differences in magnitude (amplitudes were not nor-
malized, but used ‘as recorded’).
2.5. Learning

After extracting the templates, their ability to find and discrim-
inate between other IEDs from the same or other recordings and
non-epileptiform activity is determined. This is done by finding a
time-shifted correlation between each template and all EEG chan-
nels for all EEGs in the training set with the same montage. Due to
the computational cost involved, this part of the algorithm was
implemented with parallel processing. Locations are found where
the templates have correlations above 0.85, and the underlying
EEG segment is extracted to calculate additional properties to fur-
ther determine the relationship between them and the template by
which they were detected. For this, let a template consisting of N
samples (N differs per template) be defined as Stem(n): n 2 [1 . . .N],
and each segment it finds as Sseg(n): n 2 [1 . . .N], as illustrated in
Fig. 4. In addition, let the preceding N samples of each segment
(same length as segment) be defined as Sprec(n): n 2 [1 . . .N] and
the variance of the channel on which the segment is located as
r2

ch. Then, the following properties are calculated:
fCRR ¼ corrðStem; SsegÞ; ð1Þ

fDCRR ¼ corr S0tem; S
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r2
seg ¼ varðSsegÞ; ð7Þ

r2
tem ¼ varðStemÞ; and ð8Þ

r2
prec ¼ varðSprecÞ: ð9Þ

In addition to having a high correlation with the template
(fCRR P 0.85), these properties are used to determine the similarity
between each detected segment and its template. Property fDCRR

measures the correlation between the derivatives of Sseg and Stem,
fMAD finds the mean amplitude difference between Sseg and Stem,
and fVRCHAN, fVRTEM and fVRPREC calculates the variance ratio between
r2

seg and the sum of r2
seg with r2

ch, r2
tem and r2

prec respectively.



Fig. 2. Outline of the detection method. Trained templates detect and nominate
possible IEDs. The system combines these nominations and identifies IEDs based
the mutual agreement of multiple templates.
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Using these properties, the location of each segment is
converted to a ‘‘nomination’’ of an IED event if it satisfies both of
the following conditions: (i) fMAD < 20 lV, and (ii) fVRCHAN > 0.75 or
fVRPREC > 0.67. Given that the correlation between two segments is
scale invariant, the first requirement ensures that their magnitude
is similar. The second requirement is based on the assumption that,
for scalp EEG, the amplitude changes within an IED segment will be
significantly larger than its preceding segment and the channel
variance. Threshold values were chosen arbitrarily. Given that
the true locations of IEDs are known in the training set, each nom-
ination is either marked as correct or as a false detection, depend-
ing on if any of its samples overlap in time with a marked IED. At
this point, the false detection rate of a template can be calculated:

FDRtem ¼
false detections

true detectionsþ false detections
: ð10Þ

Using only the criteria above to nominate events as IEDs lead to
many false detections. Therefore, a linear support vector machine
(SVM) is trained using the nominations in the training set to give
the template additional experience in discriminating between true
IEDs and false predictions. Vectors consisting of {fCRR,fDCRR,fVRTEM}
are used as input. By having an SVM trained on past classifications,
the template can now find events with high correlation to itself and
predict if it is in fact an epileptiform event or not. After a template’s
SVM is trained, its reliability (Rtem) is calculated as the accuracy of
re-classifying its own training vectors. The reliability reflects a tem-
plates ability to separate IEDs from non-epileptiform events, and is
used as a weight factor during detection.
After all training steps are complete, templates that do not com-
ply with the following conditions are discarded: (i) Templates with
zero detections, (ii) templates with only false detections, (iii) tem-
plates with a small number of correct detections and no false
detections. The last condition avoids templates that only find
themselves in the training set and which have no use in finding
other IEDs.

2.6. Detection

For detection, a similar approach is followed as during learning:
For each template in the database, a time-shifted correlation is cal-
culated on each EEG channel. Locations with correlations above
0.85 are nominated as IEDs if they also satisfy the conditions: (i)
fMAD < 20 lV and (ii) fVRCHAN > 0.75 or fVRPREC > 0.67, and using each
template’s own SVM, a prediction is made if the event is in fact an
IED or only a similar looking artifact. False predictions are dis-
carded and the remaining events are converted to nominations
and added to a global pool. Nominations are stored with the fol-
lowing information about themselves: (a) its onset and duration,
(b) the channel on which it was found, (c) fCRR, and (d) Rtem.

Next, nominations are grouped together if they reside on the
same channel and overlap with more than 75%. Groups with fewer
than three nominations are considered unreliable and are dis-
carded. Each of the remaining groups is considered a detected
event, and the onset and duration is taken from the mean of the
nominations in the group. The event is also assigned a detection
certainty, which is done by calculating the mean product of each
nomination’s correlation and template reliability:

certainty ¼ 1
M

XM

m

RtemðmÞfCRRðmÞ; ð11Þ

with M the number of nominations in that group. Lastly, events
from individual channels are merged into one if they overlap in
time, and once again the mean onset, duration and certainty is used
to describe the event.

3. Results

A total of 2632 templates were collected during training, of
which 472 were discarded for not passing the constraints de-
scribed in Section 2.5. To gain some insight on the behavior of
the remaining 2160 templates, histograms of FDRtem and Rtem are
provided in Fig. 5(a) and (b) respectively. The mean false detection
rate before training SVMs is 0.74 and the mean template reliability
after SVM training 73.8%. The two histograms show that the tem-
plates by themselves have high false detection rates and subopti-
mal accuracies in finding IEDs. Fig. 5(b) shows however how the
use of SVMs and additional properties can help reduce the number
of false detections and improve accuracy. Fig. 6(a) gives an ROC
curve from all detected events in the test EEGs, and it shows that
although low accuracies are achieved at template level, the com-
bined information from individual templates lead to reliable detec-
tions on a global level. As seen in Fig. 6, the certainty threshold can
be adjusted to either maximize the sensitivity or minimize the
false detection rate. Fig. 6(b) and (c), respectively show the sensi-
tivity and false detection rate as a function of minimum certainty,
and Table 1 gives corresponding values to a number of points on
the curves in Fig. 6. For all test EEGs combined, a maximum sensi-
tivity of 0.99 is reached at a false detection rate of 7.24 false posi-
tives per minute. Note that the IED rate in the evaluation set is only
0.79 IEDs per minute, and so a false detection rate of 7.24 will be
unacceptable for practical use. Although far from ideal, we con-
sider a more acceptable false detection rate for reviewing to be be-
low three per minute. The mean sensitivities obtained after



Fig. 3. Nine templates taken from the trained database consisting of 2160 templates. Template lengths are allowed to differ and amplitudes are preserved.

Fig. 4. Template features: To find matching events, templates use correlation coefficients, amplitude differences and variance ratios between a template and its detected
segment. Variance ratios add temporal context to a detected event by comparing it to its surrounding activity.
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Fig. 5. Histograms combining individual template statistics: (a) false detection ratios; and (b) Rtem: the ability of each template’s SVM to separate its training vectors. The two
histograms show that by themselves the templates have high false detection rates and in many cases poor separability between IEDs and non-IED events. The power of the
system lies in combining the information and using a network effect to allow accurate predictions.
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adjusting the certainty threshold of each EEG individually is shown
in Table 2. The thresholds were chosen in such a way as to limit the
false positives per minute to no more than three. After this, a mean
sensitivity of 0.90 and mean false detection rate of 2.36 min�1 is



Fig. 6. Evaluation of the described method on a test set of 15 EEGs: (a) an ROC curve shows how the sensitivity of detecting IEDs can be improved at the price of more false
detections. The dashed rectangle gives an approximate range of false detection rates that we consider as more feasible for practical use; (b) higher confidence values reduce
the sensitivity, (c) but also lowers the false detection rate.

Table 1
Choosing to maximize the sensitivity or minimize the false detection rate can be done
by adjusting the minimum confidence threshold. This allows a reviewer to view the
most probable IEDs first, and then to look at additional events if desired. Values below
correspond to points on Fig. 6(a–c).

Min confidence Mean sensitivity Mean Fp/min

0 0.99 7.24
0.02 0.97 4.12
0.04 0.67 1.29
0.06 0.44 0.87
0.08 0.27 0.62
0.1 0.2 0.54
0.12 0.15 0.41
0.14 0.08 0.37
0.16 0.07 0.31
0.18 0.06 0.29
0.2 0.04 0.26
0.22 0.03 0.22
0.24 0.02 0.19
0.26 0.02 0.16

Table 2
Mean sensitivities and false detection rates per EEG in the test set using a varying
confidence threshold value per EEG and limiting false detections to a maximum of
three per minute.

EEG Dur (min) IEDs SEN Fp/min

S1 16.3 13 1.00 1.59
S2 22.5 11 0.82 2.93
S3 20.0 5 1.00 1.40
S4 20.0 36 0.97 2.60
S5 22.3 19 0.79 1.93
S6 19.5 6 1.00 2.72
S7 20.3 79 0.97 1.82
S8 21.2 5 0.80 1.98
S9 20.0 2 1.00 2.95
S10 20.0 12 1.00 2.00
S11 21.5 7 0.38 2.88
S12 20.3 7 0.86 2.95
S13 20.7 19 0.95 2.08
S14 21.0 14 1.00 2.95
S15 20.0 6 1.00 2.60
Mean 20.4 16.07 0.90 2.36
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achieved. The selection of a threshold cannot be chosen a priori to
limit the false detection rate to a known maximum, but this shows
that detections with higher certainties are more reliable. In a typ-
ical usage scenario, a user may choose to view events with the
highest certainties first, and then gradually reduce the threshold
if he wishes to see more.

In addition to the detection algorithm, the described method
was also implemented into an EEG viewer. Fig. 7 shows how each
of the detected events are presented, and using the options pro-
vided, the reviewer can decide to either confirm, reject, or indicate
doubt concerning each detected event. In such a way, the method
can be used to assist during a review by pointing out areas of inter-
est in the EEG and allowing the reviewer to give the final verdict.

4. Discussion

Automated detection of inter-ictal epileptiform discharges is a
crucial step towards improving the efficiency of epilepsy diagnos-
tics and monitoring. Not only does it reduce the review time signif-
icantly and make longer recordings feasible, but it also allows for
more objective analysis with less inter-observer variability. The
presented method uses a large collection of templates to detect in-
ter-ictal epileptiform discharges. It keeps track of past classifica-
tions during training in order to provide the templates with
additional statistical experience, and the size of the database al-
lows it to contain example spike-and-slow-wave patterns of many
morphologies so that IEDs can be detected across multiple patients
and recordings, regardless of whether their inter-ictal patterns
look the same. In addition, using the experience of each template,
the system can determine its reliability during detection. This ap-
proach resembles the way in which humans search for IEDs: by
finding waveforms that have properties associated with IEDs, and
mentally comparing them to patterns observed in the past. In addi-
tion to high correlations between templates and detected EDs,
additional features were chosen to add information and improve
detection accuracy. Given that correlations are scale independent,
the mean amplitude difference (fMAD) ensures that matching events
are on the same scale, and the variance ratios (fVRCHAN, fVRTEM,
fVRPREC) ensure that IEDs are significantly different from its sur-
rounding activity. By adding these properties, the method is capa-
ble of not only using wave morphology, but also temporal context.

To improve accuracy, the system removes uncertainties of sin-
gle templates by using a network effect to make decisions. In other
words, even though individual templates by themselves miss
events and make many false detections, the collective value of
their votes result in accurate detections. Using this approach, the
system is less vulnerable to variability in spike morphology than
other methods which rely on single features or a small number
of templates. Still, the system is highly dependent on the templates



Fig. 7. A detected IED highlighted on top of the EEG, as displayed to the reviewer in a bi-polar montage.
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contained within its database. Our results show that most IEDs can
be detected with the current set of templates and thresholds de-
scribed. However, the ideal set (and number) of templates to find
all common inter-ictal patterns is not known, and it could be that
additional templates with more variations in spike and wave mor-
phology will allow the system to match events more accurately,
allowing higher thresholds for individual detections, and thereby
lowering the overall false detection rate.

A major advantage of this technique is that the system remains
dynamic and that more templates can be added if required. By fur-
ther extending the method and adding a feedback loop during re-
views, the database can become adaptive. As an example, missed
events can be added as templates if a reviewer finds any IEDs visu-
ally during a review. Another example is if template reliabilities
change when new EEGs are reviewed and false detections are
marked by a reviewer. As currently implemented, templates search
for matching IEDs in parallel to each other. Although not strictly
necessary, this speeds up the detection process significantly and
makes the system scalable and fast enough for clinical use. Our
implementation of the method runs on a standard desktop com-
puter (Intel i7-2600 3.40 GHz CPU, 4 GB RAM) and requires no
additional hardware.

Reviews by Wilson and Emerson (2002) and Halford (2009)
summarize most of the reported techniques over the last four dec-
ades. In addition to these, newer methods have also been reported
(Nonclercq et al., 2009, 2012; Scherg et al., 2012; Ji et al., 2011a,b;
Igasaki et al., 2011; Argoud et al., 2006; Nenadic and Burdick, 2005;
Wang et al., 2010; Zhou et al., 2012). Comparisons between differ-
ent methods are hard to make because there is no common dataset
currently available. Without a benchmark dataset, reported results
rely heavily on the data used. For example, some studies use stan-
dard 20 min recordings to evaluate their methods, whereas others
use longer recordings or smaller EEG segments simply categorized
as either containing IEDs or not. If the number of IEDs per minute
are not within the same range between datasets, measures such as
the specificity, selectivity and the false detection rate cannot be
compared in a fair manner. As suggested by Halford, 2009, a mul-
ti-center project is needed to create a dataset for reliable bench-
marks. The author later presents such a dataset, and although
still under development, it may suffice for benchmark testing
and future comparisons (Halford et al., 2011, 2012). Regardless of
using different datasets, our method compares well to others.
Depending on the confidence threshold chosen, the system
achieves sensitivities of up to 0.99. With thresholds chosen as to
limit the false detection rate, a mean sensitivity of 0.90 and mean
false detection rate of 2.36 is achieved. We feel that the threshold
should be set interactively by the reviewer during runtime, which
can start by viewing the most probable IEDs first with a high
threshold value, and then gradually view more detections (with
greater false detection rate) if needed by lowering it.

Apart from achieving high accuracies in epileptiform event
detection, automated methods should also be responsible for pre-
senting their findings to the reviewer in a fast and efficient man-
ner. Although some commercial applications already exist,
automated detection is mostly ignored by practicing neurologists.
One reason for this could be that the software is still too compli-
cated and time consuming to use. Fig. 7 shows an example of
how a detected event is presented to a clinician. To make review
time faster, events can be grouped by location or morphology
and reviewing can take place on a macro scale to save time. This
is already shown in some studies (and some products) who use
clustering techniques to group similar looking events together
(Nonclercq et al., 2012; Scherg et al., 2012; Ji et al., 2011a).

Although our method shows promising results, it is still far from
ideal and some reported methods appear to perform better. Many
of them however, have already been refined to the point where fur-
ther improvement is limited. Our method, as presented here, is
only a first step in testing a novel approach where many improve-
ments can still be made. In work to follow, we will try to use more
of the spatial context available to discard artifacts and lower the
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false detection rate. One way that we can achieve this is by intro-
ducing event clustering. Events with similar properties can be clus-
tered, and each cluster’s validity as IEDs can be determined based
on the spatial distribution and frequency of occurrence of the
events it contains. Apart from clustering, a number of ad hoc rules
can also be applied as a post-detection step to mimic the proce-
dures followed by reviewers when determining the validity of
IEDs. Further work will also focus on testing the system on long-
term EEG recordings such as in-home ambulatory monitoring,
where the burden of visual inspection is even greater and more
problematic for the reviewer.

In summary, automated detection of inter-ictal epileptiform
activity will become invaluable to current reviewing techniques
that rely mostly on visual analysis. A reliable system for a wide
range of EEGs with different spike morphologies is needed, which
should be tested with a gold-standard dataset for comparisons
with other techniques. With minor improvements and an intuitive
interface, the presented method is capable of providing more effi-
ciency with reviewing and in turn improve the diagnostic effi-
ciency of epilepsy.
Acknowledgments

The authors would like to extend their gratitude to the review-
ers for their valuable comments and suggestions that contributed
to the quality of this work.
References

Abend NS, Gutierrez-Colina A, Zhao H, Guo R, Marsh E, Clancy RR, et al.
Interobserver reproducibility of electroencephalogram interpretation in
critically ill children. J Clin Neurophysiol 2011;28:15–9.

Agbenu J, Newton RW, Martland T, Ismayl O, Hargreaves S. Effect of reducing the
recording time of standard EEGs on the detection of EEG-abnormalities in the
management of the epilepsies of childhood. Seizure 2012;21:422–5.

Argoud FIM, De Azevedo FM, Neto JM, Grillo E. SADE3: an effective system for
automated detection of epileptiform events in long-term EEG based on context
information. Med Biol Eng Comput 2006;44:459–70.

Azuma H, Hori S, Nakanishi M, Fujimoto S, Ichikawa N, Furukawa TA. An
intervention to improve the interrater reliability of clinical EEG
interpretations. Psychiatry Clin Neurosci 2003;57:485–9.

De Lucia M, Fritschy J, Dayan P, Holder DS. A novel method for automated
classification of epileptiform activity in the human electroencephalogram-
based on independent component analysis. Med Biol Eng Comput
2008;46:263–72.

Doppelbauer A, Zeitlhofer J, Zifko U, Baumgartner C, Mayr N, Deecke L. Occurrence
of epileptiform activity in the routine EEG of epileptic patients. Acta Neurol
Scand 1993;87:345–52.
Faulkner HJ, Arima H, Mohamed A. Latency to first interictal epileptiform discharge
in epilepsy with outpatient ambulatory EEG. Clin Neurophysiol
2012;123:1732–5.

Friedman DE, Hirsch LJ. How long does it take to make an accurate diagnosis in an
epilepsy monitoring unit? Clin Neurophysiol 2009;26:213–7.

Halford JJ. Computerized epileptiform transient detection in the scalp
electroencephalogram: obstacles to progress and the example of
computerized ECG interpretation. Clin Neurophysiol 2009;120:1909–15.

Halford JJ, Pressly WB, Benbadis SR, Tatum WO, Turner RP, Arain A, et al. Web-based
collection of expert opinion on routine scalp EEG: software development and
interrater reliability. J Clin Neurophysiol 2011;28:178–84.

Halford JJ, Schalkoff RJ, Zhou J, Benbadis SR, Tatum WO, Turner RP, et al.
Standardized database development for EEG epileptiform transient detection:
EEGnet scoring system and machine learning analysis. J Neurosci Methods
2012;212:308–16.

Igasaki T, Higuchi T, Hayashida Y, Murayama N, Neshige R. Proposal for patient-
specific automatic on-line detection of spike-and-wave discharges utilizing an
artificial neural network. In: 2011 Fourth international conference on
biomedical engineering and informatics (BMEI). IEEE; 2011. p. 813–7.

Indiradevi KP, Elias E, Sathidevi PS, Dinesh Nayak S, Radhakrishnan K. A multi-level
wavelet approach for automatic detection of epileptic spikes in the
electroencephalogram. Comput Biol Med 2008;38:805–16.

Ji Z, Sugi T, Goto S, Wang X, Ikeda A, Nagamine T, et al. An automatic spike detection
system based on elimination of false positives using the large-area context in
the scalp EEG. IEEE Trans Biomed Eng 2011a;58:2478–88.

Ji Z, Wang X, Sugi T, Goto S, Nakamura M. Automatic spike detection based on real-
time multi-channel template. In: 2011 Fourth international conference on
biomedical engineering and informatics (BMEI); 2011b. p. 648–652.

Leach JP, Stephen LJ, Salveta C, Brodie MJ. Which electroencephalography (EEG) for
epilepsy? The relative usefulness of different EEG protocols in patients with
possible epilepsy. J Neurol Neurosurg Psychiatry 2006;77:1040–2.

Nenadic Z, Burdick JW. Spike detection using the continuous wavelet transform.
IEEE Trans Biomed Eng 2005;52:74–87.

Nonclercq A, Foulon M, Verheulpen D, De Cock C, Buzatu M, Mathys P, et al. Spike
detection algorithm automatically adapted to individual patients applied to
spike-and-wave percentage quantification. Neurophysiol Clin 2009;39:123–31.

Nonclercq A, Foulon M, Verheulpen D, De Cock C, Buzatu M, Mathys P, et al. Cluster-
based spike detection algorithm adapts to interpatient and intrapatient
variation in spike morphology. J Neurosci Methods 2012;210:259–65.

Scherg M, Ille N, Weckesser D, Ebert A, Ostendorf A, Boppel T, et al. Fast evaluation
of interictal spikes in long-term EEG by hyper-clustering. Epilepsia
2012;53:1196–204.

Subasi A. Automatic detection of epileptic seizure using dynamic fuzzy neural
networks. Expert Syst Appl 2006;31:320–8.

Van Hese P, Vanrumste B, Hallez H, Carroll GJ, Vonck K, Jones RD, et al. Detection of
focal epileptiform events in the EEG by spatio-temporal dipole clustering. Clin
Neurophysiol 2008;119:1756–70.

Wang C, Zou J, Zhang J, Wang M, Wang R. Feature extraction and recognition of
epileptiform activity in EEG by combining PCA with ApEn. Cogn Neurodyn
2010;4:233–40.

Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clin
Neurophysiol 2002;113:1873–81.

Zhou J, Schalkoff RJ, Dean BC, Halford JJ. Morphology-based wavelet features and
multiple mother wavelet strategy for spike classification in EEG signals. In:
2012 Annual international conference of the IEEE engineering in medicine and
biology society. IEEE Engineering in Medicine and Biology Society; 2012. p.
3959–62.

http://refhub.elsevier.com/S1388-2457(13)00689-5/h0005
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0005
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0005
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0010
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0010
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0010
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0015
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0015
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0015
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0020
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0020
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0020
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0025
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0025
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0025
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0025
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0030
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0030
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0030
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0035
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0035
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0035
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0040
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0040
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0045
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0045
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0045
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0050
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0050
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0050
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0055
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0055
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0055
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0055
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0060
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0060
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0060
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0060
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0065
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0065
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0065
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0070
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0070
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0070
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0075
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0075
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0075
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0080
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0080
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0085
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0085
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0085
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0090
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0090
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0090
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0095
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0095
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0095
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0100
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0100
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0105
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0105
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0105
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0110
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0110
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0110
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0115
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0115
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0120
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0120
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0120
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0120
http://refhub.elsevier.com/S1388-2457(13)00689-5/h0120

	Inter-ictal spike detection using a database of smart templates
	Introduction
	Methods
	Subjects and data
	Preprocessing
	Method outline
	Template collection
	Learning
	Detection

	Results
	Discussion
	Acknowledgments
	References


