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SUMMARY

In this paper, we consider the semi-global regulation of output synchronization problem for heterogeneous
networks of invertible linear agents subject to actuator saturation. That is, we regulate the output of
each agent according to an a priori specified reference model. The network communication infrastructure
provides each agent with a linear combination of its own output relative to that of neighboring agents,
and it allows the agents to exchange information about their own internal observer estimates while some
agents have access to their own outputs relative to the reference trajectory. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The synchronization problem in a network has received substantial attention in recent years
(see [1–4] and references therein). Active research is being conducted in this context, and numerous
results have been reported in the literature; to name a few, see [5–14].

Much of the attention has been devoted to achieving state synchronization in homogeneous net-
works (i.e., networks where the agent models are identical), where each agent has access to a linear
combination of its own state relative to that of neighboring agents (e.g., [2, 6, 7, 10, 11, 13, 15–18]).
A more realistic case—that is, each agent receives a linear combination of its own output relative
to that of neighboring agents—has been considered in [5, 8, 14, 19, 20]. A key idea in the work
of [5], which was expanded upon by Yang, Stoorvogel, and Saberi [21], is the development of a
distributed observer. This observer makes additional use of the network by allowing the agents to
exchange information with their neighbors about their own internal estimates. Many results on the
synchronization problem are rooted in the seminal work [22, 23].

1.1. Heterogeneous networks and output synchronization

Recent activities in the synchronization literature have been focused on achieving synchronization
for heterogeneous networks (i.e., networks where the agent models are non-identical). This problem
is challenging, and only some results are available; see, for instance, [24–29].
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In heterogeneous networks, the agents’ states may have different dimensions. In this case,
the state synchronization is not even properly defined, and it is more natural to aim for output
synchronization—that is, asymptotic agreement on some output from each agent. Chopra and Spong
[24] studied output synchronization for weakly minimum-phase nonlinear systems of relative degree
one, using a pre-feedback to create a single-integrator system with decoupled zero dynamics. Kim,
Shim, and Seo [26] considered the output synchronization for uncertain single-input single-output,
minimum-phase linear systems, by embedding an identical model within each agent, the output of
which is tracked by the actual agent output. The authors have considered in [30] the output synchro-
nization problem for right-invertible linear agents, using pre-compensators and an observer-based
pre-feedback within each agent to yield a network of agents that are to a large extent identical.

1.2. Introspective versus non-introspective agents

The designs mentioned in Section 1.1 generally rely on some sort of self-knowledge that is separate
from the information transmitted over the network. More specifically, the agents may be required to
know their own states or their own outputs. In [31, 32], we refer to agents that possess this type of
self-knowledge as introspective agents to distinguish them from non-introspective agents—that is,
agents that have no knowledge about their own states or outputs separate from what is received via
the network.

To our best knowledge, the only result besides [31, 32] that clearly applies to heterogeneous
networks of non-introspective agents is by Zhao, Hill and Liu [33]. However, the agents are assumed
to be passive—a strict requirement that, among other things, requires that the agents are weakly
minimum-phase and of relative degree one.

1.3. Contributions of this paper

The regulation of output synchronization problem, where the objective is not only to achieve output
synchronization but also to make the synchronization trajectory follow an a priori given reference
trajectory generated by an arbitrary autonomous exosystem, has been considered in [32]. In [32], we
assume that the agents in the network are non-introspective except for some of the agents who know
their own outputs relative to the reference trajectory. However, we do not have any constraints on the
magnitude of the agent’s input. In the real world, every physically conceivable actuator has bounds
on its input, and thus, actuator saturation is a common phenomenon. In this paper, we extend the
results in [32] to the case where all the agents are subject to actuator saturation, which introduces
significant complexities in terms of the analysis and design.

1.4. Notations

Given a matrix A 2 Rm�n, A0 denotes its transpose. ImA is the range space of a matrix A 2 Rm�n

defined as

ImA WD ¹Ax j x 2Rnº .

A 2 Rn�n is said to be Hurwitz stable if all its eigenvalues are in the open left-half complex plane.
The Kronecker product between two matrices A 2 Rm�n and B 2 Rp�q is defined as the Rmp�nq

matrix

A˝B D

2
64a11B : : : a1nB

...
. . .

...
am1B : : : amnB

3
75 ,

where aij denotes element .i , j / of A. In denotes the identity matrix of dimension n. Similarly,
0n denotes the square matrix of dimension n with all zero elements. We sometimes drop the
subscript if the dimension is clear in the context. When clear form the context, 1 denotes the column
vector with all entries equal to one. For a given vector v 2 Cn, re v 2 Rn and im v 2 Rn denote
respectively vectors whose entries are the real part and imaginary part of the vector v.
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2. PROBLEM FORMULATION AND MAIN RESULT

2.1. Problem formulation

Consider a network of N multiple-input multiple-output invertible agents of the form

Pxi D Aixi CBi�.ui /, (1a)

yi D Cixi CDi�.ui /, (1b)

for i 2 ¹1, : : : ,N º, where xi 2Rni , ui 2Rp , yi 2Rp , and

�.ui /D Œ�1.ui ,1/, : : : , �1.ui ,p/�
0,

where �1.u/ is the standard saturation function

�1.u/D sgn.u/min ¹1, jujº,

and where the quadruple .Ai ,Bi ,Ci ,Di / is invertible.
The network provides each agent with a linear combination of its own output relative to that of

other agents. In particular, each agent i has access to the quantity

�i D

NX
jD1

aij .yi � yj /, (2)

where aij > 0 and ai i D 0 with i , j 2 ¹1, : : : ,N º. This network can be described by a weighted
directed graph (digraph) G with nodes corresponding to the agents in the network and edges with
weight given by the coefficients aij . In particular, aij > 0 means that there exists an edge with
weight aij from agent j to agent i , where agent j is called a parent of agent i , and agent i is called
a child of agent j .

We also define a matrix G D Œgij �, where gi i D
PN
jD1 aij and gij D �aij for j ¤ i . The

matrix G, known as the weighted Laplacian matrix of the digraph G, has the property that the sum
of the coefficients on each row is equal to zero. In terms of the coefficients gij of G, �i given by (2)
can be rewritten as

�i D

NX
jD1

gijyj . (3)

In addition to �i given by (3), we assume that the agents exchange information about their own
internal estimates via the same network. That is, agent i has access to the quantity

O�i D

NX
jD1

aij .�i � �j /D

NX
jD1

gij�j , (4)

where �j 2 Rp is a variable produced internally by agent j . This value will be specified as we
proceed with the design.

Our goal is to regulate the outputs of all agents towards an a priori specified reference trajectory
yr.t/, generated by an arbitrary autonomous exosystem

P! D S!, !.0/D !0 2�0, (5a)

yr D Cr!, (5b)

where ! 2 Rr , yr 2 Rp , and �0 is a compact set of possible initial conditions for the exosystem.
That is, for each agent i 2 ¹1, : : : ,N º, we wish to achieve limt!1.yi � yr/ D 0. Equivalently,
we wish to regulate the synchronization error variable

ei WD yi � yr
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to zero asymptotically, where the dynamics of ei is governed by�
Pxi
P!

�
D

�
Ai 0

0 S

� �
xi
!

�
C

�
Bi
0

�
�.ui /, (6a)

ei D
�
Ci �Cr

� �xi
!

�
CDi�.ui /. (6b)

In order to achieve our goal, in addition to �i given by (3) and O�i given by (4) provided by the
network, it is clear that a non-empty subset of agents should observe its output relative to the
reference trajectory yr generated by (5) in order for the network of agents to follow the reference
trajectory. Specifically, let I � ¹1, : : : ,N º denote such a subset. Then, each agent i 2 ¹1, : : : ,N º
has access to the quantity

 i D �i .yi � yr/, �i D

´
1, i 2 I,

0, i … I.
(7)

Clearly, we need to restrict the initial conditions of the exosystem because, due to the input
saturation, the agents will only be able to track a limited set of reference trajectories. This is
formulated in the above by assuming that !.0/ 2 �0 with the set �0 known a priori. Regarding
the initial conditions of the agents, we would ideally like to design a controller that achieves
limt!1 ei .t/ D 0 for all initial conditions subject to !.0/ 2 �0, a problem that can be referred
to as global regulation of output synchronization. However, from the literature on linear systems
subject to actuator saturation, we know that global regulation of output synchronization in general
requires nonlinear controllers. In this paper, we would like to use linear controllers of the form

Pxci D Ai ,cx
c
i CBi ,c

2
64 �iO�i
 i

3
75 , (8a)

ui D Ci ,cx
c
i , 8i 2 ¹1, : : : ,N º, (8b)

where xci 2R
ci is the state of the controller for agent i . Thus, we restrict attention to the semi-global

regulation of output synchronization problem, which is defined as follows.

Problem 1 (Semi-global regulation of output synchronization)
Consider a network of N agents as given by (1) and the reference model given by (5) with initial
conditions in an a priori given compact set �0 � Rr . The semi-global regulation of output
synchronization problem is to find, if possible, for certain integers ci , i 2 ¹1, : : : ,N º a family of
controllers of the form (8) parameterized in a parameter " such that for any arbitrarily large bounded
sets Xi �Rni and Pi �Rci , i 2 ¹1, : : : ,N º, there exists " small enough for which

lim
t!1

ei .t/D 0, 8i 2 ¹1, : : : ,N º, (9)

for all initial conditions xi .0/ 2 Xi , xci .0/ 2 Pi , and !.0/ 2�0.

Remark 1
We would like to emphasize that our definition of the aforementioned semi-global regulation of
output synchronization problem does not view the set of initial conditions of the agents’ model (1)
and their controllers (8) as given data. The set of given data consists of the models of the agent (1),
the exosystem (5), and the set �0 of possible initial conditions for the exosystem. Therefore, the
solvability conditions must be independent of the set of initial conditions of the agents, Xi , and the
set of initial conditions for the controllers, Pi .
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2.2. Assumptions

In this section, we present the assumptions about the network topology, the individual agents, and
the reference model for solving the semi-global regulation of output synchronization problem as
defined in Problem 1.

Assumption 1
Every node of the digraph G is a member of a directed tree whose root is contained in I.

Remark 2
It is possible for I to consist of a single node, in which case Assumption 1 requires this node to be
the root of a directed spanning tree of G.

Assumption 2
For each agent i 2 ¹1, : : : ,N º as given in (1)

1. all the eigenvalues of Ai are in the closed left-half complex plane;
2. the pair .Ai ,Bi / is stabilizable; and
3. the pair .Ci ,Ai / is observable;

Remark 3
Conditions 2 and 3 are natural assumptions. Condition 1 is a necessary condition, since if Ai has
one observable eigenvalue in the open right-half complex plane for some i 2 ¹1, : : : ,N º, then for
sufficiently large initial conditions xi .0/, the output of that system yi will be exponentially growing,
and the bounded input �.ui / can influence this exponentially growing signal only in a limited sense.
Therefore, we cannot guarantee that this output will track yr .

Assumption 3
For the reference model (5),

1. the pair .Cr ,S/ is observable;
2. all the eigenvalues of S are in the closed right-half complex plane; and
3. the matrix S is neutrally stable.

Remark 4
Condition 1 is a natural assumption. Condition 2 is made without loss of generality because
asymptotically stable modes vanish asymptotically, and therefore they play no role asymptotically.
Condition 3 is reasonable because the output of an agent cannot be expected to track exponentially
growing signals with a bounded input. Polynomially growing reference signals can be easily
included, but it requires very restrictive solvability conditions in case of input saturation and hence,
for ease of presentation, we have excluded this case.

Assumption 4
The equations

…iS D Ai…i CBi�i , (10a)

Cr D Ci…i CDi�i , (10b)

commonly known as the regulator equations are solvable with respect to …i 2 Rni�r and
�i 2Rp�r , and there exists a ı > 0 such that for each agent i 2 ¹1, : : : ,N º,

k�i!.t/k1 6 1� ı, (11)

for all t > 0 and all !.t/ with !.0/ 2�0.

Remark 5
Note that if the regulator equations (10) have a solution, then the solution is unique, as a consequence
of the invertibility of the quadruple .Ai ,Bi ,Ci ,Di /. Therefore, one can easily verify (11).
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2.3. Necessity of Assumption 4

Assumptions 1, 2, and 3 are natural as discussed in Remarks 3 and 4. On the other hand,
Assumption 4 is critical. Essentially, this assumption is necessary for solving the semi-global
regulation of output synchronization problem as defined in Problem 1. The following lemma, which
is proven in Appendix A, shows this fact and gives the necessary condition for solving Problem 1.

Lemma 1
Suppose that each agent i 2 ¹1, : : : ,N º has access to full information. Assume that�0 contains the
origin in its interior. Then for any initial condition !.0/ 2 �0, there exist initial conditions xi .0/
and an input ui .t/ that leads to ei .t/! 0 as t !1 only if the regulator equations (10) are solvable,
and moreover the solution of the regulator equation must satisfy

k�i!.t/k1 6 1 (12)

for all t > 0.

2.4. Main result

Theorem 1
Consider a network of N agents as given by (1) and the reference model given by (5). Let
Assumptions 1, 2, 3, and 4 hold. Then the semi-global regulation of output synchronization problem
as defined in Problem 1 is solvable.

Proof
The proof of Theorem 1 is given in Section 3 by explicit construction of a controller for
each agent. �

3. DESIGN OF CONTROL LAW FOR EACH AGENT

In this section, we describe the construction of a controller for each agent to solve the semi-global
regulation of output synchronization problem as defined in Problem 1. The construction is carried
out in three steps.

In Step 1, we construct a new state Nxi , via a transformation of xi and !, such that the dynamics
of the synchronization error variable ei can be described by equations

PNxi D NAi Nxi C NBi�.ui / WD

�
Ai 0

0 NAi22

�
Nxi C

�
Bi
0

�
�.ui /, (13a)

ei D NCi Nxi C NDi�.ui / WD
�
Ci � NCi2

�
Nxi CDi�.ui /. (13b)

The purpose of this state transformation is to reduce the dimension of the model underlying ei—
the dimension of Nxi is generally lower than that of Œx0i ,!

0�0—by removing redundant modes that
have no effect on ei . In particular, the model (6) may be unobservable, but the model (13) is
always observable.

In Step 2, we construct a low-gain state feedback for ui assuming Nxi is known. This feedback is
parameterized in " and regulates ei to zero for any arbitrarily large bounded set of initial conditions
of the agent’s models by choosing the low-gain parameter " sufficiently small. Moreover, by making
the low-gain parameter " small enough, we can guarantee that the amplitude of the control law is
less than any given ˛, where 1� ı < ˛ < 1. Because the agent i has neither the internal state xi nor
the state ! of the exosystem available, this controller is not directly implementable. This brings us
to Step 3 of the design.

In Step 3, we follow the procedure as given in our previous paper [32], that is, we construct a
decentralized high-gain observer that makes an estimate of Nxi available to agent i . However, as we
shall see later, our state feedback design and high-gain observer are coupled. This will be illustrated
in Section 3.1.
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3.1. Design procedure for agent i

Step 1: State transformation
Let Oi be the observability matrix corresponding to the system (6).

Oi D

2
64

Ci �Cr
...

...

CiA
niCr�1
i �CrS

niCr�1

3
75 .

Let qi denote the dimension of the null space of matrix Oi and define ri D r � qi . Next, define
ƒiu 2Rni�qi and ˆiu 2Rr�qi such that

Oi
�
ƒiu
ˆiu

�
D 0, rank

�
ƒiu
ˆiu

�
D qi .

Because the pair .Ci ,Ai / and the pair .Cr ,S/ are observable, it is easy to see that ƒiu and ˆiu
have full column rank (see [32, Appendix A]). Let therefore ƒio and ˆio be defined such that
ƒi WD Œƒiu,ƒio� 2Rni�ni and ˆi WD Œˆiu,ˆio� 2Rr�r are nonsingular.

From the proof of [31, Lemma 2], we know that

Sˆi DˆiRi , (14)

where

Ri D

�
Ui Ri12

0 Ri22

�
.

Because S is anti-Hurwitz stable and neutrally stable, we know that S is diagonalizable, and hence,
Ri is diagonalizable. This implies that Ri has r independent right eigenvectors. Let vi ,1, � � � , vi ,r
be r independent right eigenvectors of Ri , such that

vi ,j D

�
Qvi ,j

0

�
for j D 1, : : : , qi , where Qvi ,j are right eigenvectors of Ui . In that case, we choose Vi11 2 Rqi�qi

such that

Im Vi11 D span¹re Qvi ,j , im Qvi ,j j j D 1, � � � , qiº,

and we choose Vi12 2Rqi�ri and Vi22 2Rri�ri such that

Im

�
Vi12

Vi22

�
D span¹re vi ,j , im vi ,j j j D qi C 1, � � � , rº.

We then construct

Vi D

�
Vi11 Vi12

0 Vi22

�
.

It can be easily verified that span¹re vi ,j , im vi ,j º is an invariant subspace of Ri for any j D
1, : : : r . This implies

RiVi D Vi

�
ƒi1 0

0 ƒi2

�
. (15)

One way of choosing the matrix Vi is choosing�
ƒi1 0

0 ƒi2

�
to be the real Jordan form of Ri ordered in such a way that ƒi1 is the real Jordan form of Ui .

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:548–566
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From (15), we obtain that

V �1i11UiVi11 Dƒi1, V �1i22Ri22Vi22 Dƒi2, (16)

and

UiVi12 � Vi12ƒi2 D�Ri12Vi22. (17)

We then define

N̂
i WD Œ N̂ iu, N̂ io�Dˆi

�
Iqi Vi12V

�1
i22

0 Iri

�
. (18)

We then define a new state variable Nxi 2RniCri as

Nxi D

�
Nxi1

Nxi2

�
WD

"
xi �ƒiMi

N̂ �1
i !

Ni N̂
�1
i !

#
,

where Mi 2Rni�r and Ni 2Rri�r are defined as

Mi D

�
Iqi 0

0 0

�
, Ni D

�
0 Iri

�
.

Note that the system (6) can be transformed into the system (13), with a block upper-triangular
structure if we use the transformation ˆi as shown in [32]. However, with the matrix N̂ i given
by (18), which is a special case of the transformation previously used in [32], everything from our
previous results still holds. Moreover, the system (13) has a block-diagonal structure. The following
lemma, which is proven in Appendix B, shows this.

Lemma 2
The synchronization error variable ei is governed by dynamical equations of (13), where the pair
. NCi , NAi / is observable, and the eigenvalues of NAi22 are a subset of the eigenvalues of S .

Remark 6
If the unforced system for an agent i is the same as the exosystem, that is, if Ci D Cr and Ai D S ,
then it is easy to see that the dynamics of system (13) reduces to the dynamics of system (1).

Step 2: State feedback control design
For any arbitrarily large bounded set Xi , we design a controller as a function of Nxi such that
limt!1 ei .t/ D 0 for all xi .0/ 2 Xi and !.0/ 2 �0. Consider the following regulator equations
with unknowns …r

i 2R
ni�ri and �ri 2R

p�ri for system (13)

…r
i
NAi22 D Ai…

r
i CBi�

r
i , (19a)

NCi2 D Ci…
r
i CDi�

r
i . (19b)

The following lemma shows that the regulator equations (19) are solvable if and only if the regulator
equations (10) are solvable and gives the mapping between the solutions of the two regulator
equations. Note that if the regulator equations (19) (or the regulator equations (10)) have a solution,
then it is unique due to the invertibility of the quadruple .Ai ,Bi ,Ci ,Di /.

Lemma 3
If
�
…r
i ,�

r
i

�
is the solution of the regulator equations (19), then .…i ,�i / given as

…i D…
r
iNi
N̂ �1
i CƒiMi

N̂ �1
i , �i D �

r
i Ni
N̂ �1
i (20)

is the solution of the regulator equations (10). On the other hand, if .…i ,�i / is the solution of the
regulator equations (10), then

�
…r
i ,�

r
i

�
given as

…r
i D…i

N̂
io, �ri D �i

N̂
io (21)

is the solution of the regulator equations (19).
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Proof
Let

�
…r
i ,�

r
i

�
be the solution of the regulator equations (19). And define .…i ,�i / by (20) and

Wi D
�
Iqi 0

�
. From (20), it is easy to see that

…i D
�
…r
i 0

� �Ni
Wi

�
N̂ �1
i CƒiMi

N̂ �1
i , �i D

�
�ri 0

� �Ni
Wi

�
N̂ �1
i .

With some algebra, we obtain that

…iS N̂ i D
�
…r
i 0

� �Ni
Wi

�
N̂ �1
i S
N̂
i CƒiMi

N̂ �1
i S
N̂
i

D
�
0 …r

i

� �Ui 0

0 NAi22

�
C
�
ƒiu 0

� �Ui 0

0 NAi22

�
D
�
ƒiuUi …r

i
NAi22

�
, (22)

where we have used that S N̂ i D N̂ i NRi shown in Appendix B. Moreover,

.Ai…i CBi�i / N̂ i D Ai
�
…r
i 0

� �Ni
Wi

�
CAiƒiMi CBi

�
�ri 0

� �Ni
Wi

�
D
�
0 Ai…

r
i

�
C
�
Aiƒiu 0

�
C
�
0 Bi�

r
i

�
D
�
ƒiuUi Ai…

r
i CBi�

r
i

�
, (23)

where we have used that Aiƒiu DƒiuUi , shown in our previous paper [32].
From (19a), (22), and (23), it is then easy to see that …iS N̂ i D .Ai…i C Bi�i / N̂ i . Because N̂ i

is non-singular, this implies that (10a) is satisfied.
Similarly, we obtain that

Cr N̂ i D
�
Cr N̂ iu Cr N̂ io

�
D
�
Ciƒiu NCi2

�
, (24)

where we have used that Cr N̂ iu D Ciƒiu and NCi2 D Cr N̂ iN
0
i D Cr N̂ io, shown in our previous

paper [32]. Moreover,

.Ci…i CDi�i / N̂ i D Ci
�
…r
i 0

� �Ni
Wi

�
CCiƒiMi CDi

�
�ri 0

� �Ni
Wi

�
D
�
Ciƒiu Ci…

r
i CDi�

r
i

�
. (25)

From (19b), (24), and (25), it is then easy to see that NCr N̂ i D .Ci…i CDi�i / N̂ i . Because N̂ i is
non-singular, this implies that (10b) is satisfied. Hence, .…i ,�i / given by (20) is the solution of the
regulator equations (10).

Now let .…i ,�i / be the solution of the regulator equations (10). And define
�
…r
i ,�

r
i

�
by (21).

With just a little bit algebra, we obtain that

Ai…
r
i CBi�

r
i D Ai…i

N̂
ioCBi�i N̂ io (26)

and

…r
i
NAi22 D…i

N̂
io
NAi22 D…iS N̂ io, (27)

where we have used that S N̂ io D N̂ io NAi22, which follows from the fact that S N̂ i D N̂ i NRi .
From (10a), (26), and (27), it is easy to see that…r

i
NAi22 D Ai…

r
iCBi�

r
i , that is, (19a) is satisfied.

Finally, we obtain that

Ci…
r
i CDi�

r
i D Ci…i

N̂
ioCDi�i N̂ io. (28)

This together with the fact that NCi2 D Cr N̂ iN
0
i D Cr N̂ io and (10b) yields NCi2 D Ci…

r
i C

Di�
r
i , that is, (19b) is satisfied. Hence,

�
…r
i ,�

r
i

�
given by (21) is the solution of the regulator

equations (19). �
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Remark 7
In view of Lemma 3 and (11) of Assumption 4, we see that k�ri Nxi2k1 D k�i!k1 6 1� ı.

Because agent i is subject to actuator saturation, we design the state feedback controller by using
a low-gain technique, which is widely used for the semi-global stabilization problem for linear
systems subject to actuator saturation, see for instance, [34, 35]. There exist in the literature several
low-gain design algorithms. For conceptual clarity, we use here the one based on the solution of a
continuous-time algebraic Riccati equation, parameterized in a low-gain parameter " 2 .0, 1�. More
specifically, we form a family of parameterized state feedback gain matrices Fi ," for Nxi1 as

Fi ," D�B
0
iPi ,",

where Pi ," D P 0i ," > 0 is the unique solution of the continuous-time algebraic Riccati equation
defined as

Pi ,"Ai CA
0
iPi ," �Pi ,"BiB

0
iPi ,"C "Ini D 0. (29)

It follows from Lemma 3 and Condition 1 of Assumption 4 that the regulator equations (19) have a
unique solution

�
…r
i ,�

r
i

�
. We use the unique

�
…r
i ,�

r
i

�
and the feedback gain matrix Fi ," to define

a family of parameterized state feedback controllers in terms of Nxi as

ui D
�
Fi ," �ri �Fi ,"…

r
i

�
Nxi . (30)

Then for any given arbitrarily large bounded set of initial conditions, there exists an "� 2 .0, 1�,
such that for all " 2 .0, "��, the family of linear state feedback controllers of the form (30) ensures
that limt!1 ei .t/D 0 for all initial conditions belong to the given arbitrarily large bounded set and
!.0/ 2�0. This is a well-known result, see [35, Theorem 3.3.2].

Remark 8
If the unforced system for an agent i is the same as the exosystem, that is, if Ci D Cr and Ai D S ,
then it is easy to see that …i D I and �i D 0 is the solution of regulator equations (10). Thus,
Assumption 4 is always satisfied for that agent.

Step 3: Observer-based implementation
Following the design procedure given in the proof of [35, Theorem 3.3.4], one can obtain, for a
given set of initial conditions, suitable state feedback controllers for which input saturation is not
active. This is performed by properly choosing the low-gain parameter ". Then such a state feedback
law must be implemented by a suitable designed distributed observer. This will be performed next.

We will design a high-gain decentralized observer to produce an estimate of Nxi , denoted by ONxi .
We follow the procedure as given in our previous paper [32], to be self-contained, we reproduce the
design here.

Let Nn denotes the maximum order among the all the systems (13) for i 2 ¹1, : : : ,N º, that is,
NnDmaxiD1,:::,N .ni C ri /. Define 	i D Ti Nxi , where

Ti D

2
64

NCi
...

NCi NA
Nn�1
i

3
75 .

Note that Ti is injective because the pair . NCi , NAi / is observable, which implies that T 0i Ti is
nonsingular.

In term of 	i , we can write the system equations

P	i D .ACLi /	i CBi�.ui /, 	i .0/D Ti Nxi .0/, (31a)

ei D C	i CDi�.ui /, (31b)
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where

AD
"
0 Ip. Nn�1/

0 0

#
, C D

�
Ip 0

�
, Li D

�
0

Li

�
, Bi D Ti

�
Bi

0

�
, Di DDi ,

for some matrix Li 2 Rp�Nnp . Note that the matrices A and C are the same for all the agents
i 2 ¹1, : : : ,N º, and the special form of these matrices implies that .C,A/ is observable.

Next, define the matrix NG D G C Diag.�1, : : : , �N / and 
 D miniD1,:::,N Re.�i . NG// > 0. Let
P D P 0 > 0 be the unique solution of the algebraic Riccati equation

AP CPA0 � 
PC0CP C I Nnp D 0. (32)

We then we design the observer

PO	i D .ACLi / O	i CBi�.ui /C S.`/PC0.�i � O�i /C S.`/PC0. i � �i .C O	i CDi�.ui ///, (33a)

ONxi D .T
0
i Ti /

�1T 0i O	i , (33b)

where S.`/D blk diag.Ip`, Ip`2, : : : , Ip` Nn/ and ` > 1 is a high-gain parameter.
On the basis of the observer estimate, we define the variable �i D C O	i CDi�.ui / to be shared

with the other agents via the network communication infrastructure as described in Section 2.1 and
the observer-based control law

ui D
�
Fi ," �ri �Fi ,"…

r
i

�
ONxi . (34)

Together, the observers for agents i 2 ¹1, : : : ,N º form a distributed observer parameterized by a
high-gain parameter `. It has been shown in [32, Lemma 4] that the estimation errors dynamics are
globally exponentially stable, that is, limt!1. Nxi � ONxi /D 0, by choosing the high-gain parameter `
sufficiently large.

Remark 9
If all the agents have the same dynamics, it is not necessary to design an observer based on the
high-order system (31), and one can design an observer based on the original system (13).

In summary, for any given arbitrarily large bounded sets Xi � Rni and Pi � Rp Nn, there exist "�

with the property that for any " 2 .0, "�� there exists `� such that for ` > `�, the observer-based
implementation (33) and (34), ensure that

lim
t!1

ei .t/D 0, 8i 2 ¹1, : : : ,N º, (35)

for all initial conditions xi .0/ 2 Xi , O	i .0/ 2 Pi , and !.0/ 2�0.

3.2. Comparison with the case where the agents have no actuator magnitude constraints

Let us make a few comments to compare our result with the case where the agents do not have
actuator saturation.

� The regulator equations (10) have to be solvable for the case with actuator magnitude
constraints. In our previous work, for the case without saturation, we assumed existence of
a solution of the regulator equations, but in that case, this existence is not necessary.
� For the case with actuator magnitude constraints, we only achieve semi-global regulation of

output synchronization.
� For the case with actuator magnitude constraints, it is required that all the eigenvalues of agents’

system matrices are in the closed left-half complex plane.
� For the case with actuator magnitude constraints, we have constraints on the size of the

synchronized output trajectory as given by (11).
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4. EXAMPLE

In this section, we illustrate our design procedure by considering a network of 10 agents. Agents 1
and 2 are composed as the cascade of a second-order oscillator and a single integrator:

Ai D

2
4 0 1 0

0 0 1

0 �1 0

3
5 , Bi D

2
4 00
1

3
5 , Ci D

�
1 0 0

�
, Di D 0.

Agents 3, 4, and 5 have the following dynamics:

Ai D

�
0 1

0 0

�
, Bi D

�
0

1

�
, Ci D

�
1 0

�
, Di D 2.

Agents 6, 7, and 8 have the following dynamics:

Ai D 0, Bi D 1, Ci D 1, Di D 1.

Finally, Agents 9 and 10 are second-order mass-spring-damper systems:

Ai D

�
0 1

�2 �2

�
, Bi D

�
0

1

�
, Ci D

�
1 0

�
, Di D 0.

The reference trajectory yr is generated by an exosystem with

S D

2
4 0 1 0

0 0 1

0 �1 0

3
5 , Cr D

�
1 0 0

�
,

and initial conditions �0 D
®
! 2R3 W k!k6 0.1

¯
.

The communication topology of the network is given by the digraph depicted in Figure 1, and
agent 2 has access to the information y2 � yr .

Step 1
For illustrative purpose, we give the details for agent 3. In Step 1,

O3 D

2
6664
1 0 �1 0 0

0 1 0 �1 0

0 0 0 0 �1
0 0 0 1 0

0 0 0 0 1

3
7775 H) q3 D 1, r3 D 2,

We may choose

ƒ3u D

�
1

0

�
, ˆ3u D

2
4 10
0

3
5 ,

Figure 1. Network topology.
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and hence, we can set ƒ3 D I2 and ˆ3 D I3. Following the design procedure, we have

V311 D 1, V312 D
�
0 1

�
, and V322 D

�
1 0

0 �1

�
for (16) and (17). Therefore, from (18), we obtain that

N̂
3 Dˆi

"
Iq3 V312V

�1
322

0 Iri

#
D

2
4 1 0 �1
0 1 0

0 0 1

3
5 ,

thus, it follows that

Nx3 D

2
64
1 0

0 1

0 0

0 0

3
75 x3 �

2
64
1 0 1

0 0 0

0 �1 0

0 0 �1

3
75!,

then the dynamics of Nxi with output ei takes the form of (13) with

NA322 D

�
0 1

�1 0

�
, NC32 D

�
0 �1

�
.

Step 2
We now need to solve the regulator equations (19), which are easily found to have the unique
solution

…r
3 D

�
0 1

�1 0

�
, �r3 D

�
0 �1

�
.

We then select the matrix F3," D�B
0
3P3,", where P3," D P

0
3," is the unique solution of (29), and the

value of " will be determined later.
We perform the same procedure for the other agents, to identify appropriate state feedbacks. For

agents 1 and 2, there is no need for solving the regulator equations (19); for agents 6, 7, and 8,
we obtain

…r
6 D

�
�1
2
�1
2

�
, �r6 D

�
1
2
�1
2

�
,

and for agents 9 and 10, the system (6) is observable, moreover Nxi2 D !. We then find the unique
solution of the regulator equations (10) as

…9 D…
r
9 D

�
1 0 0

0 1 0

�
, �9 D �

r
9 D

�
2 2 1

�
.

Note that

�9! 6 0.5,

therefore, we choose ı D 0.5, such that

�9! 6 1� ı

for all !.0/ 2�0. It is also easy to check that ı D 0.5 works for all other agents.

Step 3
In Step 3, we design the decentralized observer that allows the feedbacks to be implemented based
on observer estimates. It is easy to check that NnD 5, then we have

AD
�
0 I4
0 0

�
, C D

�
1 0 � � � 0

�
.
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Figure 2. Output trajectories for agents 1, 3, 6, 9, and reference model.
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Figure 3. Input trajectories for agents 1, 3, 6, and 9.

Note that in order to implement the observer-based feedback (33) and (34), we need to determine
the value of the low-gain parameter " 2 .0, "��. For the set given by Xi D ¹xi 2Rni W kxik6 1º
and Pi D

®
xi 2Rci W kxci k6 1

¯
, we can confirm that "� D 0.1, thus we choose " D "� D 0.1.

Now, we construct the weighted Laplacian G from the digraph in Figure 1, note that the digraph
contains a directed spanning tree with agent 2 being the root. Given fact that �2 D 1 while �i D 0

for all other i , we find that 
 D miniD1,:::,10 re .�i .G C Diag .�1, : : : , �10/// � 0.2749. Solving
the algebraic Riccati equation (32) and implementing observer-based feedback (33) and (34), we
find that we achieve stability with ` D 2. Figure 2 shows the resulting simulated output of four
agents and the synchronization trajectory, whereas Figure 3 shows the resulting simulated input of
four agents.

APPENDIX A: PROOF OF LEMMA 1

Proof
If the quadruple .Ai ,Bi ,Ci ,Di / has no invariant zeros that are eigenvalues of the matrix S ,
then the existence of solutions to the regulator equations follows from the fact that the system is
right-invertible (Corollary 2.5.1 of [35]).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:548–566
DOI: 10.1002/rnc



562 T. YANG ET AL.

On the other hand, assume that the quadruple .Ai ,Bi ,Ci ,Di / has an invariant zero � that is an
eigenvalue of the matrix S . In that case, let .v,w/ be such that

�
v0 w0

� �Ai � �I Bi

Ci Di

	
D 0 (A.1)

and !0 such that

S!0 D �!0.

Because �0 contains 0 in its interior, we can, without loss of generality, assume that !0 2�0.
We first assume that w0Cr!0 ¤ 0 and we will establish a contradiction with the fact that there

exists for !.0/ D !0, an input ui and an appropriate initial condition xi .0/ such that ei .t/! 0 as
t !1.

Because .Ai ,Bi ,Ci ,Di / is right-invertible, we note that the subsystem from u to ´D w0y (which
has a scalar output) can be described by a polynomial description:

d

�
d

dt

	
´.t/DN

�
d

dt

	
u.t/,

where N.s/ is a non-zero polynomial row vector, whereas d.s/ is a scalar polynomial. Because,
the subsystem from u to ´ is right-invertible and has a zero in �, we find that N has a zero in �.
Moreover, if d also has a zero in �, then N has a zero in � whose order is at least one higher than
the zero in � of d . We define

Ń.t/D e��t´.t/, Nu.t/D e��tu.t/,

and

Nd.s/D d.sC �/, NN.s/DN.sC �/.

We note that �
d

dt
C �

	
Ń.t/D e��t

d

dt
´.t/,

and similarly for u, Nu. Hence,

Nd

�
d

dt

	
Ń.t/D e��td

�
d

dt

	
´.t/,

and

NN

�
d

dt

	
Nu.t/D e��tN

�
d

dt

	
u.t/.

Assume that the input u is such that tracking is achieved, then we have

´.t/! w0Cr!.t/D e
�tw0Cr!0

as t !1 and hence

Ń.t/! w0Cr!0

as t ! 1. Without loss of generality, we assume that w0Cr!0 D ı > 0. In that case, there exists
t0 > 0 such that we have

1

2
ı 6 Ń.t/6 3

2
ı

for all t > t0. On the other hand, given that � is on the imaginary axis and that u.t/ is bounded, we
have that there exists an M > 0 such that

k Nu.t/k6M
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for all t > 0. We have

Nd

�
d

dt

	
Ń.t/D NN

�
d

dt

	
Nu.t/

Define

Nd.s/D dis
i C diC1s

iC1C � � � C dns
n,

and

NN.s/DNiC1s
iC1C � � � CNns

n,

such that di ¤ 0. Here, we used that N had a zero in � and if d has a zero as well in �, then it is of
strictly lower order. We find thatˇ̌̌

ˇ̌̌
ˇ̌̌
Z t2

t1

Z t2

t1

� � �

Z t2

t1„ ƒ‚ …
n

Nd

�
d

dt

	
Ń.t/

ˇ̌̌
ˇ̌̌
ˇ̌̌>

0
@jdi j.t2 � t1/n�i � 3 nX

jDiC1

jdj j.t2 � t1/
n�j

1
A 1
2
ı

for all t2, t1 > t0. On the other hand,ˇ̌̌
ˇ̌̌
ˇ̌̌
Z t2

t1

Z t2

t1

� � �

Z t2

t1„ ƒ‚ …
n

NN

�
d

dt

	
Nu.t/

ˇ̌̌
ˇ̌̌
ˇ̌̌6M

nX
jDiC1

kNik.t2 � t1/
n�j

for all t2, t1 > t0. This yields a contradiction as t2!1 because we haveZ t2

t1

Z t2

t1

� � �

Z t2

t1„ ƒ‚ …
n

Nd

�
d

dt

	
Ń.t/D

Z t2

t1

Z t2

t1

� � �

Z t2

t1„ ƒ‚ …
n

NN

�
d

dt

	
Nu.t/,

and our inequalities imply that the left-hand side grows like .t2�t1/n�i , whereas the right-hand side
can at most grow like .t2 � t1/n�i�1.

Because, assuming that w0Cr!0 ¤ 0, we obtain a contradiction, we must have that w0Cr!0 D 0.
Using this property, we will establish that (10) has a solution. Without loss of generality and using

Assumption 3, we can assume that

S D

0
BBBB@
!1 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0

0 � � � 0 !r

1
CCCCA , Cr D

�
Cr ,1 � � �Cr ,r

�
,

and we also decompose the potential solutions of the regulator equations as

…i D
�
…i ,1 � � �…i ,r

�
, �i D

�
�i ,1 � � ��i ,r

�
.

We obtain that (10) is equivalent to

…i ,j!j D Ai…i ,j CBi�i ,j ,

Cr ,j D Ci…i ,j CDi�i ,j

for j D 1, : : : , r . This can be rewritten as�
Ai �!j I Bi

Ci Di

	�
…i ,j

�i ,j

	
D

�
0

Cr ,j

	
,
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which is solvable if

Im

�
0

Cr ,j

	
� Im

�
Ai �!j I Bi

Ci Di

	
,

and the latter condition is equivalent to

�
v0 w0

� �Ai �!j I Bi

Ci Di

	
D 0H)

�
v0 w0

� � 0

Cr ,j

	
D 0.

Because the latter is equivalent to w0Crej D 0 where Sej D !j ej , we note that this implication is
exactly the condition that we have proven earlier.

The fact that we need (12) is a consequence of Corollary 3.3.1 in [35]. �

APPENDIX B: PROOF OF LEMMA 2

Proof
If we use the transformation ˆi , from the proof of [31, Lemma 1], we know that ei is governed by
the following dynamical equations

PNxi D NAi Nxi C NBi�.ui / WD

�
Ai NAi12

0 NAi22

�
Nxi C

�
Bi
0

�
�.ui /, (B.1a)

ei D NCi Nxi C NDi�.ui / WD
�
Ci � NCi2

�
Nxi CDi�.ui /, (B.1b)

where

NAi12 Dƒi

�
Ri12

0

�
, NAi22 DRi22, NCi2 D CrˆiN

0
i .

§

Note that NAi of the system (B.1) is block-upper triangular. Therefore, we need to show that with the
transformation N̂ i given by (18), the system (B.1) is block-diagonal.

From (16) and (17), it is easy to show that�
Ui Ri12

0 Ri22

� �
Iqi Vi12V

�1
i22

0 Iri

�
D

�
Iqi Vi12V

�1
i22

0 Iri

� �
Ui 0

0 Ri22

�
. (B.2)

Now post multiplying both sides of (14) by�
Iqi Vi12V

�1
i22

0 Iri

�
,

we obtain that S N̂ i D N̂ i NRi , where

NRi D

�
Ui 0

0 Ri22

�
. (B.3)

Thus NAi12 D 0. �
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