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Two-dimensional and three-dimensional Rayleigh–Bénard convection is compared
using results from direct numerical simulations and previous experiments. The phase
diagrams for both cases are reviewed. The differences and similarities between two-
and three-dimensional convection are studied using Nu(Ra) for Pr = 4.38 and Pr = 0.7
and Nu(Pr) for Ra up to 108. In the Nu(Ra) scaling at higher Pr, two- and three-
dimensional convection is very similar, differing only by a constant factor up to
Ra = 1010. In contrast, the difference is large at lower Pr, due to the strong roll state
dependence of Nu in two dimensions. The behaviour of Nu(Pr) is similar in two and
three dimensions at large Pr. However, it differs significantly around Pr = 1. The
Reynolds number values are consistently higher in two dimensions and additionally
converge at large Pr. Finally, the thermal boundary layer profiles are compared in two
and three dimensions.
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1. Introduction
In Rayleigh–Bénard (RB) convection a fluid in a closed sample is heated from

below and cooled from above. This system is widely studied due to its conceptual
simplicity and because of the many applications of turbulent heat transfer, such
as in geophysics, astrophysics or process technology. The control parameters of
RB convection in the Boussinesq approximation are the Rayleigh number Ra =
βg1L3/(κν), the Prandtl number Pr = ν/κ and the aspect ratio Γ = D/L. Here, L
is the height of the sample and D its width, β is the thermal expansion coefficient,
g the gravitational acceleration, 1 the temperature difference between the bottom and
the top of the sample, and ν and κ the kinematic viscosity and the thermal diffusivity,
respectively.

The response of the system is commonly quantified by the heat transfer and the
kinetic energy, which we indicate with the Nusselt number Nu and the Reynolds
number Re based on the root mean square (r.m.s.) vertical velocity, respectively:

Nu= 〈uzθ〉A − κ〈∂zθ〉A
κ1L−1

, (1.1)
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where 〈·〉A indicates the average over any horizontal plane (three dimensions) or line
(two dimensions), and the Reynolds number Re is defined as

Re= uRMS
3 L

ν
, (1.2)

where uRMS
3 is the r.m.s. of the vertical velocity (i.e. parallel to gravity).

Although all real-world applications of RB convection are three-dimensional
(3D), two-dimensional (2D) simulations are used to better understand the physical
mechanisms of 3D convection, as 2D simulations are substantially less CPU-intensive
than 3D simulations. In addition, theoretical predictions for scalings in hard turbulent
RB convection (Roberts 1979; Castaing et al. 1989; Shraiman & Siggia 1990;
Grossmann & Lohse 2000, 2001, 2002, 2004, 2011) are based on 2D equations,
namely the Prandtl equations for the boundary layer, or use assumptions that apply to
two dimensions as well as to three. This makes it an useful tool to validate theory,
regardless of the similarity between the 2D and 3D cases. Moreover, the quasi-2D
character of the large-scale circulation (LSC) in both 2D and 3D flows hints at a
large similarity, in particular for integral quantities, between 2D and 3D RB turbulence,
in contrast to unbounded turbulence, where in three dimensions no such large-scale
structures emerge.

Despite these similarities, there are significant differences between 2D and 3D
convection. For example, the limited motion of the LSC in 2D convection increases
the accumulation of energy in corner rolls, leading to large-scale wind reversals
(Sugiyama et al. 2010) and high sensitivity of global output parameters on the roll
state (van der Poel, Stevens & Lohse 2011). In 3D convection these phenomena are
also observed by Weiss et al. (2010), but the additional degree of freedom of the LSC
attenuates the global effects of these phenomena. Furthermore, the intrinsic inverse
energy cascade (Kraichnan 1967) of 2D turbulence is fundamentally different from the
forward cascade of 3D turbulence. The effect of this difference at smaller scales on
global properties is unfortunately unknown. However, one can argue that for RB flows
with a large-scale roll the effect must be minor, as in 3D RB the self-amplifying local
driving and global temperature gradient (Ahlers, Grossmann & Lohse 2009b) result in
a box-sized vortex, even without an inverse energy cascade. The large-scale dynamics
are similar in two and three dimensions, and therefore the main difference in global
output between both systems is expected to come from the small-scale dynamics.

Previous work by Schmalzl et al. (2004) on the validity of the 2D approach
to 3D RB convection concluded that for small Pr, 2D numerics are no longer a
valid representation of 3D convection, due to the increasing energy in the toroidal
component of the velocity in 3D flows at lower Pr (Busse 1978). The analysis
was limited to a low Rayleigh number of 106, which is in the laminar regime for
most Pr, according to the coherence length criterion of Sugiyama et al. (2007).
Furthermore, Schmalzl et al. (2004) used stress-free velocity boundary conditions
on the lateral walls. Although this decreases computational requirement due to the
absence of sidewall boundary layers, it complicates comparison to experiments where
the boundary conditions are exhaustively no-slip. Now, eight years later, we are able to
study the similarities and differences between 2D and 3D RB convection with no-slip
boundary conditions at much higher Ra in the turbulent regime.

We explain the numerical methods used and provide resolution checks alongside the
results. We show parameter spaces containing a comprehensive overview of available
data points from 2D and 3D RB studies. A qualitative review is made using flow
field snapshots of 2D and 3D flows at different Pr, illustrating the different regimes
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FIGURE 1. (Colour online) (a) Phase diagram in the Ra–Pr plane for 3D studies. Here
simulations and experiments are indicated by red squares and blue circles respectively. For
more detail and references see Stevens et al. (2013). (b) Phase diagram in the Ra–Pr plane
for 2D studies. Note that the lines indicating the different GL regimes are taken from the
3D fit to assist the comparison of the two plots. The legend applies only to the 2D phase
diagram. The data points are taken from studies where Nu has been measured in all aspect
ratios and is from DeLuca et al. (1990), Werne et al. (1991), Werne (1993), Vincent & Yuen
(2000), Burr, Kinzelbach & Tsinober (2003), Schmalzl et al. (2004), Johnston & Doering
(2009), Sugiyama et al. (2010), Chandra & Verma (2011) and van der Poel et al. (2011) and
this study. The different velocity boundary conditions used in these studies are indicated in
the legend by NS (no-slip), SF (stress-free) and PD (periodic) in the format [plates–sidewalls].
Note that ‘(exp.)’ in the legend signifies that these data are taken from quasi-2D experiments.
The lines in both plots follow the GL theory (Grossmann & Lohse 2000, 2001, 2002, 2004):
upper solid line, Re = Rec; lower nearly parallel solid line, εu,BL = εu,bulk; curved solid line,
εθ,BL = εθ,bulk; long-dashed line, λu = λθ , i.e. 2aNu = √Re. The dotted line indicates where
the laminar kinetic boundary layer is expected to become turbulent, based on a critical shear
Reynolds number Re∗s = 1014 of the kinetic boundary layer, with a = 0.911 (Stevens et al.
2013).

in Pr space and their proposed effect on the 2D/3D similarity. Moreover, the thermal
boundary layer profiles obtained in the 2D and 3D simulations are compared with the
‘flat-plate’ Pohlhausen profile.

2. Parameter space explored
We first review the explored parameter space in both experiments and numerics.

Figure 1 displays the 3D and 2D phase diagrams. The lines and numbers indicate the
different regimes of the Grossmann–Lohse (GL) theory based on a refit of the data
(Stevens et al. 2013). Note that for the 2D plot the regimes resulting from the 3D fit
are used. For the 3D plot, data points where Nu has been measured or numerically
calculated have been included for aspect ratio Γ = 1 for no-slip velocity boundary
conditions on all walls.
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Unlike the 3D phase diagram in figure 1, multiple velocity boundary conditions are
included in the 2D phase diagram, which are indicated in the legend. This increased
variety in the boundary conditions employed presumably originates from the lack of
2D experiments; there is less willingness to mimic the no-slip experimental boundary
conditions of experiments in 3D. In addition, the rectangular 2D geometry allows for
more types of boundary conditions than the common cylindrical 3D setup, as periodic
sidewalls are not possible in this case.

Comparing the two phase diagrams, it becomes clear that the 3D parameter space
has been explored more, due to the availability of experiments and the closer
resemblance to convection in nature. The 2D phase diagram is, apart from one
experimental series, fully composed of numerical data. The highest Ra = 1014 is
obtained by Vincent & Yuen (2000) for a flow without velocity boundary layers.
Evaluating the grid resolution used and the saturating Nu(Ra) data, we think that this
simulation is under-resolved and the heat flux was dominated by numerical diffusion.
Discarding this point from the comparison and taking into account the fact that
Ra = 2 × 1012 is the highest Rayleigh number obtained in three dimensions, it is
apparent that the exploration of the parameter space in two dimensions is open for
large improvement.

3. Numerical simulations
We numerically solve the three-dimensional Navier–Stokes equations within the

Boussinesq approximation,

Du
Dt
=−∇P+

(
Pr

Ra

)1/2

∇2u+ θ ẑ, (3.1)

Dθ
Dt
= 1

(Pr Ra)1/2
∇2θ, (3.2)

with ∇ · u = 0. Here ẑ is the unit vector pointing in the opposite direction to gravity,
D/Dt = ∂t + u · ∇ is the material derivative, u(x, t) is the velocity vector with no-slip
boundary conditions at all walls, and θ is the non-dimensional temperature, 0 6 θ 6 1.
The equations have been made non-dimensional by using the length L, the temperature
1, and the free-fall velocity U = √βg1L. The 3D numerical scheme is described in
detail in Verzicco & Orlandi (1996) and Verzicco & Camussi (1999, 2003) and the 2D
scheme in Sugiyama et al. (2009).

For this study we performed 3D simulations at Ra = 108 and 0.02 6 Pr 6 0.7
in a Γ = 1 sample and 2D simulations in a Γ = 1 sample at Ra = 108 with
0.045 6 Pr 6 55, and with Pr = 4.38 and 107 6 Ra 6 1011 to complement some of
our previous data sets (Zhong et al. 2009; Stevens, Clercx & Lohse 2010a; van der
Poel et al. 2012).

To ensure adequate accuracy of the simulations, we compare the number of points
we placed in the thermal boundary layer with the minimum number that should be
placed inside the boundary layer according to Shishkina et al. (2010). For each Prandtl
number this criterion is satisfied for the highest resolution simulation and/or checked
with resolution checks. Once a simulation is properly resolved there is no dependence
on the grid resolution as the grid-dependent errors diminish. This is a strict resolution
criterion as it is sensitive to the resolution in the entire domain and not just in the
boundary layers. Apart from the boundary layer the azimuthal resolution close to the
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FIGURE 2. Temperature (a–c) and vertical velocity (d–f ) of a 2D Γ = 1 cell at Ra = 108:
(a,d Pr = 0.045, (b,e) Pr = 0.7, (c,f ) Pr = 55. (a–c) Red and blue indicate hot and cold fluid,
respectively; (d–f ) red and blue indicate upward and downward moving fluid, respectively.
The temperature colour map is the same for all temperature snapshots in figures 2, 3 and 4
and ranges between 0.4 6 θ 6 0.6.

sidewall has to be chosen properly in cylindrical domains. The only way to check
this is to perform the same simulations on different resolutions and compare the
results (Stevens, Verzicco & Lohse 2010b). In order to check this we have performed
the simulation for several Prandtl numbers, specifically the lowest and highest, with
different resolutions, and we find good agreement between the results obtained at
different resolutions. We compared the average length scale in the flow with the largest
grid scaling and the time convergence of the results. The results of this analysis are
presented in the Appendix.

4. Flow topology
Figures 2, 3 and 4 show flow field snapshots of the complete 2D field, a vertical

cross-section and a horizontal cross-section of the 3D cylinder, respectively. The top
row (a–c) of panels depicts the temperature field and the bottom row (d–f ) depicts
the vertical velocity field. The left (a,d), centre (b,e), and right (c,f ) columns are
for Pr = 0.045, Pr = 0.7 and Pr = 55, respectively. In the 3D panels it becomes
apparent that the temperature structures become more localized at Pr = 55, as is
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FIGURE 3. Temperature (a–c) and vertical velocity (d–f ) at a vertical plane of a 3D
cylindrical Γ = 1 sample at Ra = 108: (a,d Pr = 0.045; (b,e) Pr = 0.7; (c,f ) Pr = 55. The
same colour coding as in figure 2. The azimuthal orientation of these vertical cross-sections
can be seen in figure 4.

expected for high Pr flows. At high Pr there is hardly any LSC and the flow is
plume-dominated (Verzicco & Camussi 2003). This is reflected in two dimensions, for
which the panels of both the temperature and velocity look very similar to those for
three dimensions, in agreement with Schmalzl et al. (2004), who concluded that the
2D and 3D cases are similar at high Pr due to the vanishing toroidal component of the
velocity. Another interpretation of the similarity of the flow topology at high Pr can be
made using the plume topology, since at high Pr the flow is plume-dominated. In two
dimensions it can be seen that for increasing Pr, the plumes change from the roll-up
type to sheet-like and finally to the mushroom type. The roll-up plumes are vortices
that become buoyant by extracting thermal energy from the boundary layer. These can
be seen in figure 2 for Pr = 0.045. The sheet-like plumes are elongated boundary
layers stretching upwards and can be found for moderate Pr. For high Pr the flow is
dominated by mushroom-shaped plumes. One can imagine that 3D mushroom plumes
can be reduced to two dimensions through axisymmetry, while the other types do not
possess symmetry that translates from two to three dimensions without violating the
divergence-free condition imposed on the velocity field and/or the no-slip boundary
conditions. For example, the 3D analogue of a roll-up plume would be a cylinder.

The visual differences emerge at Pr < 1. At Pr = 0.7 a pronounced LSC with
corner rolls in two dimensions can be seen in figure 3. In three dimensions the LSC
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FIGURE 4. Temperature (a–c) and vertical velocity (d–f ) at the horizontal midplane of a
Γ = 1 cell at Ra = 108: (a,d Pr = 0.045; (b,e) Pr = 0.7; (c,f ) Pr = 55. The black lines
indicate the azimuthal orientation of the corresponding vertical cross-sections found in
figure 3. Note that the velocity scales are visibly smaller than the temperature scales for
the small Pr case, while the temperature scales are smaller than the velocity scales for the
high Pr case.

is less pronounced and the corner rolls are much smaller. These differences might
be due to the absence of a preferential azimuthal orientation of the LSC in three
dimensions (Funfschilling & Ahlers 2004; Brown et al. 2005; Xi, Zhou & Xia 2006).
The azimuthal orientation of the vertical cross-sections displayed here is selected to
obtain the clearest depiction of the LSC. In addition, it can be seen that in three
dimensions, thermal plumes are emitted from the horizontal centre of the boundary
layer and move through the bulk, in contrast to the 2D case. This is because in three
dimensions the LSC cannot fully enclose the flow and limit the movement of plumes.

A clear difference between the 2D and 3D cases can be found at Pr = 0.045. In
particular, the vertical velocity snapshots reveal a drastically different structure. The
2D field has locally very small velocity structures similar to the 3D field. However,
even though both the 2D and 3D cases appear to have a large-scale circulation, the
average velocity scale in three dimensions is much smaller than in two dimensions.
Burr et al. (2003) concluded that for Pr = 0.1 and Ra = 108 the LSC is driven by
buoyancy forces more than by small-scale turbulent fluctuations in both two and three
dimensions. While the small scales do appear to have merged with the LSC in two
dimensions, they are possibly not the dominant contribution to the driving of the LSC.
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FIGURE 5. (Colour online) (a) Nu versus Ra scaling for water (Pr = 4.38) in a Γ = 1 sample.
The simulation result for 2D RB is indicated by the blue upward-pointing triangles. The 3D
experimental results from Funfschilling et al. (2005) and Sun & Xia (2005) are indicated by
circles and squares, respectively. Here the open symbols indicate uncorrected data, while the
filled symbols indicate corrected data. The numerical results from Shishkina & Thess (2009),
Stevens et al. (2011b) and Lakkaraju et al. (2012) (Pr = 5.4) are indicated by the purple
stars, blue asterisks and olive diamonds, respectively. The black solid line indicates the GL
prediction and the red dashed line indicates the GL prediction multiplied by a constant value
A of 0.78. The rest of the points are 3D experimental and numerical data. (b) Nu versus Ra
for Pr = 0.7 in a Γ = 0.5 sample. The 2D data are indicated by the yellow rightward-pointing
triangles. The stars (Chavanne et al. 2001), asterisks (Niemela et al. 2000), diamonds (Ahlers
et al. 2009a), circles (He et al. 2012; Ahlers et al. 2012) indicate experimental data squares
indicate results from numerical simulations (Stevens et al. 2010b; Stevens, Lohse & Verzicco
2011a). The refitted GL theory is indicated by the black line.

5. Nusselt number
In this section we will first compare the Rayleigh number scaling of the Nusselt

number obtained in 2D and 3D simulations before we compare the Prandtl number
dependence in detail.

5.1. Rayleigh number dependence

In figure 5(a) the compensated Nusselt number Nu/Ra1/3 as a function of Ra for
Pr = 4.38 and Γ = 1 is displayed. The data are taken from 3D experimental results
by Funfschilling et al. (2005) and Sun & Xia (2005), 3D numerics by Shishkina
& Thess (2009), Stevens et al. (2011b) and Lakkaraju et al. (2012) and the 2D
numerics of this research. Both the uncorrected and corrected experimental data are
depicted. The corrected data are compensated for finite plate conductivity: see Ahlers
et al. (2009b). In these and forthcoming figures, the 2D data are represented by
triangles with varying orientations and the 3D data by other symbols. For reference,
the refitted GL prediction for three dimensions is included. Since the 3D data and
GL theory display near-equal results for the evaluated Ra range, the latter can be
used as a guide to comparing the 2D Nu(Ra) data with 3D data by rescaling with a
constant factor of 0.78. For two and three dimensions the scaling of Nu(Ra) agrees
very well for 107 6 Ra 6 1010. At higher Ra the 2D points are smaller than the
rescaled 3D GL prediction. This indicates that for Ra > 1010 the 2D scaling differs
from the 3D scaling since the 3D data do follow this scaling. An analysis of the roll
states of Ra = 4.64 × 109 and Ra = 1010 reveals that there is a substantial change
in flow state between these Rayleigh numbers, which might be connected to the
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discrepancy in scaling. At Ra = 4.64 × 109, the flow is in a single roll state similar
to the state depicted for Pr = 0.7 and Ra = 108 in figure 2, while at Ra = 1010 the
roll state has become uncondensed. Here, the term uncondensed signifies that there
is no energy pile-up at a scale close to system size and thus there is no LSC. The
largest scale in the flow consists of two mobile and orbiting smaller rolls. That Nu
is (counter-intuitively) lower for this broken LSC has been observed previously by
van der Poel et al. (2012) for Pr = 0.7 and Ra = 109, and we believe that this is
due to the increased path length of the thermal plumes before they can deliver the
heat to the opposite plate. For a large-scale circulation the plumes move directly
from their original boundary layer to the opposite boundary layer, while otherwise
the plumes move less directly to the opposite boundary layer, interacting with the
multiple rolls composing the bulk. Now, not only the absolute Nu but also the scaling
between Nu and Ra appears to be lower for this roll state. Extrapolating towards
higher Ra, one expects that the scaling will change subsequently when these orbiting
rolls are replaced by a more complex roll state with even smaller scales. Eventually,
the fluctuations will become too large and the scales too small for the existence of a
coherent roll state that can affect integral quantities. In van der Poel et al. (2012) we
showed that the scaling of Nusselt can change locally in 2D RB convection and can
recover to the expected 3D scaling for higher Ra; see also the Γ = 1/2 results.

In three dimensions no such transition in an integral quantity exists, since the LSC
does not fully enclose the system. This gives the thermal plumes more freedom to
move from one boundary layer to another. Therefore, the difference in Nu between a
system with a single roll state and one with a broken single roll state is expected to be
small and more gradual than in two dimensions, where the system can jump between
these states, affecting Nu (van der Poel et al. 2012) and its scaling.

The difference between the 2D and 3D cases is expected to be larger for lower Pr
due to the larger toroidal component of the velocity. In addition, it is known from van
der Poel et al. (2011) that the integral quantities and flow state in two dimensions have
a stronger dependence on the aspect ratio Γ than in three dimensions (Bailon-Cuba,
Emran & Schumacher 2010). This is emphasized by the increased effect of the flow
state on Nu for low Pr due to the thermal boundary layer being exposed to the bulk
flow (van der Poel et al. 2011). For low Pr, the bulk flow directly extracts heat from
the thermal boundary layer, and therefore the flow state of the bulk has a large effect
on Nu. We therefore include a comparison for Pr = 0.7 and Γ = 0.5, where we expect
a substantial difference. The result is displayed in figure 5(b). Although the average
scaling exponent appears to be similar, the 2D data reveal much more structure than
for three dimensions. This is caused by multi-stability of different flow states and
the large difference in Nu between these flow states. By increasing Ra, the system
is successively in a triple roll state, an unstable triple roll state and back to a triple
roll state, passing through an unstable region until the roll state breaks up. These roll
states strongly affect the resulting Nu. This effect is expected to decrease as the LSC
loses its strength (van der Poel et al. 2012) and the length scales become smaller at
higher Ra.

5.2. Prandtl number dependence
The main conclusion from Schmalzl et al. (2004) was that the agreement of global
quantities between two and three dimensions depends on Pr. More specifically, they
conclude that for lower Pr the 2D output increasingly deviates from the 3D output.
We repeat their measurements in two dimensions for Ra = 106 and supplement them
with a series for Ra = 108, albeit with a no-slip boundary condition on the sidewalls
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FIGURE 6. (Colour online) Nu as function of Pr. (a) The Nusselt number obtained in
numerical simulation performed on different grids for Ra = 108. The legend indicates the
number of gridpoints in the vertical and horizontal direction for two dimensions and in the
azimuthal, radial, and axial direction for three dimensions. (b) Comparison of the Pr number
dependence on Nu in two and three dimensions. Here the green downward-pointing and
cyan upward-pointing triangles indicate the results from 2D RB simulations at Ra = 108 and
Ra = 106, respectively. For three dimensions this is indicated by the blue squares and black
circles, respectively. The Ra = 106 data are from Verzicco & Camussi (1999). In both panels
the solid lines give the prediction of the GL theory.

in contrast to their stress-free sidewall boundary condition. In figure 6(a) it can be
seen that numerical simulations for low Pr become increasingly demanding in terms of
resolution. Here the results for the Ra= 108 runs are depicted, with symbols indicating
the numerical resolution used. Figure 6(b) shows Nu(Pr) for Ra for 106 and 108. The
solid lines are the refitted theoretical GL predictions for the different Ra corresponding
to the experimental and numerical data. First, we observe that the numerical results for
2D (green triangles) and 3D (black dots) at Ra = 106 display no qualitative similarity,
except for the Pr independence of Nu at higher Pr. Furthermore, in two dimensions
multiple states are observed around Pr = 1, where the outlying points are caused by
the double roll state of the system as opposed to the single roll state corresponding
to the other data points. It is likely that the single roll state is stable as well, which
would display a Nu similar to the surrounding Pr data (van der Poel et al. 2011).
However, this has not been checked. The discrepancy that Schmalzl et al. (2004) did
not observe these multiple states might be due to multi-stability or caused by their
free-slip sidewall boundary condition. For Ra = 108 the 2D and 3D cases seem to
converge for high Pr. The largest difference is seen at intermediate Pr, which is
reflected in the flow topology: see § 4. Here the strong LSC results in a substantial
difference in Nu between the 2D and 3D cases. At low Pr, unlike for Ra = 106, the
2D and 3D Nu are matching. However, the number of data points is too low to make a
strong conclusion given this surprising low Pr behaviour.

6. Reynolds number
Figure 7 shows the comparison for the compensated Reynolds number based on the

r.m.s. vertical velocity ReRMS
3 = uRMS

3 L/ν as a function of both Ra and Pr. The data
in figure 7(a) correspond to the low Pr = 0.7 and low Γ = 0.5 parameters, where we
expect a large difference. This is confirmed for Nu in figure 5(b) and appears to be
the same for ReRMS

3 . A similar difference in structure between the 2D and 3D cases
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FIGURE 7. (Colour online) The compensated Reynolds number based on the r.m.s. vertical
velocity ReRMS

3 for 2D (rightward-pointing triangles) and 3D (squares): (a) ReRMS
3 as a function

of Ra for Pr = 0.7 and Γ = 0.5; (b) ReRMS
3 as a function of Pr for Ra = 108 and Γ = 1. The

legend in (b) applies to both plots. Corresponding Nu comparison can be found in figures 5(b)
and 6(b) for (a) and (b), respectively.

can be seen, with no noticeable convergence at the highest Ra evaluated. ReRMS
3 can

be seen locally to scale larger than Ra1/2 for two dimensions, which highlights the roll
state dependence of integral quantities in two dimensions. The comparison of ReRMS

3 as
a function of Pr in figure 7(b) reveals a picture similar to that seen by Schmalzl et al.
(2004) for Ra = 106: the Reynolds number for two dimensions converges to the 3D
value at high Pr. In both cases the 2D ReRMS

3 is higher than in three dimensions, while
in contrast Nu is lower in two dimensions compared to three dimensions. The inverse
energy cascade in two dimensions is possibly causing a stronger LSC than in three
dimensions. However, up to now there have been no studies of the existence of the
inverse energy cascade in 2D RB, and therefore this remains uncertain. It could also
be that in two dimensions all emitted plumes drive the LSC, while in three dimensions
not all plumes follow the motion of the LSC. This can result in a lower Nu due to
plumes being dragged down by the LSC before releasing most of their thermal energy
at the boundary opposite to the plumes’ origin. In this situation ReRMS

3 can be higher in
two dimensions while Nu is lower.

7. Boundary layer profile
The boundary layer profile is a fundamental ingredient in most theoretical studies

of the scaling of Nu and Re. In the ‘classical’ regime, where the boundary layer
is assumed to be laminar, a reference analytical solution for the situation of a flow
over a infinitely long plate is provided by Pohlhausen (1921), which is based on the
Prandtl–Blasius (PB) boundary layer approximation. The purpose of this section is to
compare the 2D and 3D boundary layer profiles, with the Pohlhausen profile included
for reference. For a laminar boundary layer, it is assumed that for Pr ≈ 1 both the
velocity and temperature have a similar profile. This allows us to use the temperature
boundary layer profile that is relatively easy to extract, for comparison. It is known
that the time-averaged and instantaneous laminar boundary layers at the centre of a
large-scale roll in both 2D and 3D RB flow are well approximated by the Pohlhausen
profile when dynamically rescaled (Zhou & Xia 2010; Zhou et al. 2010; Stevens et al.
2012). This is despite the fact that the instantaneous flow in RB is only in rare cases
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FIGURE 8. (Colour online) (a) Thermal boundary layer profile for two dimensions (red
triangles) and three dimensions (blue dots) compared to the Pohlhausen solution (black line)
of the Prandtl–Blasius laminar boundary layer approximation. The 2D and 3D cases used for
the profiles have identical Pr = 4.38 and Ra is varied to obtain an approximately equal Nu.
For three dimensions Ra= 108 and Nu= 33.11 and for two dimensions Ra= 2.25× 108 and
Nu= 33.26. (b) A close-up of (a).

locally parallel to the plates, in contrast to the PB assumptions of a completely parallel
flow. The resulting deviations have been studied in detail for several cases (Wagner,
Shishkina & Wagner 2012; Shi, Emran & Schumacher 2012; Scheel, Kim & White
2012). The vertical velocity gradient is non-zero due to the LSC, plume emission
and corner rolls. As this effect is minimal at the centre of a roll for most control
parameters, the temperature profile is measured in the centre of the cell: r = 0 for 3D
and x = D/2 for 2D in a Γ = 1 cell. It was shown by Zhou et al. (2010) that the
lateral dependence is strong. In figure 8 the time-averaged temperature profiles for two
and three dimensions for identical Pr = 4.38 and the Pohlhausen solution are shown.
The Ra number is varied to match Nu in two and three dimensions to obtain an equal
temperature boundary layer thickness λθ ≈ 1/(2Nu) and similar local flow conditions
induced by the heat flux. The profiles are measured in the laboratory frame in order
to reveal the differences, as both the 2D and 3D profiles match the Pohlhausen profile
when measured in the dynamical frame.

It can be seen that neither the 2D and 3D profiles in figure 8 match the Pohlhausen
profile well in the laboratory frame. The agreement of the 3D profile is worse than that
of the 2D profile. This is most likely due to a combination of several causes. The PB
theory is a 2D theory and, because of the more complex dynamics of the LSC in three
dimensions compared with two dimensions, the velocity field cannot be considered to
be constantly parallel to the horizontal plates, even at r = 0. Furthermore, increased
plume activity in the bulk indicates that more plumes are emitted at the centre of the
3D cell due to the increased degrees of freedom and LSC cessations. This results in
the 3D profile being lower than 2D throughout the boundary layer, as an increased
amount of thermal energy is taken by plumes.

8. Conclusion
The comparability of 2D and 3D Rayleigh–Bénard convection can in most cases be

explained using the coherent structures present in the flow. At high Pr, the regime
dominated by mushroom-type plumes, similar 2D and 3D behaviour is observed, as
expected. However, the LSC in two dimensions has a largely different effect on heat
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transport compared to three dimensions. In two dimensions the LSC covers the full
system, causing the plume movement to be dominated by the LSC, resulting in a
significant discrepancy in this regime. The Ra and Pr scaling of the integral quantities
in two and three dimensions are similar in some parameter regions. For Ra = 108,
Nu appears similar for low and high Pr while it is substantially different for Pr ≈ 1.
The similarity at low Pr is surprising, as Schmalzl et al. (2004) concluded, albeit
for Ra = 106, that here the 2D and 3D cases become incomparable. For Pr = 4.3 the
Nu(Ra) scaling is nearly identical, with only a constant factor between them up to
Ra = 1010. The temperature boundary layer profiles of both two and three dimensions,
obtained in the laboratory frame, differ from the Pohlhausen profile and from each
other. As expected, the 2D boundary layer is closer to the Pohlhausen profile.

It is not difficult to find parameters for which there is a large difference between
two and three dimensions. At low aspect ratios the flow states in two dimensions
vary more strongly than in three dimensions and have a larger effect on Nu and Re,
in particular for Pr < 1 (van der Poel et al. 2011). This is reflected in the Nu(Ra)
analysis at Γ = 0.5, where the 3D scaling is smooth and the 2D scaling is very
structured. Less expected is the deviation at Pr = 4.3 for Ra > 1010, which concurs
with a change in flow state in two dimensions. At this Ra the LSC breaks up, and one
would expect more similarity since the 3D LSC differs strongly from the 2D LSC in
that it does not limit the movement of plumes as much. Adding to the question is the
discrepancy in Nu(Ra) around Pr = 1. Here, the flow state is a large-scale circulation
resulting in decreased similarity, in contrast to the increased similarity in the Nu(Ra)
scaling.

A remarkable difference is found for ReRMS
3 , which is in contrast to Nu, higher

in two dimensions than in three. This can be attributed to the strong LSC in two
dimensions, dragging thermal plumes back towards their originating plates before they
can release their thermal energy.
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Appendix. Details of numerical simulations
Tables 1 and 2 summarize the details of the 3D and 2D simulations that are

presented in this study. The data are presented in a similar way to table 1 of
Stevens et al. (2010b). The tables indicate the grid resolution used for the different
Pr number cases and compare the resolution used in the boundary layer with the
criterion given in equation (42) of Shishkina et al. (2010). The resolution over the
whole domain is compared by using (2.5) and (2.6) of Stevens et al. (2010b) and
using h = max(1x,1y,1z) or h = max(1r, Γ L/21φ,1z) in a cylindrical domain.
Note that for high Pr number regime (2.6) of Stevens et al. (2010b) is more restrictive
than the criterion given in (37) of Shishkina et al. (2010). The current results seem to
indicate that the criterion of Shishkina et al. (2010) is sufficient to ensure convergence
of the Nusselt number for the high Pr number cases.
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Pr Nθ × Nr × Nz NBL Nmin
BL h Nuf Nuh τf Ref.

55.00 384× 192× 384 15 8 1.68 32.00 32.00 600 Stevens et al. (2010a)
55.00 256× 128× 256 23 8 2.52 32.25 32.20 750 Stevens et al. (2010a)
30.00 256× 128× 256 15 8 2.17 32.31 32.40 600 Stevens et al. (2010a)
20.00 256× 128× 256 15 8 1.97 32.54 32.56 400 Stevens et al. (2010a)
15.00 256× 128× 256 15 8 1.83 32.36 32.60 400 Zhong et al. (2009)
10.00 256× 128× 256 15 8 1.65 32.42 32.53 400 Zhong et al. (2009)
6.400 384× 192× 384 23 8 0.99 32.59 32.42 400 Stevens et al. (2010a)
6.400 256× 128× 256 15 8 1.48 32.95 33.00 200 Zhong et al. (2009)
4.380 256× 128× 256 15 8 1.35 33.15 32.91 400 Zhong et al. (2009)
3.050 256× 128× 256 15 8 1.24 33.48 33.45 400 Zhong et al. (2009)
1.500 256× 128× 256 15 8 1.03 33.13 33.13 400 Zhong et al. (2009)
0.700 512× 128× 256 12 9 0.58 31.71 31.79 302 This work
0.700 256× 128× 256 15 9 1.11 31.94 31.88 400 Zhong et al. (2009)
0.450 512× 128× 256 12 12 0.73 31.13 31.22 259 This work
0.300 512× 128× 256 13 15 0.88 30.00 30.03 341 This work
0.200 1024×256×512 27 18 0.53 28.40 28.64 151 This work
0.200 512× 128× 256 13 18 1.07 28.73 28.68 377 This work
0.140 1024×256×512 28 22 0.63 27.27 27.37 135 This work
0.100 1024×256×512 29 27 0.74 25.93 25.84 123 This work
0.065 1024×256×512 30 35 0.90 24.07 23.64 126 This work
0.045 1024×256×512 33 45 1.05 22.38 22.26 100 This work
0.030 1024× 256× 512 39 57 1.35 20.31 20.04 56 This work
0.030 512× 128× 256 18 57 2.55 20.20 20.48 447 This work
0.020 1024×256×512 44 76 1.61 18.90 19.46 78 This work
0.020 512× 128× 256 19 76 3.04 18.82 18.59 414 This work

TABLE 1. Details of 3D simulations at Ra = 108. Columns from left to right: Pr number;
resolution in azimuthal, radial and axial direction, Nθ × Nr × Nz; number of points in the
thermal boundary layer used in the simulation; minimum number of points that should be
used in the thermal boundary layer according to Shishkina et al. (2010); average length
scale in the flow compared to the largest grid length used in the grid, h; Nuf , the Nusselt
number over the whole simulation length, omitting the initialization period; Nuh, the
Nusselt number over the last half of the simulation time considered; τf , the simulation time
in free-fall time units after the initialization period of 30 to 200τf considered; reference
where the simulation was first presented. Bold type indicates Pr numbers for which the
effect of the numerical resolution has been tested.

In table 1 it can be seen that for some of the low Pr number cases the boundary
layers are under-resolved according to the Shishkina et al. (2010) criterion. However,
the agreement of Nu for identical parameters and different grid resolutions indicate
that at least for integral quantities the resolution is sufficient and that the criterion is
possibly too strict for low Pr. We also note that here the minimum number of grid
points is determined using the new a = 0.911 (Stevens et al. 2013), while numerical
tests (Shishkina et al. 2010) indicate that the minimum number of gridpoints required
in the boundary layer is closer to the value obtained by using the old a= 0.482.
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Pr Nx × Ny NBL Nmin
BL h Nuf Nuh τf

55.00 512× 256 16 7 1.27 27.83 27.86 50000
55.00 256× 128 8 7 2.38 27.76 27.75 50000
30.00 256× 128 8 7 2.38 27.50 27.51 40000
20.00 256× 128 8 7 2.38 27.44 27.44 30000
10.00 256× 128 8 7 2.37 27.25 27.26 20000
6.400 512× 256 16 7 1.26 26.99 26.99 10000
6.400 256× 128 8 7 2.36 26.79 26.79 20000
4.380 256× 128 8 7 2.33 25.51 25.47 30000
3.000 256× 128 8 7 2.32 25.07 25.05 10000
1.500 256× 128 8 7 2.31 24.83 24.82 10000
1.000 512× 256 8 7 2.32 25.17 25.16 10000
0.700 1024× 512 30 8 0.78 25.22 25.10 8000
0.700 512× 256 15 8 1.48 25.14 25.16 8000
0.450 1024× 512 34 11 0.96 24.78 24.59 2000
0.300 1024× 512 37 13 1.18 25.25 25.09 2000
0.200 1024× 512 34 17 1.43 25.73 25.40 1500
0.100 2048× 1024 76 26 1.01 23.63 23.18 200
0.100 1024× 512 36 26 1.97 23.32 23.03 1000
0.065 2048×1024 82 34 1.23 21.76 22.07 200
0.045 2048×1024 102 43 1.46 20.52 20.95 80

TABLE 2. Details of 2D simulations at Ra = 108. Columns from left to right: Pr number;
resolution in horizontal and vertical direction, Nx × Ny; number of points in the thermal
boundary layer used in the simulation; minimum number of points that should be used in
the thermal boundary layer according to Shishkina et al. (2010); average length scale in
the flow compared to the largest grid length used in the grid, h; τf , the simulation time
in free-fall time units after the initialization period of 30 to 3000τf considered. Bold type
indicates Pr numbers for which the effect of the numerical resolution has been tested.
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