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A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is

presented. That is, the finite-difference time domain method is used to study the interaction of

electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by

“ablation after each laser pulse,” according to the absorbed energy profile, in order to account for

inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser

wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change

in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the

wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by

the model. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867759]

I. INTRODUCTION

Laser-induced periodic surface structures (LIPSSs) have

been observed and studied since 1965;1 however, a complete

understanding of their origin and growth is still missing. The

most common LIPSSs, also referred to as ripples, consist of

wavy surfaces, which can be produced on metals,2–4

semiconductors,5–7 and dielectrics.8,9 When created with lin-

early polarized laser radiation at normal incidence, these rip-

ples have a periodicity close to the laser wavelength k, and

their direction is orthogonal to the polarization of the laser

light. Ripples showing these properties can be produced with

either continuous wave lasers10 or pulsed lasers2–7 and are

usually referred to as low spatial frequency LIPSSs (LSFLs).

It is generally accepted that LSFL formation is driven by the

interaction of electromagnetic fields with the rough surface

of materials.5,8,11 The Sipe theory is commonly considered

to be the most adequate description of this interaction.11

The observation of ripples with a periodicity significantly

smaller than the laser light, referred to as high spatial fre-

quency LIPSSs (HSFLs), renewed interest in the topic since

the early 2000s.3,4,12–15 HSFLs attracted attention for mainly

two reasons. First, from a practical point of view, HSFLs

show a strong potential for nanostructuring due to their small

dimensions. While, from a theoretical point of view, the elec-

tromagnetic theory adopted by Sipe fails to explain HSFL for-

mation. As for LSFLs, HSFLs have been observed on

metals,3,4,12 semiconductors,13–15 and dielectrics.9,16 Unlike

LSFLs, HSFLs can be oriented both parallel3,4,9,14 or orthogo-

nal12,13,15,16 to the laser beam polarization. Moreover, HSFLs

have been observed for laser pulse durations in the picosecond

and femtosecond regime only.

The origin of HSFL is still under debate and several the-

ories have been proposed to explain their formation. That is,

several authors proposed extensions of the electromagnetic

approach, such as second harmonic generation (SHG),13 var-

iation of the optical properties of the material during the

pulse,9 or both.15 While these extensions were able to

explain features of HSFLs in some cases, the plethora of

unexplained LIPSSs3,4,14 led to another approach. That is, it

was proposed that LIPSSs are the result of “self-organization

from an instability induced by the ablation process.”14,16,17

However, none of the above mentioned theories can explain

all characteristics of HSFLs.

In a recent article,18 the interaction of electromagnetic

waves with the rough surface of materials was investigated

numerically based on the finite-difference time-domain

(FDTD) method and compared to the Sipe theory.11 A good

agreement was found in most cases, but it was shown that

the Sipe theory fails to predict few important features. It was

also stressed that the FDTD method could be used to study

qualitatively the effect of inter-pulse feedback mechanisms

on LIPSS formation. The latter is the subject of this article.

In the first part of this article, a new model combining

the FDTD method and inter-pulse feedback mechanisms is

presented. This approach is referred to as “FDTD-feedback”

simulations. In the second part, the results of the FDTD-

feedback simulations are shown and compared to observa-

tions of LIPSSs reported in literature.

II. DESCRIPTION OF THE MODEL

Figure 1 visualizes the basic idea of the FDTD-feedback

simulations. That is, in the simulations, the incident laser radi-

ation interacts with the rough surface and the absorbed energy

A(x, y, z) in the material, resulting from this interaction, is cal-

culated based on the FDTD method, as will be explained in

Sec. II B. Once A(x, y, z) is known, an isoline of absorbed

energy, A(x, y, z)¼Aablation, is selected. This isoline is

assumed to correspond to the threshold at which the ablation

of material occurs. Next, the shape of the rough surface isa)Electronic mail: j.z.p.skolski@utwente.nl
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modified (updated) by material removal (“Ablation”). That is,

all the material above the chosen isoline is “removed” from

the simulation domain. Hence, the new surface morphology

follows the isoline, and it can be used for subsequent FDTD

simulation, leading to a new absorbed energy profile and a

further modification of the surface. The FDTD-feedback cycle

can be iterated as many times as necessary. This approach

allows to study qualitatively the inter-pulse feedback mecha-

nisms involved in LIPSS formation. It should be noted that

the outcome of this approach is influenced by the choice of

the nonphysical ablation threshold.

A. Scope of the FDTD-feedback simulations

It is impractical to perform FDTD-feedback simulations

for all combinations of wavelengths of the laser radiation,

polarization states, initial rough surfaces, or optical proper-

ties of the material. This section defines the scope of the

FDTD-feedback simulations presented in this article.

The laser radiation was modeled as a plane wave of

wavelength k¼ 800 nm, linearly polarized along the ~x axis

and arriving at normal incidence to the rough surface. This

limitation does not significantly hinder the comparison of the

modeling results with literature. In fact, the femtosecond

laser sources which are the most frequently used to produce

LIPSSs operate under these conditions.

The optical properties of the media, chosen to demon-

strate the merits of the FDTD-feedback simulations, are

computed using the same approach as Bonse et al. while test-

ing the Sipe Drude model on silicon.7 That is, the optical

properties of the excited silicon are computed via the com-

plex permittivity ~�� ¼ ~� þ D~�Drude, where D~�Drude is given by

D~�Drude ¼
�e2Ne

�0m�optmex2ð1þ i xsDð Þ�1Þ
: (1)

e, Ne; m�opt; me, x, and sD are, respectively, the electron

charge, the electron density in the conduction band, the op-

tical effective mass of the carriers, the free electron mass,

the angular frequency, and Drude damping time. The val-

ues m�opt ¼ 0:18 and sD¼ 1.1 fs for femtosecond-laser-

excited silicon were chosen in accordance with the work of

Bonse et al.7 as well as the optical properties of unexcited

silicon ~n ¼
ffiffiffi

~�
p
¼ 3:692þ 0:0065j, where ~n and ~� are the

complex refractive index and the permittivity of unexcited

silicon at k¼ 800 nm, respectively. The complex refractive

index of the excited material ~n� ¼
ffiffiffiffiffi

~��
p

is indicated when

necessary. It is worth noting that the optical properties are

assumed constant during one run of the FDTD-feedback

simulation. The reasons for this choice of optical properties

are various. First, LIPSSs on silicon have been studied

extensively.7,14,19 Second, the values used in Eq. (1) were

carefully determined by Sokolowski-Tinten and Von der

Linde.20 Finally, the Sipe-Drude model7 and previous

FDTD calculations were presented with these optical

properties.18,21

At the start of any FDTD-feedback simulation, a rough

surface needs to be defined. In this article, all the FDTD-

feedback simulations were performed starting from a

20� 20 lm2 rough surface, constituted of “bumps” randomly

distributed and with a height small compared to the laser

wavelength. This kind of roughness is characteristic for the

Sipe theory.11 It is particularly interesting from a theoretical

point of view since the frequency spectrum of such a rough-

ness is almost “flat;” therefore, the interaction of electromag-

netic waves with the rough surface is not biased by the

geometry of the latter.21 A more detailed description of the

initial rough surface is presented in Sec. II B.

B. FDTD method

The FDTD method originates from Yee in 1966.22 The

Yee algorithm solves, for both the electric field ~E and the

magnetic field ~H , the time dependent Maxwell’s curl equa-

tions in differential form. That is, Ampere’s law and

Faraday’s laws are discretized using central-difference

approximations for both the time and space derivatives. An

extensive presentation of the Yee algorithm and its extension

to handle lossy or dispersive media is well described in liter-

ature.23 Therefore, this is out of the scope of this article.

Instead, this section is used to summarize the FDTD features

which are necessary to perform the FDTD-feedback

simulations.

In Fig. 2, the simulation domain is represented at the start

of the FDTD-feedback simulations. The dimensions of the dif-

ferent parts of the simulation domain are indicated in terms of

number of Yee cells (yc), which is the unit cell in the Yee algo-

rithm. The Yee cells used for the computations had the follow-

ing dimensions: Dx¼Dy¼ 20 nm and Dz¼ 5 nm. These values

were chosen to satisfy two criteria: perform accurate (and

numerically stable) FDTD simulations and keep the demand on

the computer resources reasonable, in terms of speed and mem-

ory. With the optical properties defined in Sec. II A, the small-

est wavelength “traveling” in the simulation domain is equal to

k=Reð~nÞ ¼ 800=3:692 � 217 nm. It was shown empirically

FIG. 1. Steps followed in the FDTD-feedback simulations.
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that 10 Yee cells per wavelength lead to accurate results;23

hence, 20 nm is valid for the lateral dimensions of the Yee cell.

In the vertical direction, 5 nm was chosen as the size of the Yee

cell since the amplitude of the absorbed energy in the material

can decrease rapidly from the surface. The time increment

Dt¼ 1.5� 10�17 s was chosen to satisfy the stability criteria,

also referred to as Courant-Friedrichs-Lewy condition, derived

by Taflove and Brodwin.24

At the start of the simulation, the rough surface occupies

only the plane just above z¼ 0. Hence the maximum height

of the bumps is equal to 5 nm, which is small compared to

the laser wavelength. Random numbers are used to deter-

mine which parts of the rough surface are occupied by mate-

rial or vacuum. Ten percent of this plane was filled by

material at the start of the FDTD-feedback simulations,

which is a value commonly chosen in the case of the Sipe

theory.6,7,18 Below this plane, 30 yc, that is, 150 nm of mate-

rial is available to compute the absorbed energy. Above the

rough surface, vacuum is assumed.

The plane wave is introduced in the simulation domain

by the total-field scattered-field (TFSF) technique.23 In the

total-field region (TF), all the computations of interest for this

article occur, while in the scattered-field (SF) regions, convo-

lutional perfectly matched layers (CPMLs) were imple-

mented.23,25 The CPMLs are of great importance since these

allow to simulate semi-infinitely extended media. Indeed, if

these kind of boundary layers are not implemented, nonphysi-

cal reflections occur at the edges of the simulation grid. In the

~x and ~y directions, periodic boundary conditions are used due

to the nature of the studied phenomenon.23

The algorithm chosen for the FDTD calculations

depends on the optical properties of the medium. In cases

where Reð~n�Þ > Imð~n�Þ, the Yee algorithm, extended to han-

dle lossy media, was used.23 If Reð~n�Þ � Imð~n�Þ, the Yee

algorithm is unstable26,27 and the auxiliary differential equa-

tion method was used.23

C. Feedback by “ablation”

Inter-pulse feedback mechanisms leading to LIPSS for-

mation are complex. In the case of nanosecond laser pulses,

for example, different melting regimes, during which LSFLs

form, have been identified by Young et al.28 In the case of

ultra-short laser pulses, that is, femtosecond and picosecond

laser pulses, such a study is missing, but ablation seems to

play a key role regarding the growth of LIPSSs.29–31 A

detailed modeling of the mechanisms governing the transport

of molten or ablated material is not only complex but also

out of the scope of this article. Instead, a simplified approach

was chosen to account for inter-pulse feedback mechanisms

as presented in Fig. 1. This approach is referred to as the

holographic ablation model (HAM). It is worth noting that

the term “holographic” was used in a recent article32 to refer

to the Sipe theory11 and the work of Young et al.6,28

As mentioned earlier, while discussing Fig. 1, the con-

stant Aablation is an additional parameter which needs to be

chosen carefully. The ablation threshold of a material can be

determined experimentally.33 However, an exact value

would be of little use in the HAM because the intra-pulse

feedback is included in the FDTD calculations only qualita-

tively. That is, the optical properties are kept constant during

one FDTD simulation, in accordance with the number of

electrons in the conduction band and the Sipe-Drude model.7

Similarly, the dynamics of the carriers, the electron, and the

lattice temperatures of the material are not incorporated.

Hence, no quantitative prediction of the absorbed energy is

possible; therefore, Aablation should be determined differently.

Prior to any FDTD-feedback simulation, a FDTD simulation,

with identical parameters, is used to calculate the absorbed

energy below a flat surface. At a certain depth, the absorbed

energy Aablation necessary to remove a thickness of material,

referred to as ablation depth Dablation, is determined and

stored to perform the feedback step in the FDTD-feedback

simulations. That is, the removal of material required to cre-

ate the new surface roughness. Since there is a bijection

between Aablation and Dablation, for constant simulation param-

eters, Dablation is employed to refer to the simulations pre-

sented in this article. It is worth noting that, in the

FDTD-feedback simulations, Dablation is a parameter as well

as the number of electrons in the conduction band Ne.

However, in experiments, a qualitative relationship exists: a

high laser fluence leads to large values of Ne and Dablation,

where the exact magnitude depends on the material. The

FDTD-feedback simulations treat these two quantities as if

they were decoupled, since the relation between Ne and

Dablation is too complex to be included quantitatively in the

model. This is not always a drawback, since this decoupling

allows to investigate hypothetical materials. Hence, it allows

to discuss the results of the FDTD-feedback simulations for

other materials than silicon only.

One last limitation of the HAM concerns all the phe-

nomena related to incubation.2 That is, the fluence threshold

for which a certain kind of morphology, i.e., LIPSS, occur

decreases with the number of applied laser pulses. This accu-

mulative behavior is out of the scope of the FDTD-feedback

simulations. The main outcome of working with the non-

physical ablation threshold is that LIPSSs grow after less

cycles (“pulses”) in this model than in reality. All the results

presented in Sec. III were computed with a maximum of

nine FDTD-feedback cycles, which was sufficient to obtain

well developed LIPSS patterns.

FIG. 2. Simulation domain used at the start of FDTD-feedback simulations.

The dimensions of each part of the simulation domain are indicated in terms

of Yee cells.
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III. SIMULATION RESULTS

In this section, the results of the FDTD-feedback simula-

tions are presented. First, an overview of the kind of LIPSSs

predicted by the simulations is given in Sec. III A. Next, crit-

ical aspects of LIPSS formation are addressed through Sec.

III B to Sec. III E, namely, the variation of the periodicity of

LSFLs in Sec. III B, the variation of the properties of HSFLs

orthogonal to the polarization in Sec. III C, the formation of

HSFLs parallel to the polarization on metals in Sec. III D,

and the presence of superimposed LIPSS patterns in Sec.

III E. Finally, the specific frequency domain signature of

each LIPSS is shown in Sec. III F.

A. Overview

It would be impractical to show the results of FDTD-

feedback simulations for each set of (Ne, Dablation). Instead, a

“map” indicating which kind of LIPSSs is predicted by the

model, depending on (Ne, Dablation), is presented in Fig. 3.

This map was compiled by observing the LIPSSs

obtained after nine FDTD-feedback simulations for each set

of parameters (Ne, Dablation), with Ne ¼ 2; 10½ � � 1027 m�3

and 20 nm�Dablation� 50 nm with steps of 5 nm. It is worth

noting that the solid lines delimiting the different “regions”

of the map are not strict boundaries. That is, a more detailed

map would show transition zones. The absence of simula-

tions is shown by the hatched areas in the map. The upper

limit Dablation¼ 50 nm was chosen because no significant var-

iations of the LIPSS patterns were observed for larger values.

The lower limit Dablation¼ 20 nm is related to the size of the

Yee cells, Dx¼Dy¼ 20 nm. When Dablation< 20 nm, HSFLs

with extremely small periodicities seem able to grow.

However, insufficient grid points are available to handle

such small dimensions correctly in that case. The range of

electron densities Ne was selected according to the previous

studies of Bonse et al. with the Sipe-Drude model.7

Six regions can be identified on the map: LSFLs,

LSFLsþGrooves, LSFLsþHSFLs ?, HSFLs ?, HSFLs k,
and “Mix.” HSFLs ? and HSFLs k refer to HSFLs orthogo-

nal and parallel to the polarization of the laser radiation,

respectively. Inset pictures which are representative of each

region of the map have been included for the sake of clarity,

except for the “Mix” region which is discussed in Sec. III E.

It is important to stress that this map is compiled with the

observations made after nine FDTD-feedback cycles. A map

of the early stages would be more complex as can be extrap-

olated from the supplementary material (movies a.mp4 to

e.mp4).34 These movies show the evolution of the rough

surfaces, through the nine FDTD-feedback cycles, for each

inset picture of Fig. 3.

For high excitation states and relatively large Dablation,

LSFLs, see Fig. 3(d) and movie d.mp4,34 and LSFLs

þ Grooves, see Fig. 3(c) and movie c.mp4,34 are the domi-

nant kind of LIPSSs. For low excitation states, HSFLs paral-

lel to the polarization, see Fig. 3(e) and movie e.mp4,34 were

observed, independently of Dablation. Interestingly, these are

the only three kinds of LIPSSs which were reported in litera-

ture for silicon machined with k¼ 800 nm femtosecond

lasers.7,14,19,35,36 This can be explained by recalling that Ne

and Dablation are decoupled in the HAM. It seems that silicon

can hardly be processed in the low Dablation regime.

LSFLs are the most common kind of LIPSSs. Their peri-

odicity in Figs. 3(c) and 3(d) is K¼ 738 6 21 nm and

K¼ 655 6 40 nm, respectively. This variation of periodicity,

while being expected from the results of recent work,7,37 is

discussed in more detail in Sec. III B. It is worth noting that

the LSFL region extends to the left of the dashed vertical

line, which represents Reð~n�Þ ¼ Imð~n�Þ. The current electro-

magnetic theories consider LSFLs to be a consequence of

the propagation of surface plasmon polaritons (SPPs), which

can only occur when Reð~n�Þ < Imð~n�Þ.7,37 Within the frame-

work of these FDTD-feedback simulations, the propagation

of SPPs is not a requirement for LSFL initiation and growth.

Concerning the grooves, that is, the “stripes” running

parallel to the laser polarization in Fig. 3(c), their periodicity

K is not well defined. That is, 1:5lm � K � 3:3lm in Fig.

3(c). Interestingly, the orientation and range of periodicity

match the characteristics of the grooves observed by Bonse

and Kr€uger36 After nine FDTD-feedback cycles, LSFLs are

still the dominant phenomenon under these conditions. In

Fig. 3(c), grooves are present as boundaries where the LSFL

pattern shows a disconnexion. It seems that the grooves need

a more accurate modeling of inter-pulse feedback mecha-

nisms to “outgrow” LSFLs.

The occurrence of HSFLs orthogonal to the polarization,

as can be observed in Fig. 3(a) and movie a.mp4,34 is the

most striking result of the FDTD-feedback simulations.

While LSFLs and HSFLs parallel to the polarization can

be predicted by the Sipe theory, HSFLs orthogonal to the

polarization received few explanations.13,15–17 The self-

organization model proposed by Reif et al.16,17 cannot

predict a direct relation between the periodicity of LIPSSs

and the wavelength of the laser radiation while the electro-

magnetic based approaches involve SHG,13,15 which

explains HSFL formation only in certain cases. According to

Fig. 3, HSFLs orthogonal to the polarization occur for small

Dablation and a large range of excitation states. However,

these are more likely to develop for “moderate” excitation

states. Qualitatively, small Dablation can be related to materi-

als which are hard to deform. Sapphire,13 titanium nitride, or

diamond-like carbon12 are hard materials which exhibit

HSFLs very similar to the predictions of the FDTD-feedback

simulations, for example. Interestingly, a small value of

Dablation can be achieved easily with femtosecond lasers,

while nanosecond lasers tend to remove or affect thicker

layers of the material. This provides an explanation for the

absence of HSFLs after nanosecond laser processing. The

periodicity K of HSFLs in Fig. 3(a) is K¼ 125 6 13 nm,

which is 0:14k � K � 0:17k, and is in the range of experi-

mentally found periodicities of HSFLs in literature.12,13 The

variation of the characteristics of HSFLs is discussed in

more detail in Sec. III C.

HSFLs orthogonal to the polarization can also be found

superimposed on LSFLs after 9-FDTD feedback cycles, as

can be observed in Fig. 3(b). This superposition of LIPSSs

(denoted as LSFLsþHSFLs ?) acts like a transition zone

between HSFLs orthogonal to the polarization and LSFLs.

How pronounced the LSFLs and HSFLs are in the space
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FIG. 3. Overview of the LIPSSs observed after nine FDTD-feedback cycles as function of Ne and Dablation, using the optical properties of excited silicon described

in Sec. II A. The hatched regions indicate the sets of parameters without simulation results. The white arrows indicate the polarization direction of the laser radia-

tion. The dashed vertical line represents Reð~n�Þ ¼ Imð~n�Þ.
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domain depends on the set of parameters (Ne, Dablation).

Experimentally, such a superposition of LIPSSs was reported

by Yao et al. on stainless steel and nickel for example.38

Interestingly, LSFLs grew first, before being covered by

HSFLs, in agreement with the FDTD-feedback simulations,

see movie b.mp4.34 It is worth noting that Yao et al. already

proposed an electromagnetic explanation for the formation

of these HSFLs, by studying locally the electromagnetic field

distribution.38

HSFLs parallel to the polarization of the laser radiation

“grow” in the FDTD-feedback simulations in the regime cor-

responding to a low excitation of silicon, as can be observed

in Fig. 3(e) and movie e.mp4.34 Their periodicity is

K¼ 337 6 20 nm. Costache et al. reported the presence of

HSFLs on silicon, in the same direction as predicted by the

present model.14 However, they measured a smaller perio-

dicity of K � 200 nm. This discrepancy in periodicity is sig-

nificant, but the LIPSSs observed by Costache et al. were

produced with a number of 60 000 laser pulses, much larger

than the nine FDTD-feedback cycles. This difference in

number of “pulses” can be the cause of a variation in K. In

addition, it is questionable if the LIPSSs observed by

Costache et al. grow under conditions where ablation is the

dominant process, since very small fluence levels were

involved in their work. In this case, the HAM is probably not

suited to model the formation of HSFLs parallel to the polar-

ization correctly. This is further supported by looking at the

movie e.mp4,34 where the positions of HSFLs parallel to the

polarization shift of about half of their period in the y direc-

tion, making them “oscillate.” This shift occurs because, on

the contrary to LSFLs and HSFLs orthogonal to the polariza-

tion (see Secs. III B and III C), the minima and maxima of

the absorbed energy profiles correspond to the valleys and

the tops of the HSFLs, respectively. Hence, the valleys

become the tops, and the tops the valleys, when material is

“ablated” in these simulations. The “melting and expansion”

of the regions with the highest absorbed energy values would

be more realistic.

B. Variation of the periodicity of LSFLs

The formation of LSFLs with a periodicity K slightly

smaller than the laser wavelength k is a recurrent topic in lit-

erature. Bonse et Kr€uger gathered three possible explana-

tions for the periodicity of LSFLs being smaller than the

laser wavelength (K� k).36 First, the periodicity of SPPs

depends on the optical properties of materials.7,37 Since the

optical properties can vary with the excited states of the ma-

terial (number of electrons in the conduction band of semi-

conductors and dielectrics), different fluences lead to

different optical properties, hence to different periodicities

of SPPs. This assertion is discussed in more details in the

next paragraph. Second, the periodicity of SPPs is affected

by the presence of gratings, LSFLs in this case. According to

Huang et al.,37 the grating like LSFLs deepen with an

increasing number of pulses applied, and this deepening

leads to a decrease of the phase velocity of SPPs39 therefore

to a decreased periodicity of the interference pattern. This

scenario suggests that the whole surface region containing

LSFLs melts and new LSFLs with a smaller periodicity

form. This is in apparent disagreement with the cross-section

study of Borowiec et al., see Fig. 3 in Ref. 31, in which only

a small resolidified layer of material is visible, mostly on top

of LSFLs. Likewise, the combination of the FDTD calcula-

tions with the HAM does not support the grating-assisted

variation of the periodicity of LSFLs, see movies c.mp4 and

d.mp4.34 That is, once LSFLs start to grow, the positions of

their ridges do not shift40 because the absorbed energy pro-

file follows the surface morphology. Indeed, the smallest and

largest values of the absorbed energy profile are aligned with

the tops and the valleys of the LSFLs, respectively. Third,

the periodicity of LSFLs is affected by the angle of inci-

dence.6 When enough pulses have been applied to form an

ablation “crater,” the local angle of incidence on the “walls”

of the crater can play a role. This last assertion is out of the

scope of this article.

In Fig. 4, the periodicity K of LSFLs is presented as a

function of the excitation level Ne, after nine FDTD-feedback

cycles. The solid and dotted lines correspond to simulations

performed with Dablation¼ 50 nm and Dablation¼ 30 nm, respec-

tively. For Dablation¼ 50 nm, besides the decrease of periodic-

ity observed at Ne ¼ 6� 1027 m�3 ð~n� ¼ 1:436þ 2:255jÞ,
the periodicity of LSFLs increases with increasing Ne, from

K¼ 668 6 23 nm for Ne¼ 4�1027 m�3 ð~n� ¼ 1:943þ1:116jÞ
to K¼738621nm for Ne¼10�1027m�3 (~n� ¼ 1:348

þ3:993j). The smallest value K¼662623nm of the solid

curve is reached for Ne¼6�1027m�3, while it was expected

for Ne¼4�1027m�3. This phenomenon may be attributed to

the chosen random roughness, being more or less favorable to

certain excitation states (it may also be simply in the range of

the error bars). For a smaller ablation depth Dablation¼30nm,

the periodicity of LSFLs is only slightly smaller than in the

case of Dablation¼50nm, when Ne>6�1027m�3. The case of

Ne¼6�1027m�3, for Dablation¼30nm, is special. Here, the

periodicity of LSFLs, K¼601669nm, is the smallest of Fig.

4 and the measurement shows the largest error bar (standard

deviation of the measured periodicities). The cause of these

FIG. 4. Periodicity K of LSFLs after nine FDTD-feedback cycles as a func-

tion of the number of electrons in the conduction band Ne. The solid and dot-

ted lines correspond to simulations performed with Dablation¼ 50 nm and

Dablation¼ 30 nm, respectively. The error bars indicate the standard deviation

of the periodicities measured in the 20� 20 lm2 areas.
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observations is the presence of HSFLs, orthogonal to the

polarization of the laser radiation, on top of some LSFLs, as

expected from Fig. 3.

It is worth noting that, excluding the case of Ne

¼ 6� 1027 m�3 and Dablation¼ 30 nm, the results of the

FDTD-feedback simulations are in good agreement with the

results of the Sipe-Drude model for silicon.7 That is, the perio-

dicities predicted are larger than 650 nm and smaller than the

laser wavelength. However, this prediction alone does not allow

to explain all the experimental observations. Indeed, for a num-

ber of pulses N smaller or equal than 10, the periodicities

reported by Bonse and Kr€uger.36 are in the range of

650 nm�K� 800 nm, while for larger number of pulses,

N� 100, the periodicities decrease to K� 500–600 nm. In the

Sipe-Drude model, the periodicities of LSFLs are estimated

from the location of the features related to SPPs in the fre-

quency domain. Likewise, Huang et al. use SPPs, outside the

framework of the Sipe theory, to explain the characteristics of

LSFLs.37 When the periodicities become too small (i.e.,

K � 650 nm), these theories fail and the grating-assisted SPPs

theory was proposed.36,37 As discussed previously, the

cross-section study of Borowiec et al.,31 along with the combi-

nation of the FDTD calculations with the HAM, does not sup-

port the grating-assisted variation of the periodicity of LSFLs.

Instead, the results of the FDTD-feedback simulations suggest

that these LSFLs are, in fact, a mix of LSFLs and HSFLs. The

onset of such a mix can be observed in Fig. 3(d). The LIPSSs

in Fig. 3(d) were classified as “LSFLs” in the overview map,

because LSFLs dominate the space domain for these condi-

tions. However, one can observe several LSFLs splitting into

smaller LIPSSs. This is easily noticed when Fig. 3(c) and Fig.

3(d) are compared. It is worth noting that this mix of LSFLs

and HSFLs is different from the one presented in Fig. 3(b).

To summarize this section, it is proposed here that the

variation of the periodicity of LSFLs has three causes. The

first cause is related to the variation of the periodicity of

SPPs, when they are present, as proposed by Bonse et al.7

The second cause involves the presence of a mix of LSFLs

and HSFLs. The occurrence of these two mechanisms is

directly linked to the fluence applied, which governs the ex-

citation state of the material. The third cause concerns the

influence of the local angle of incidence on the periodicity of

LSFLs,7 which was not discussed here.

C. Variation of the properties of HSFLs ?

HSFLs orthogonal to the polarization of the laser radia-

tion are not as regular as LSFLs. Therefore, their characteris-

tics are harder to describe. Indeed, the properties of HSFLs

can vary significantly, as shown in Fig. 5. In Figs. 5(a)–5(c),

three kinds of HSFLs orthogonal to the polarization, and

their respective Fourier transform, in Figs. 5(d)–5(f), are pre-

sented. For the sake of clarity, only 5� 5 lm2 regions of the

simulated 20� 20 lm2 surfaces are shown. However, the

Fourier transform was applied to the 20� 20 lm2 areas.

As can be observed in the space domain, HSFLs show

variations of width (lateral dimension), density (number of

HSFLs per lm2) and length (vertical dimension). In Fig.

5(a), HSFLs are wide, long, and closely packed, in contrary

to Fig. 5(b), where HSFLs are thin, short, and relatively

spaced. It is also possible to obtain them thin, long, and

closely packed in Fig. 5(c). As a result, these HSFLs cannot

be fully characterized by a single well defined periodicity.

The same can be concluded from the frequency domain

analysis. In the following, the notations used in previous fre-

quency domain studies of LIPSSs are employed.18,21 That is,

the notations “LSFLs” and “HSFLs” refer to the space do-

main, while “type-s features” or “type-r features” are used to

refer to characteristics in the frequency domain. The type-r

features in Fig. 5(d) are less spread than in Fig. 5(e) or Fig.

5(f), leading to long wide HSFLs in the space domain.

In Fig. 5(e), the type-s features, usually related to the

presence of LSFLs, become visible. The type-r features are

“larger” (i.e., more spread) in the ky direction than in Fig.

5(d), which hinders the regularity of the HSFLs. Finally, the

type-r features spread in the kx direction and merge with the

type-s features in Fig. 5(f). Hence, many frequencies contrib-

ute to the profile of HSFLs in Fig. 5(c), making them thin.

While the type-r location is closer to (kx, ky)¼ (0,0) than in

Fig. 5(d), for example, the large spread of the type-r features

along kx triggers closely packed HSFLs in the space domain.

FIG. 5. 5� 5 lm2 areas covered with HSFLs (left column) and their Fourier

transforms (right column), obtained under different simulation conditions.

(a) Ne¼ 3� 1027 m�3 (~n� ¼ 2:401þ 0:679j), Dablation¼ 30 nm, and nine

FDTD-feedback cycles. (b) Ne¼ 4� 1027 m�3 (~n� ¼ 1:943þ 1:116j),
Dablation¼ 30 nm, and seven FDTD-feedback cycles. (c) Ne¼ 6� 1027 m�3

(~n� ¼ 1:436þ 2:255j), Dablation¼ 25 nm, and nine FDTD-feedback cycles.

(d), (e), and (f) are the Fourier transforms related to (a), (b), and (c) respec-

tively. The white arrows indicate the direction of the polarization of the laser

radiation. The vector ~k ¼ ðkx; kyÞ spanning the frequency domain is normal-

ized by the norm of the laser wave vector, 2p/k. The y scale is identical to

the x scale.
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It is worth noting that Figs. 5(d)–5(f) show three kinds

of frequency “arrangements” leading to HSFLs in the space

domain. Indeed, the type-s features can be almost absent, as

in Fig. 5(d), present and distinct from the type-r features, as

in Fig. 5(e), or merged with the type-r features, as in Fig.

5(f). This panel of possibilities, and the strong dependence

of the location and spread of the type-r features on (Ne,

Dablation), is in agreement with what is reported in literature.

That is, HSFLs orthogonal to the polarization have been

reported with large variations of their properties, mainly in

terms of periodicity. Moreover, the HSFLs orthogonal to the

polarization, which develop in the FDTD-feedback simula-

tions, show large aspect ratios: the heights of the HSFLs get

larger than the widths of the HSFLs, as reported in certain

cases.29,30 This occurs because the absorbed energy profiles

have their maxima aligned with the valleys of the HSFLs,

while their minima are aligned with the tops.

The type-r features can explain the formation of certain

HSFLs orthogonal to the polarization. Indeed, the HSFLs

orthogonal to the polarization, which grow in the FDTD-

feedback simulations, resemble some of the HSFLs reported

in literature.12,13,41 Nevertheless, the presence of certain

HSFLs orthogonal to the polarization found other explana-

tions, such as SHG13,15 or self-organization,16,17 which are

not invalidated by the present simulations. It is worth noting

that Borowiec and Haugen established a one photon trans-

parency requirement for the growth of HSFLs orthogonal to

the polarization on semiconductors and dielectrics.13 Bonse

et al. showed that it is not always necessary,41 which is cor-

roborated by the FDTD-feedback simulations. However,

being in a regime where the material is “transparent” seems

beneficial, see the position of the “HSFLs ?” area, mainly of

the left of the dashed line in Fig. 3. Studies of the frequency

domain spectrum of HSFLs orthogonal to the polarization,

and of LIPSSs in general (see Sec. III F), should allow to

identify their origin without ambiguity.

D. HSFLs parallel to the polarization on metals

According to Fig. 3, HSFLs parallel to the polarization

form only when Reð~n�Þ > Imð~n�Þ. However, HSFLs parallel

to the polarization were observed on alloyed steel3 and tita-

nium,4 for example.

In Fig. 6, 5� 5 lm2 areas, extracted from the

20� 20 lm2 simulated surfaces, are presented, along with

the logarithm of the amplitude of their corresponding Fourier

transforms. Presenting the Fourier transforms logarithmically

allows to observe the presence of frequencies with small

amplitudes compared to the maximum.

The three space domain figures, Figs. 6(a)–6(c), present

nets of “stripes.” The stripes parallel to the polarization can be

observed when Reð~n�Þ > Imð~n�Þ, Fig. 6(a), as well as when

Reð~n�Þ < Imð~n�Þ, Figs. 6(b) and 6(c). However, their presence

requires relatively small Dablation when the excitation state gets

high, along with a small number of FDTD-feedback cycles, 3

here. It is worth noting that what is presented in Fig. 6 occurs

at an earlier stage than what is presented in Fig. 3.

The characteristics of these stripes parallel to the polar-

ization can vary significantly, in terms of density, periodicity

and width. In Fig. 6(a), the stripes are wide and dense,

mainly because they merge in the horizontal direction. They

are also better defined (sharper) than in Figs. 6(b) and 6(c).

In Figs. 6(b) and 6(c), the stripes are less wide and less

extended in the horizontal direction. The periodicity is also

slightly smaller than in Fig. 6(a), which is more easily con-

cluded from the frequency domain. Naturally, the Fourier

transforms are in agreement with the space domain observa-

tions. That is, the type-d features have a larger amplitude in

Fig. 6(a) than in Figs. 6(b) and 6(c). The type-d features are

at larger ky and more spread in the Ne¼ 6� 1027 m�3 (Fig.

6(e)) and Ne¼ 8� 1027 m�3 (Fig. 6(f)) cases. As for the

HSFLs orthogonal to the polarization, the parallel stripes

cannot be fully characterized by a single periodicity value.

Apart from these stripes parallel to the polarization of

the laser radiation, HSFLs parallel to the polarization do not

grow in the FDTD-feedback simulations when Reð~n�Þ
< Imð~n�Þ. Experimentally, these HSFLs grow on metals irra-

diated at low fluence levels compared to LSFLs.3,4 As men-

tioned previously, the HAM seems to fail at describing

properly regimes where the molten state of the material plays

a role. This is not surprising, considering the “ablative”

FIG. 6. 5� 5 lm2 areas (left column), obtained under different simulation

conditions, and the logarithm of the amplitude of their Fourier transforms

(right column). (a) Ne¼ 4� 1027 m�3 (~n� ¼ 1:943þ 1:116j),
Dablation¼ 30 nm, and three FDTD-feedback cycles. (b) Ne¼ 6� 1027 m�3

(~n� ¼ 1:436þ 2:255j), Dablation¼ 25 nm, and three FDTD-feedback cycles.

(c) Ne¼ 8� 1027 m�3 (~n� ¼ 1:339þ 3:220j), Dablation¼ 20 nm, and three

FDTD-feedback cycles. (d), (e), and (f) are the Fourier transforms related to

(a), (b), and (c) respectively. The white arrows indicate the direction of the

polarization of the laser radiation. The vector ~k ¼ ðkx; kyÞ spanning the fre-

quency domain is normalized by the norm of the laser wave vector, 2p/k.

The y scale is identical to the x scale.
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nature of the HAM. Nonetheless, the FDTD-feedback simu-

lations show that HSFLs parallel to the polarization, growing

on metals, can be understood in the frame of an electromag-

netic approach.

E. Superposition of LIPSSs

The prediction of the “Mix” region in Fig. 3 is one of the

striking results of the FDTD-feedback simulations. In Fig. 7, a

complex LIPSS pattern can be observed. This surface topogra-

phy was obtained after five FDTD-feedback cycles,

Ne¼ 3� 1027 m�3 and Dablation¼ 50 nm. This simulation

result was selected because it shows the best how the type-s,

type-d, and type-r features can jointly contribute to the space

domain profile. Their combined “fingerprints” in the space do-

main can lead to a kind of “superposition” of LIPSSs.

The superposition of LIPSSs, as presented in Fig. 7, was

not reported in the literature for k¼ 800 nm. However,

Crawford and Haugen observed a kind of LIPSSs with K	k,

referred to as “fine bumps,” on silicon.42 They were produced

at rather large wavelengths (about 1300 nm and about

2100 nm) compared to the wavelength of experiments at

k¼ 800 nm, typical for fs lasers. The array of dots present in

the FDTD-feedback simulations (white ellipse in Fig. 7) offers

the possibility to explain the formation of these fine bumps.

The fact that this regime exists in the FDTD-feedback simula-

tions, performed with k¼ 800 nm, is probably due to the

decoupling of Ne and Dablation discussed in Sec. II C.

It is worth noting that the case where Ne¼ 3� 1027 m�3

is particularly important in the FDTD-feedback simulations,

since it shows that an electromagnetic approach can account

for the formation of mixed LIPSS patterns while the forma-

tion of these patterns was considered to be supporting the

self-organization theory.16

F. Overview of the frequency domain features

In Fig. 8, the Fourier transforms which are characteristic

of the LIPSS regions presented in Fig. 3 are shown. One

major difference with Fig. 3 is that not all the results were

obtained after nine FDTD-feedback cycles. The main reason

is that certain frequencies are easily concealed by others. In

particular, the type-s features tend to dominate the frequency

domain after nine FDTD-feedback cycles, while other

LIPSSs can be observed in the space domain.

Figure 8(a) is the most common frequency domain rep-

resentation of LIPSSs, which is already known from the Sipe

theory.11 Bonse et al. studied the type-s properties exten-

sively to explain the variation of characteristics of LSFLs.7

The exact position and spread of the type-s features depend

FIG. 7. Mixed LIPSS pattern after five FDTD-feedback cycles. The simula-

tions were performed for Ne¼ 3� 1027 m�3 (~n� ¼ 2:401þ 0:679j) and

Dablation¼ 50 nm. A grayscale colormap, where the white color represents the

largest values, is used to represent the rough surface. The polarization direc-

tion is indicated by the white arrow. The y scale is identical to the x scale.

FIG. 8. Overview of the signature of

LIPSSs in the frequency domain. The

number of FDTD-feedback cycles is 9

in all cases, except for (a) and (f),

where six and three cycles are used,

respectively. (Ne, Dablation) are indi-

cated without “� 1027 m�3” and “nm,”

respectively, for each subfigure. (a)

(5,50), (b) (10,30), (c) (4,35), (d)

(2,20), (e) (3,30), and (f) (3,35). The

vector ~k ¼ ðkx; kyÞ spanning the fre-

quency domain is normalized by the

norm of the laser wave vector, 2p/k.

The y scale is identical to the x scale.
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on Ne, Dablation, and the number of FDTD-feedback cycles in

these simulations, as expected from the space domain discus-

sion and Sec. III B.

In Fig. 8(b), the logarithm applied on the amplitude

of the Fourier transform of a surface with LSFLs and

grooves is shown. The existence of type-g features, where

“g” stands for “grooves,” was already suggested in previ-

ous work18,21 and is confirmed here. As mentioned in Sec.

III A, it seems that feedback mechanisms are crucial for

the growth of grooves. It is worth noting that without

applying the logarithm, only the type-s features would be

observed. The same holds for Fig. 8(c), which is a Fourier

transform, characteristic of the presence of HSFLs orthog-

onal to the polarization superimposed on LSFLs. As dis-

cussed in Sec. III C, the type-r features depends strongly

on the depth and the excitation state of the material,

meaning that HSFLs on top of LSFLs can show large var-

iations of their properties. In the case of HSFLs on top of

LSFLs, it is possible to observe the type-r features with

roughly the same shape as the type-s features, but for

kkxk ¼ 2 (not shown here), which looks like frequency

doubling.

TABLE I. Summary of the different LIPSSs predicted by the FDTD-feedback simulations along with their signature in the frequency domain. The dotted and

dashed circles indicate k~kk ¼ 1 and k~kk ¼ Reð~n�Þ, respectively.
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The type-d features can be observed alone in Fig. 8(d).

They are located for ky slightly smaller than Reð~n�Þ here,

which was also discussed in previous work.18 However, it

was shown in Sec. III D that their characteristics can differ

from this usual description. These frequency domain features

are related to the growth of HSFLs parallel to the polariza-

tion in the FDTD-feedback simulations.

The type-r features, in Fig. 8(e), are the signature of

HSFLs orthogonal to the polarization in the frequency do-

main. They can conceal the other frequency domain features,

even the type-s features. As discussed in Sec. III C, the exact

location and shape of the type-r features depend strongly on

the set (Ne, Dablation), which is in agreement with the fact that

HSFLs orthogonal to the polarization show large variations

of their characteristics in literature.

Interestingly, it is possible to observe three types of fre-

quency domain features (out of four) jointly in Fig. 8(f).

Inter-pulse feedback mechanisms do not always lead to a

clear dominance of a specific kind of frequency domain fea-

tures. The “fingerprints” in the space domain of such a fre-

quency arrangement were discussed in Sec. III E.

IV. CONCLUSION

A new model predicting the formation of LIPSSs was

presented. This model combines FDTD calculations, to study

the interaction of electromagnetic waves with rough surfa-

ces, and a simple non-physical ablation threshold to include

inter-pulse feedback mechanisms, which is referred to as

holographic ablation model. The results, referred to as

FDTD-feedback simulations, show that the formation of

LIPSSs can be understood in the frame of an electromagnetic

theory. Indeed, LSFLs, HSFLs and, to a certain extent,

grooves “grow” in the simulation domain.

Table I is a summary of the different LIPSSs predicted

by these FDTD-feedback simulations, along with their signa-

ture in the frequency domain. LSFLs and the type-s features

are modeled correctly, including their decrease in periodicity

compared to the wavelength of the laser radiation. It was

shown that the propagation of SPPs is not a sine qua non

condition for LSFL formation. Moreover, the grating-

assisted mechanism, proposed by other authors to explain

the periodicity of LSFLs being smaller than k in certain

cases, seems inapplicable.

Grooves parallel to the polarization, related to the type-

g features, were predicted by the model to occur jointly with

LSFLs. Grooves without LSFLs were not found.

The growth of HSFLs parallel to the polarization of the

laser radiation is also predicted by the present model. This was

expected for semiconductors and dielectrics since the type-d

features were already reported by the Sipe theory for this kind

of materials. However, the FDTD-feedback simulations show

that HSFLs parallel to the polarization can be expected on met-

als as well, in agreement with experimental results.

The most striking result of the FDTD-feedback simula-

tions is the presence of HSFLs orthogonal to the polarization,

related to the type-r features. Their periodicity can be small

compared to the wavelength of the laser radiation and is

expected to change significantly for varying material

properties. Although the optical properties of silicon have

been used in the FDTD-feedback simulations presented here,

the modeling results also contribute to a better understanding

of LIPSS formation on other materials. Future work will be

carried out to show that the different LIPSSs, in particular

the HSFLs orthogonal to the polarization, are present experi-

mentally, in agreement with their frequency domain signa-

ture as predicted by the model.

The FDTD-feedback simulations bring many answers

regarding LIPSS formation; nevertheless, several improve-

ments can be foreseen. First, the simulations were performed

for linearly polarized plane waves, arriving at normal inci-

dence on the rough surfaces of the media. A study at off-

normal incidence, or with different polarization states, would

be of interest, especially for the type-r features. Second,

effects related to the Gaussian distribution of the fluence,

provided by most laser sources, are not taken into account in

the FDTD-feedback simulations. This hinders the compari-

son with experiments where several laser pulses, with a

Gaussian fluence profile, are put at the same location on a

sample. Third, the intra-pulse and inter-pulse feedback

mechanisms need a better description to obtain fully quanti-

tative results.
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