
Appointments for Care Pathway Patients

Maartje E. Zonderland∗· Richard J. Boucherie†· Ahmad Al Hanbali‡

November 14, 2011

Acknowledgments: The authors would like to thank Ivo Adan and Vidyadhar Kulkarni for their
valuable comments.

1 Introduction

Care pathways have gained popularity in the healthcare sector the last two decades [2]. A care
pathway is a management tool to organize multidisciplinary care for patients with identical char-
acteristics (i.e., disease symptoms, diagnosis, age, etcetera). The care pathway specifies the steps
in the care process [1] and routes patients along a pre-defined path of care providers and diagnostic
facilities. Patients may complete a significant part of the path in one day. Given the vast number
of hospital facilities incorporated in the path, the planning is usually involved and hospitals tend
to prioritize these patients. It is therefore not uncommon that slots are reserved for care pathway
patients in an otherwise walk-in clinic. Examples are for instance found at diagnostic services, such
as Radiology outpatient clinics (X-ray, CT) and blood withdrawal facilities. When these facilities
are highly utilized (>85%), reserving a few slots for care pathway may lead to a significant increase
of the waiting time of walk-in patients.

In this paper we translate the above problem setting to a queuing model. The hospital facility
decides on the number of slots that is reserved for care pathway patients. The model then enables
a trade-off between the delay for walk-in patients and the probability that the number of slots
reserved for the care pathway patients is not sufficient.

The service and hospitality industry is quite familiar with policies where a part of the (unscheduled)
customer stream is diverted and scheduled on a later moment on the day. This concept is also
known as virtual queuing (see e.g., [4, 9]). Probably the most famous organization that employs
virtual queuing is Walt Disney, that uses for the most popular attractions in its theme parks the
FastPass system [5]. Park guests decide upon arrival at an attraction whether they want to join
the waiting line, or get a ticket (the ‘FastPass’), that gives them a time-frame to return and enter
the attraction without waiting. To avoid a large number of no-shows and long waiting time for the
non-FastPass guests, it is only allowed to possess a FastPass ticket for one attraction at the same
time. The queuing system behind FastPass is analyzed in [7]. However, in the FastPass system
park guests are supported by information on the state of both the regular and FastPass queue
(i.e., the waiting time in the regular queue and the come back time for the FastPass ticket) and
decide upon arrival which queue they want to join. In this paper, the two patient types originate
from separate arrival processes (walk-in or care pathway) that determine their type and thus
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the queuing discipline. We have found no evidence that the particular reservation discipline we
consider has been studied before.

The remainder of this paper is organized as follows. In the next section we describe our queuing
model, followed by the analysis in Section 3. In Section 4 we provide a couple of numeric examples,
and we conclude with the discussion in Section 5.

2 Model

For the ease of notation we refer to the walk-in patients as regular patients, and to the care
pathway patients as priority patients.

2.1 Assumptions

We consider a hospital facility which serves regular and priority patients. Both patient types have
a deterministic service time requirement of 1 slot and arrive according to a geometric arrival
process with arrival probability q1 and q2 respectively. The regular patients queue in FCFS order,
while a priority patient picks upon arrival an appointment h slots later, L ≤ h ≤ H, where
1 ≤ L ≤ H < ∞. When the desired slot is already taken by another priority patient, the newly

Figure 1: The G/D/1 queue with appointments, appointment window (L, . . . ,H) = (2, 3, 4) and
h = 3.
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arrived priority patient proceeds to slot h−1,. . .,L, until a slot is found that has not yet been taken
by a priority patient. When all slots in the window that precede h are taken, the priority patient is
blocked and lost. If the slot taken by the priority patient is occupied by a regular patient, then the
regular patient is shifted to the first higher slot that is not taken by a priority patient. If this slot is
non-empty as well, the regular patient that was occupying this slot is shifted upwards to the first
slot not taken by a priority patient, and so on. Note that h equals the maximum number of slots
the new priority patient has to wait until his service commences. It can readily be observed that the
service facility can be modeled as a discrete-time single server queue serving priority and regular
patients. Regular patients join the back of the queue. Priority patients select the last slot in the
interval (L, . . . , h). Regular patients are shifted to higher queue positions when a priority patient
takes their position (see Figure 1). The slot pick probability ph can follow any discrete probability
distribution. While the priority patients do not ‘see’ regular patients, the regular patients may
experience significant delay when a priority patient joins the queue. If there is a priority patient on
the first queue position at the moment of a service completion, this patient is served. Otherwise,
a regular patient will be served. If there are no regular patients in the queue, the server is idle
(even though there may be a priority patient on a slot position higher up in the queue).
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2.2 Matrix Structure

The transitions in the appointment window at the end of each time slot are independent of the
number of regular patients present. We therefore first define a submatrix with the 1-step transition
probabilities for priority patients. Then we define submatrices for the 1-step transition probabilities
of regular patients, which do depend on the state of the priority patient appointment window.
Finally, we combine these matrices into one transition probability matrix.

2.2.1 Priority Patient Transition Probability Submatrix D

We define an appointment vector v of length H, specifying which slots contain priority patient
appointments. At most one priority patient can claim an appointment slot, so v = (v1 . . . vH),
where vh is a binary variable, equal to 1 when slot h is reserved by a priority patient and 0
otherwise. Note that the appointment vector v is of length H, while the appointment window is
of length H − L + 1. Even though the slots (1, . . . , L − 1) in the appointment window cannot be
chosen anymore by priority patients, they possibly contain appointments and thus should be taken
into account in the analysis. At the end of each time slot v is updated; new appointments are
added and existing appointments are moved forward one slot. There are 2H possible combinations
for v: when H = 4, v can for example be equal to (0000), (0101), (1101), and so on. It follows
immediately that the 1-step transition probability submatrix, D, has size 2H × 2H . Deriving D
can be quite cumbersome for H > 2. We therefore present an algorithm to simplify this process.

2.2.2 Algorithm for computation of D

Step 1. Initialization

1a. Create the 2H possible appointment combinations and order them lexicographically.
1b. Create an (empty) matrix of size 2H ×2H , where the rows and columns represent the 2H lexicograph-
ically ordered possible combinations for v at time slot t and t+ 1 respectively.

Step 2. Creating the Block Structure

The possible shifts in v at the end of each time slot lead to a unique submatrix structure. Since at the
end of each time slot the appointments are advanced one slot, all vectors with a 1-entry (an appointment)
on position x, x > 1, will not have a possible transition to a vector with a 0-entry (no appointment) one
position to the left, i.e., on position x− 1. Also, since appointments on the first position will be removed
from v in the next shift, the submatrix’ structure is identical for the first and second 2H−1 rows. Figure
2 shows the repetition in the structure of D for H = {1, ..., 4}. In fact, for H > 3 the upper-left block of
four rows and eight columns is repeated each four rows down and eight columns to the right.

Step 3. Calculating the Required Number of Arrivals N

For each possible transition a certain number of priority patient arrivals, N , is required. It follows that
for H > 3 the upper-left 4 × 8 building block is filled with the number of required arrivals, as given in
Figure 3, and each repetition to the right, the required number of arrivals is raised by one. When the first
entry of v in the column of D equals 1, a minimum number of arrivals is required to make this transition
(denoted in Figure 3 with N = n+). When the first entry of v equals 0, an exact number of arrivals is
required to make this transition (N = n). For example, see Figure 3. For the transition from (1000) to
(0111) exactly 3 arrivals are required, but for the transition from (0001) to (1011) at least 2 (2+) arrivals
are required. Not only the structure of the upper-left building block is identical for H > 3, but also the
required number of arrivals (as given in Figure 3) remains the same.

Step 4. Adapting the Blocks for L > 1
If L > 1, the slots (1, ..., L − 1) cannot be claimed by priority patients. This changes the structure of
D: the blocks are halved L − 1 times. In the left half of the remaining part of the block n arrivals are
required, while in the right half n or more arrivals are required (see Figure 4 for an example with H = 3
and L = {1, 2, 3}).
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Figure 2: Structure of D for H = {1, . . . , 4}
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Figure 3: Required number of arrivals in D for H = 4

H=4 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0 1 1 2 1 2 2 3 1+ 2+ 2+ 3+ 2+ 3+ 3+ 4+

0001 0 1 1 2 1+ 2+ 2+ 3+

0010 0 1 1 2 1+ 2+ 2+ 3+

0011 0 1 1+ 2+

0100 0+ 1+ 1+ 2+ 1+ 2+ 2+ 3+

0101 0+ 1+ 1+ 2+

0110 0+ 1+ 1+ 2+

0111 0+ 1+

1000 0 1 1 2 1 2 2 3 1+ 2+ 2+ 3+ 2+ 3+ 3+ 4+

1001 0 1 1 2 1+ 2+ 2+ 3+

1010 0 1 1 2 1+ 2+ 2+ 3+

1011 0 1 1+ 2+

1100 0+ 1+ 1+ 2+ 1+ 2+ 2+ 3+

1101 0+ 1+ 1+ 2+

1110 0+ 1+ 1+ 2+

1111 0+ 1+

Step 5. Calculating the Transition Probabilities

In the last step of the algorithm we need to calculate the transition probabilities P(vt → vt+1) that fill
the gray cells in D (in all white cells, no transition is possible and P(vt → vt+1) = 0). Recall that we use
N to denote the number of required arrivals as given in D. The transition probabilities are multinomial
distributed and given by:

P(vt → v
t+1) =























0 if vt 6→ vt+1,

J
∑

j=N

bj
∑

kL,...,kH

H∑

h=L

kh=j

(

j

kL, . . . , kH

)

p
kH

H · · · pkL

L otherwise,

(1)

where J = N if N = n and ∞ if N = n+, bj is the geometric probability that j priority patients arrive in
a time slot, given by:

bj = (1− q2)q
j
2, (2)
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Figure 4: Structure and required number of arrivals in D for H = 3 and L = {1, 2, 3}

L=1 000 001 010 011 100 101 110 111

000 0 1 1 2 1+ 2+ 2+ 3+

001 0 1 1+ 2+

010 0+ 1+ 1+ 2+

011 0+ 1+

100 0 1 1 2 1+ 2+ 2+ 3+

101 0 1 1+ 2+

110 0+ 1+ 1+ 2+

111 0+ 1+

L=2 000 001 010 011 100 101 110 111 L=3 000 001 010 011 100 101 110 111

000 0 1 1+ 2+ 000 0 1+

001 0+ 1+ 001 0 1+

010 0 1 1+ 2+ 010 0 1+

011 0+ 1+ 011 0 1+

100 0 1 1+ 2+ 100 0 1+

101 0+ 1+ 101 0 1+

110 0 1 1+ 2+ 110 0 1+

111 0+ 1+ 111 0 1+

and ph is the slot pick probability. The distribution of the j arrivals over the slots is denoted by kL, . . . , kH ,
and for each slot h = (L, . . . ,H) the following should hold to ensure the j arrivals are distributed over the
slots such that vt+1 is obtained:

If (vt+1

h − v
t
h+1) = 0 for h = (L, . . . ,H − 1), or v

t+1

H = 0,

then kh = 0, and

H
∑

i=h+1

ki =

H−1
∑

i=h+1

(vt+1

i − v
t
i+1) + v

t+1

H for h = (L, . . . ,H − 1).

If (vt+1

h − v
t
h+1) = 1 for h = (L, . . . ,H − 1), or v

t+1

H = 1,

then

H
∑

i=h

ki ≥

H−1
∑

i=h

(vt+1

h − v
t
h+1) + v

t+1

H for h = (L, . . . ,H − 1), and kH ≥ 1.

(3)

2.2.3 Regular Patient Transition Probability Submatrices A∗, B∗, and C∗

While D is the same for all possible priority patient transitions, the regular patient transition
probability submatrices, which contain the probabilities for transitions in the number of regular
patients present, m, depend on the appointment vector v. Since we consider 1-step transitions,
only the first entry of v is of interest. Three submatrices, A∗, B∗, and C∗, can be identified, which
one to apply depends on m and v (see Figure 5). The submatrices given all have size 2H ×2H and
are constructed as follows. Define u and w as vectors of length 2H . The first 2H−1 entries of u

are equal to q1, and the second 2H−1 entries of u are equal to 1. The first 2H−1 entries of w are
equal to 1, and the second 2H−1 entries of w are equal to 0. Furthermore, define e as the vector
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Figure 5: Applicability of regular patient submatrices
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of ones, also of length 2H . Then we obtain:

A∗

j = ajA
∗ where A∗ = uT × e,

B∗

0 = a0B
∗ where B∗ = wT × e,

C∗

j = ajC
∗ where C∗ = eT × e. (4)

Since the arrival process of regular patients is geometrically distributed, the probability am that
m regular patients arrive in a time slot is given by:

am = (1− q1)q
m
1 , m ≥ 0. (5)

2.2.4 The Combined Transition Probability Matrix P

The priority and regular patient arrival processes are independent, and therefore we can multiply
D element wise with A∗, B∗, and C∗, i.e., every (m,n)-entry of D is multiplied with the (m,n)-
entry of A∗, B∗, and C∗, in order to obtain the transition probability matrix P with elements Aj ,
B0, and Cj , j ≥ 0. Each entry of P is a matrix in itself of size 2H × 2H , and represents the state
transition (mt,v

t) → (mt+1,v
t+1).

P =

















C0 C1 C2 · · · Cm · · ·
B0 A0 A1 · · · Am−1 · · ·
0 B0 A0 · · · Am−2 · · ·
...

. . .
. . .

. . .
. . . · · ·

... · · · · · · · · · · · · · · ·

















Note that Aj can also be written as ajĀD, where Ā is the diagonal matrix with the elements of u
on the diagonal. The same holds for B0, which can be written as b0B̄D, where B̄ is the diagonal
matrix with the elements of w on the diagonal, and for Cj , which can be written as cjC̄D, where
C̄ is the diagonal matrix with the elements of e on the diagonal.
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3 Analysis

The matrix P shows similarities with the transition probability matrix for the M/G/1 queue
embedded at departure moments (see [8] for further reference). An overview of discrete time
queuing systems can be found in [3]. Several priority disciplines have been studied for discrete
time queuing models, but these are usually related to the non-preemptive [12] or preemptive
resume priority disciplines [10]. In [11] a different, but related, service discipline is considered,
where a slot is reserved for regular patients at the end of the queue. In the case of high load traffic
from priority patients, it is then guaranteed that regular patients receive service as well.

3.1 Stability of the Queue

In order for the queue to be stable, the mean load, ρ, should be less than one. Since the service
time is 1 slot, ρ equals the sum of the mean number of regular patient arrivals per slot and the
accepted priority patients per slot:

ρ =
q1

1− q1
+ (1− PB2

)
q2

1− q2
< 1, (6)

It follows immediately that q1, q2 < 1

2
. The blocking probability for priority patients, PB2

, is
calculated as follows. A priority patient is accepted when the slot h, picked with probability ph,
is still available, or if not, when one of the slots (L, . . . , h − 1) is still available. The blocking
probability for priority patients is therefore given by:

PB2
= 1− ph ·

∑

vt
→vt+1

:
h∑

i=L

v
t+1

i
<h

P(vt → vt+1) . (7)

3.2 Vector Generating Function of Equilibrium Probabilities π(m,v)

We derive the vector generating function of the equilibrium probability π(m,v) for the number
of regular patients present, m, and the realization of the appointment vector, v. For notation
purposes, denote π(m,v) by the vector πs, where s = (0, 1, . . .). Using the property ΠP = Π, we
obtain:

πs = π0Cs +

s
∑

i=1

πiAs−i + πs+1B0 for s ≥ 1, and (8)

π0 = π0C0 + π1B0, where
∞
∑

s=0

πse
T = 1. (9)

Define the vector generating function for πs, PΠ(z), as

PΠ(z) =

∞
∑

s=0

πsz
s. (10)

Furthermore, define

A(z) =

∞
∑

s=0

Asz
s, and C(z) =

∞
∑

s=0

Csz
s. (11)
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Multiplying both sides of (8) with the scalar zs, where |z| ≤ 1, and summing the result for
s = (0, . . . ,∞), we obtain:

∞
∑

s=0

πsz
s =

∞
∑

s=0

π0Csz
s +

∞
∑

s=1

s
∑

i=1

πiAs−iz
s +

∞
∑

s=0

πs+1B0z
s, (12)

and it follows that

PΠ(z) = π0C(z) + PΠ(z)A(z)− π0A(z) +B0z
−1PΠ(z)− π0B0z

−1 . (13)

Multiplication of (13) with z and rearranging terms gives:

PΠ(z) [zI − zA(z)−B0] = π0 [zC(z)− zA(z)−B0] . (14)

3.3 Mean Number of Regular Patients Present

We derive the mean number of regular patients in the queue, E[LR], by following the analysis from
[8], pp. 143-148. Let z = 1. First we list the relations we already have.

E[LR] = P ′

Π(1)e
T

E[LR]π
∞ = P ′

Π(1)e
Tπ∞

PΠ(1) = π∞

PΠ(1)e
T = 1

A(1) +B0 = C(1) = D

DeT = eT , (15)

where π∞ is the vector with the equilibrium probabilities of the number of priority patients in the
queue, which can be obtained from π∞D = π∞. The first derivative of (14) with respect to z is

P ′

Π(z) [zI − zA(z)−B0] + PΠ(z) [I −A(z)− zA′(z)]

= π0 [C(z) + zC ′(z)−A(z)− zA′(z)] . (16)

For z = 1, it follows that:

P ′

Π(1) [I −D] + π∞ [I −A(1)−A′(1)] = π0 [C(1) + C ′(1)−A(1)−A′(1)] .

(17)

Denote
[

I −D + eTπ∞
]

by U and
[

I − 1

1−q1
ĀD

]

byK. Furthermore, note that
[

1

1−q1
D − 1

1−q1
ĀD

]

is equal to B̄D. By adding P ′

Π(1)e
Tπ∞ = E[LR]π

∞ we obtain:

P ′

Π(1)
[

I −D + eTπ∞
]

+ π∞

[

I − ĀD −
q1

1− q1
ĀD

]

= E[LR]π
∞ + π0

[

D +
q1

1− q1
D − ĀD −

q1
1− q1

ĀD

]

⇒

P ′

Π(1)
[

I −D + eTπ∞
]

+ π∞

[

I −
1

1− q1
ĀD

]

= E[LR]π
∞ + π0

[

1

1− q1
D −

1

1− q1
ĀD

]

. (18)

8



Appointments for Care Pathway Patients 3 ANALYSIS

From Theorem 5.1.3 in [6] it follows directly that the matrix U is invertible. We then have that
π∞U−1 = π∞ and thus:

P ′

Π(1) = E[LR]π
∞ + π0B̄DU−1 − π∞KU−1. (19)

Multiplying with T it follows that:

π0B̄DeT = π∞KeT . (20)

By taking the second derivative of (14) with respect to z, setting z = 1 and multiplying with eT

we obtain:

P ′′

Π(1) [I −D] eT + 2P ′

Π(1)KeT

= π∞

[

2q1
(1− q1)2

ĀeT
]

+ π0

[

2q1
1− q1

B̄DeT
]

. (21)

Since P ′′

Π(1) [I −D] eT = 0 we get:

P ′

Π(1)KeT =
q1

(1− q1)2
π∞ĀeT +

q1
1− q1

π0B̄DeT . (22)

Now we combine (19) and (22) to obtain an expression for E[LR]:

E[LR]π
∞KeT

= π∞

[

q1
(1− q1)2

Ā+KU−1K

]

eT + π0B̄D

[

q1
1− q1

I − U−1K

]

eT

= π∞

[

q1
(1− q1)2

Ā+KU−1K

]

eT + π0B̄DU−1

[

3q1 − 1

1− q1
eT + (eT −wT )

]

= π∞

[

q1
(1− q1)2

Ā+KU−1K

]

eT + π0B̄

[

3q1 − 1

1− q1
eT +DU−1(eT −wT )

]

.

(23)

Using (20) this simplifies to:

E[LR]π
∞KeT = π∞

[

q1
(1− q1)2

Ā+KU−1K +
2q1

1− q1
K

]

eT − π0B̄DU−1wT ,

(24)

and

E[LR] =

[

π∞

[

q1
(1− q1)2

Ā+KU−1K

]

eT − π0B̄DU−1wT

]

[

π∞KeT
]−1

+
2q1

1− q1
.

(25)

The second and higher moments of E[LR] can be computed using the same approach.

In expression (25) there is still an unknown, π0. We suggest two approximations for π0 and thus
for E[LR]. Since the load for regular patients is high and therefore the probability that the server
is idle while there are priority patients in the queue is low, the first approximation is obtained
by π0 = (1 − ρ)π∞. The second approximation is to set π0B̄DU−1wT = 0. We use simulation
(see Table 1) to determine which of the two approximations is most accurate in terms of the
parameter values of our problem setting, i.e., a high load for regular patients (q1 = 0.45) and a

9
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Table 1: Comparing the values of E[LR] that follow from the simulation and approximations

Case L H ρS E[LR] |δ| with sim.
Sim. Approx. 1 Approx. 2 Approx. 1 Approx. 2

1 1 1 0.9171 10.1 10.1 10.9 0.0 0.8
2 1 3 0.9250 11.0 11.2 12.0 0.2 1.0
3 1 5 0.9270 11.5 11.5 12.3 0.0 0.8
4 3 3 0.9171 9.9 10.1 10.9 0.2 1.0
5 3 5 0.9250 11.2 11.2 12.0 0.0 0.8
6 5 5 0.9170 10.0 10.2 10.9 0.2 0.7

low to moderate load for priority patients (q2 = 0.10). The slot pick probability ph is uniform
distributed. We also give the load ρS that follows from the simulation.

The mean number of regular patients in the queue in the simulation, E[LR]S , was calculated by
simulating a period of 100,000 slots (so that there would be ≈ 10,000 priority patient arrivals),
preceded by a warm-up period of 1,000 slots. When in run n,

∣

∣

∣

∣

∣

∑n

i=1
E[LR]S,i
n

−

∑n−1

i=1
E[LR]S,i

n− 1

∣

∣

∣

∣

∣

< ǫ, (26)

the simulation would stop. For ǫ a value of e−1 was chosen, which corresponds in the case of ten
minute slots to an error margin of one minute. We see that the first approximation is the most
accurate with a maximum error in the six test cases of 0.2 (2 minutes).

3.4 Mean Waiting Time for Regular Patients

Even though the regular patients may experience additional delay when a priority patient takes
their spot, the mean waiting time for regular patients, E[WR], can still be calculated using Little’s
law. This is because the queuing discipline for the regular patients is FCFS and therefore the order
in the queue for regular patients does not change when a priority patient arrives and picks a slot
in the appointment window. The mean waiting time is therefore equal to the sojourn time, which
is calculated using the mean number of regular patients present, E[LR], and the mean throughput
of regular patients per slot, ρ1, minus one slot:

E[WR] =
E[LR]

ρ1
− 1, (27)

where ρ1 = q1
1−q1

.

4 Results

To generate the results presented in this section, we use the first (most accurate) approximation
of π0 = (1 − ρ)π∞. We use the same parameter values as in the previous section, i.e., q1 = 0.45,
q2 = 0.10.

4.1 The Effect of the Size and Position of the Appointment Window

In Table 2 we see the effect of the size and position of the appointment window on the waiting
time for regular patients, E[WR], and the blocking probability for priority patients, PB2

. As is
also apparent from Figure 6, E[WR] increases and PB2

decreases when the appointment window
becomes larger and is positioned further away from the first position in the queue.

10
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Table 2: Results for various positions and sizes of the appointment window

L H E[LR] E[WR] PB2

1 1 10.1 11.3 0.1111
1 2 10.8 12.2 0.0406
1 3 11.2 12.7 0.0184
1 4 11.4 12.9 0.0098
1 5 11.5 13.0 0.0064
2 2 10.1 11.3 0.0557
2 3 10.8 12.2 0.0244
2 4 11.2 12.7 0.0120
2 5 11.4 12.9 0.0070
3 3 10.1 11.4 0.0372
3 4 10.8 12.2 0.0176
3 5 11.2 12.7 0.0088
4 4 10.2 11.5 0.0282
4 5 10.8 12.3 0.0132
5 5 10.2 11.4 0.0224

Figure 6: Waiting time for regular patients, E[WR], versus blocking probability for priority patients,
PB2
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4.2 Comparison with the Non-Priority Queue

We compute E[LR] for the same queuing system, but now the queue discipline is FCFS for both
regular and priority patients (we still refer to priority patients, even though these (care pathway)
patients do not have priority anymore), and there is no blocking of priority patients. The expected
number of patients at the facility, E[L], is given by limz→1 P

′

Π(z), where it is easy to derive that
PΠ(z) in this case is given by:

PΠ(z) = (1− ρ)
G(z)(1− z)

G(z)− z
, (28)

so that

E[L] = (1− ρ)
2G′(1)(1−G′(1)) +G′′(1)

2(G′(1)− 1)2
. (29)

In case of absence of the priority patients we have that G′(1) = ρ1 and G′′(1) = ρ21, and thus
E[L] = E[LR] = 2.7 (note that ρ in (29) is equal to ρ1). If the priority patients also arrive at

11
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the facility, G(z) is the product of the two probability generating functions of the independent
geometric arrival processes, and thus G′(1) = ρ1+ ρ2, and G′′(1) = 2ρ21+2ρ1ρ2+2ρ22 (note that ρ
in (29) is equal to ρ1 + ρ2). We obtain E[L] = 11.9, and E[LR] =

ρ1

ρ1+ρ2
E[L] = 10.5, E[W ] = 11.8.

So even though priority patients are not blocked, the mean waiting time for regular patients is
shorter. Only a priority discipline where a single slot is reserved for priority patients results in a
slightly shorter waiting time for regular patients (see Table 2).

5 Discussion

In this paper we analyzed the single server queue in discrete time with two types of patients. Both
patient types arrive according to a geometric arrival process and have a service requirement of 1
slot. Priority patients claim upon arrival an empty slot, h, (‘appointment’) in a pre-defined ap-
pointment window, and have absolute priority over regular patients. We have derived the blocking
probability for priority patients and the mean waiting time for regular patients. The methodology
we developed is mainly meant as a capacity planning tool, so that managers can study the effect
of for instance the values of the lower and upper bound of the appointment window. In reality,
a steady state situation, especially in an environment that does not offer 24/7 service such as
an outpatient clinic, will maybe not be reached. However, given the managerial insights that the
methodology gives, we still feel it can be very valuable in these cases.

Throughout the paper we assumed that when h was already taken, the claim of the new arrived
priority patient is advanced to slot (h− 1, . . . , L), until a free slot was found. It is straightforward
to analyze the queue where the claims are set back to slots (h+ 1, . . . , H). Also the possibility to
choose any distribution for the slot pick probability, ph, introduces a lot of flexibility. The choice
for the distribution of ph will especially influence the mean waiting time for regular patients. For
example, the case where pH = 1, ph = 0 ∀ h 6= H, makes maximal use of the appointment
window in the case that the slots are advanced when a picked slot is already claimed, and thus
E[WR] will be larger than in the case that pH 6= 1.

The effect of increasing H gradually reduces when H becomes larger, and will lead to compu-
tational issues. Currently, the computations for E[LR] using a software program such as Matlab
become already quite involved for H ≈ 10. This is not necessarily a problem and allows for analysis
of many problem instances, but deserves attention in future research. The symmetry in D might
be useful to simplify the analysis and size of the solution space. Note that simulation has the same
computational limitations.

Of course, the size of appointment window (L, . . . ,H) has a significant influence on both the
priority patient blocking probability, PB2

, and the regular patient waiting time, E[WR]. When the
window size H−L+1 is decreased, PB2

will increase but E[WR] will decrease. It is obvious that the
trade-off between these two competing performance measures lies exactly here. A rule of thumb
that comes into mind from the Subsection 4.2 and the graph in Figure 6, is that by reserving
one slot for priority patients a few slots (3–5) from the first queue position, results in acceptable
outcomes for both the waiting time for regular patients and the blocking probability for priority
patients. However, a mean waiting time of over 11 slots (also in the case without priorities) is
quite long, so the load of the system should be subject of study as well. In future research we plan
to further investigate the exact trade-off and come to a rule of thumb. Furthermore, we plan to
expand this research to the multi-queue variant of the problem.
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