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a b s t r a c t

We present a methodology to design appointment systems for outpatient clinics and diag-
nostic facilities that offer both walk-in and scheduled service. The developed blueprint for
the appointment schedule prescribes the number of appointments to plan per day and the
moment on the day to schedule the appointments. Themethod consists of twomodels; one
for the day process that governs scheduled and unscheduled arrivals on the day and one
for the access process of scheduled arrivals. Appointment schedules that balance the wait-
ing time at the facility for unscheduled patients and the access time for scheduled patients
are calculated iteratively using the outcomes of the two models. Two methods to calcu-
late appointment schedules, complete enumeration and a heuristic procedure, are com-
pared in various numerical experiments. Furthermore, an appointment schedule for the
CT-scan facility at the AcademicMedical Center Amsterdam, The Netherlands, is developed
to demonstrate the practical merits of the methodology. The method is of general nature
and can therefore also be applied to scheduling problems in other sectors than health care.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Developing appointment schedules for service facilities that process both scheduled and unscheduled arrivals is chal-
lenging, as it requires planning and scheduling on different time scales. A well-designed appointment system comprises
an efficient day appointment schedule and provides timely access. This article is motivated by challenges faced by hospital
outpatient clinics that serve patients on a walk-in basis. Most of these clinics also have a limited number of appointment
slots. There are various organizational (e.g., fixed slots for patients in a care pathway, patients with long travel time to the
hospital, children) and medical (e.g., local anesthesia or contrast fluid required) reasons to give a patient an appointment.
In this article, we introduce a method to design appointment schedules for such facilities. To illustrate the method, we also
design an appointment schedule for the Computed Tomography (CT) scan facility at the radiology department of the Aca-
demic Medical Center (AMC) in Amsterdam, a Dutch teaching hospital. At the CT-scan facility, where approximately 11,000
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diagnostic examinations per year are performed, currently an appointment system is employed. Management considers the
implementation of a mixed walk-in and appointment system.

Advantages of a walk-in system are a higher level of accessibility and more freedom for patients to choose the date and
time of their hospital visit. Disadvantages are a possible highly variable demand, and as a consequence low utilization and
high waiting time (the time between the physical arrival at the facility and the start of consultation and/or treatment). The
advantage of an appointment system is that workload can be dispersed, while it has the disadvantage of a potentially long
access time (the time between the day of the appointment request and the appointment date). Since prolonged access times
result in a delay of treatment, deterioration of health condition is a serious risk [1]. Allowing patients to walk in effectively
reduces access times to zero, and thus increases quality of care. In addition, health care facilities typically aim to guarantee
a certain service level with respect to the access time for patients with an appointment.

The challenge in a mixed system is thus to balance access time (for appointment patients) and waiting time (on the day
of service). To achieve this, we develop a methodology that schedules appointments when the expected walk-in demand
is low. To smoothen the system, in periods of high demand part of the walk-in patients is offered an appointment at a
later moment. Walk-in demand [2,3] and demand for appointments requests [4] are often cyclic; therefore, we develop a
cyclic appointment schedule. Appointment scheduling has received considerable attention in the literature (see Section 2),
in contrary to models that relate access and waiting time [5].

Our contribution is a methodology that incorporates unscheduled and scheduled arrivals and maximizes the number of
unscheduled patients served on the day of arrival, while satisfying a pre-specified access time norm for scheduled patients.
We model the unscheduled arrivals with a stochastic non-stationary arrival process and incorporate balking behavior. The
scheduled patients have priority, may not show up, and appointment requests are assumed to arrive according to a cyclic
pattern. To account for the cyclic arrivals, the appointment schemeswe develop are also cyclic, where the cycle is a repeating
sequence of days. The cycle length can, for instance, be a week or a month. The Cyclic Appointment Schedule (CAS) specifies
a capacity cycle (the maximum number of patients that can be scheduled on each day of the cycle) and a day schedule (the
maximum number of patients to be scheduled per time slot on each day). Access time and waiting time are measured on
different time scales, since access time is counted between days and waiting time during a day.

To facilitate the two time scales, our approach consists of decomposing the appointment planning process and the service
process during the day. For both processeswe propose an analytical evaluationmodel. The firstmodel determines the access
time for scheduled patients for any given capacity cycle. The secondmodel determines the expected number of unscheduled
patients that cannot be seen on the day of arrival. Twomethods to calculate appointment schedules, complete enumeration
and a heuristic procedure, are compared in various numerical experiments. Furthermore, an appointment schedule for the
CT-scan facility at the AMC is developed to demonstrate the practical merits of the methodology.

This article is organized as follows. Section 2 provides a literature review. In Section 3, we give an introduction to the
methodology and provide a formal problem description. Sections 4–6 present the access and day process evaluationmodels
and the iterative procedure. Section 7 describes the numerical experiments, followed by the discussion and conclusions in
Section 8.

2. Literature

In many service facilities customers are requested to make an appointment. There is a substantial body of literature
focusing on the design of appointment systems. Health care is themost prevalent application area and hencemost prevalent
in the literature (see the surveys [6,5,7]). Appointment systems can be regarded as a combination of two distinct queuing
systems. The first queuing system concerns customers making an appointment and waiting until the day the appointment
takes place. The second queuing system concerns the process of a service session during a particular day. We denote these
two queuing processes as the ‘access process’ and the ‘day process’. The remainder of this section provides an overview of
the literature relevant for the presentwork and is structured as follows: (1) appointment scheduling, (2) access timemodels,
and (3) integrating the access process and the day process.

2.1. Appointment scheduling

Appointment scheduling concerns designing blueprints for day-appointment schedules with typical objectives such as
minimizing customer waiting time, and maximizing resource utilization or minimizing resource idle time. A large part of
the literature focuses on scheduling a given number of appointments on a particular day (e.g., [8–12]). The extent to which
various aspects that impact the performance of an appointment schedule are incorporated varies, such as customer punc-
tuality (e.g., [13]), customers not showing up (‘no-shows’) (e.g., [14,8]), lateness of the server at the start of a service session
(e.g., [11]), service interruptions (e.g., [13]) and the variance of service duration (e.g., [14]).

Research techniques employed in appointment scheduling can be divided into analytical and simulation-based ap-
proaches, of which the latter is most widely applied [6]. In the day process we aim for an analytical approach, namely
finite-time Markov chain analysis. Related examples with health care applications are [15,16,8,10,17,12], although these
references do not consider unscheduled customers.

Often, a homogeneous customer population is assumed [18]. Some studies however, focus on service systems with vari-
ous customer types. Differentiation between customer types is identified as a consequence of distinct service requirements
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(e.g., [19–21,12,22]). Also, distinct priority levels may be a reason for patient type differentiation. An example can be found
in [23], where service slots are earmarked for various scheduled customer classes. In this article, customer type differenti-
ation arises from distinct arrival processes.

The effect of mixed arrival processes is studied in [24–26]. Here, scheduled outpatients, unscheduled inpatients and
emergency patients are taken into account. Patients without an appointment are either emergency patients who require
non-preemptive priority or inpatients available for ‘call-in’ at any time during the day. These unscheduled patients are as-
sumed to arrive according to an equal arrival rate throughout the day. In our case, we consider walk-in patients without
priority who cannot be called in during the day. Moreover, we consider non-stationary arrivals to incorporate the expected
peak behavior of walk-in demand. Studies that do incorporate non-priority unscheduled arrivals similar to the unscheduled
arrivals in this article are [2,27,19,28–31]; however, in all cases a simulation approach is employed. Also, these studies do
not incorporate unscheduled customers leaving the facility when the waiting time is too long.

2.2. Access time models

As our approach consists of a decomposition,models solely focusing on access time are also of interest. The access process
we consider is discrete-time and cyclical in both the arrival and service processes. Various access time models based on
continuous-time queuingmodels are available. Examples are theM(t)|M|s(t) queue [32] and the adaptedM|M|s queue that
models time-dependent demand [33]. The latter method is also applied to a health care problem in [34]. To preserve the
discrete-time nature we take as starting point the generating function approach for discrete-time queuing models by [35].
A survey on discrete-time queuing systems is presented in [36].

Models to evaluate the length of hospital waiting lists are introduced in [37], and further studied in for example [38].
In these models homogeneous appointment request arrivals are assumed. In polling models, multiple queues are served by
one server in cyclic order (see [39] for an overview). However, cyclic arrival rates and cyclic service capacity have not yet
been incorporated in polling models.

2.3. Linking the access and the day process

We found only a few examples that jointly consider the access and day process. In [40], the authors propose a two
time scale model for the Emergency Department (ED)—Ward patient flow. The fast time scale of the ED is modeled by
a continuous-time Markov chain, while the slower time scale of the wards is modeled by a discrete-time Markov chain.
In [41,21], appointment schedules ranging over a horizon of several days are evaluated. The aim is to minimize the patient’s
waiting and the doctor’s idle time, but the patient’s access time is not studied in detail.

The advanced (or open) accessmethodology described in [1] also considers two time scales.With advanced access, a clinic
leaves a fraction of appointment slots vacant for patients who request an appointment on the same day or within a couple
of days. As many patients as possible are scheduled on the day they make an appointment request. One should determine
the optimal ratio between the reserved capacity for long-term and same-day appointments [42]. This principle is slightly
adapted in [43], where the demand for short-term appointments is distributed over several days, to smooth the daily load
of the system. The aim of the advanced access methodology is to minimize access time (‘‘do today’s work today’’). Note that
in an advanced access clinic patients do announce themselves in advance and make a (same-day) appointment, contrary
to the type of unscheduled patients we consider, who just show up. Models that study the advanced access methodology
usually focus on capacity distribution (e.g., [42,44,45]). In addition, the reduced adverse effect of no-shows by introducing
open access is studied [46].

Formulating a model to design an appointment schedule considering two time scales is usually done using simulation
techniques (e.g., [47]). An analytic approach is presented in [48], where the effect of capacity allocation among competing
patient classes on access time targets is studied using techniques from Markov Decision Modeling and Mathematical Pro-
gramming. An approach related to ours, although without the presence of walk-in patients, is given in [49]. The authors
consider a service facility, and first develop a vacation queuing system to determine the access time. Subsequently an ap-
pointment system is developed that calculates the waiting time at the facility.

3. Formal problem description

This section defines all modeling assumptions, defines the Cyclic Appointment Schedule (CAS), formally states the
research goal and gives an overview of the proposed approach. Then, Sections 4 and 5 present two models to respectively
evaluate the access time to the facility and the day schedule performance. In Section 6, the two models are connected
by an iterative procedure, through which the best CAS is computed. Since our approach is generically applicable, we also
present the methodology in the generic terms: a facility that serves scheduled and unscheduled jobs. Table 1 summarizes
the notation introduced in this section.
Assumptions. A facility consisting of R resources is operational during T time slots of length h, during each day in a cycle of D
days. Two types of jobs have to be served: scheduled and unscheduled jobs. Service takes one time slot. Scheduled jobs are
given a specific date and time immediately when an appointment is requested. In addition, when the facility is temporarily
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Table 1
Notation introduced in Section 3.

Symbol Description

R Number of resources
T Number of time slots during a day
t Time slot index (t ∈ {1, . . . , T })
h Length of a time slot
D Cycle length in days
d Day index (d ∈ {1, . . . ,D})
g Patience of an unscheduled job, expressed in the number of slots a job is willing to wait
q P(No-show of a scheduled job)
λd Initial appointment request arrival rate on day d
χd
t Unscheduled job arrival rate on day d during time interval (t − 1, t]

cdt Maximum number of appointments to schedule in slot t on day d
Cd Appointment schedule on day d, Cd

= (cd1 , . . . , c
d
T )

C Cyclic appointment schedule, C = (C1, . . . , CD)

kd Maximum number of appointments to schedule on day d
K Capacity cycle, K = (k1, . . . , kD)
F E[Fraction of unscheduled jobs served on the day of arrival during one cycle]
S(y) Access time service level: fraction of jobs with access time not greater than y
(y, Snorm(y)) Access time service level requirement: fraction of jobs with access time not greater than y is at least S(y)
φd Distribution of the number of deferred jobs on day d
γ d Total appointment request arrival distribution on day d
νd Expected number of deferred jobs on day d

congested, unscheduled jobs are also offered an appointment: if the service of an unscheduled job cannot start within g
time slots after arrival, it leaves the facility and an appointment is planned for another day. We refer to such jobs as deferred
unscheduled jobs, or just deferred jobs. The first available appointment slot for scheduled and deferred jobs is always the
next day at the earliest. All appointments, both scheduled jobs and deferred unscheduled jobs, are scheduled according to
a First Come First Served (FCFS) principle. In addition, we allow for no-shows, that is, the probability that a scheduled job
actually arrives at the facility equals 1 − q, so that q represents the probability that a job does not show up.

We assume a non-stationary Poisson process for the arrivals of appointment requests, with λ1, . . . , λD the arrival rates
for different days in the cycle. Next, during each day in the cycle, we assume a non-stationary Poisson arrival process for
unscheduled job arrivals, with slot-dependent arrival rates: χd

t for day d ∈ {1, . . . ,D} and time slot t ∈ {1, . . . , T }.
Cyclic appointment schedule. To effectively counterbalance the non-stationarity at both the daily and cyclic (i.e., weekly, bi-
weekly ormonthly) levels, we aim to design an appointment schedule that is cyclic.We introduce the CAS C = (C1, . . . , CD),
with Cd

= (cd1, . . . , c
d
T ), where cdt specifies the maximum number of jobs that may be scheduled in slot t on day d. To avoid

waiting for scheduled jobs cdt is maximally R.
To find an adequate appointment schedule, we propose a decomposition. First, we introduce the concept of a capacity

cycle K = (k1, . . . , kD), where kd prescribes the maximum number of jobs to schedule for day d. Second, given the capacity
cycle K , the day plan is specified. In order to match the capacity cycle K , the day plan Cd should be such that kd =

T
t=1 c

d
t .

Goal. An effective strategy balances the opportunities (1) for unscheduled jobs to be served on the same day without long
waiting time and (2) for scheduled jobs to be servedwithin an acceptable access time. To this end,we define the best policy as
the CAS inwhich the expected fraction of unscheduled jobs served on the day of arrival, F , is maximized, while for scheduled
jobs the access time service level, S(y), defined as the percentage of jobs that is servedwithin y days, is above a pre-specified
norm Snorm(y). The value of the vector (y, Snorm(y)) is chosen by facility management.
Approach. The best CAS is determined by employing an iterative procedure that effectively utilizes our decomposition of the
CAS in the capacity cycle and the day plan. Fig. 1 provides an overview of the iterative procedure.

In each iteration, first, capacity cycles are generated with at most R · T appointments per day, for which the access time
service level norm is satisfied. All jobs requesting an appointment are taken into account—thus both scheduled jobs and
deferred unscheduled jobs. We derive the distribution of the number of deferred unscheduled jobs φd, such that the dis-
tribution of the total number of appointment requests on day d is the sum of a Poisson distribution with parameter λd and
the distribution φd. To assess whether specific capacity cycles satisfy the access time norm Snorm(y), a discrete-time cyclic
queuing model is proposed (Model I, presented in Section 4).

Next, for each capacity cycle generated in the first step, the best day schedule is determined. Given the queue length
probabilities resulting from Model I and the unscheduled job arrival rates, χd

t , for each day the kd appointments are
distributed over the T time slots, such that the number of deferred unscheduled jobs is minimized. To achieve this, a Markov
reward model is presented (Model II, Section 5), which is used to calculate the performance of a specific day schedule.

Then, the capacity cycle that achieves the lowest expected number of deferred unscheduled jobs over the entire cycle is
chosen as the best cycle. If the expected numbers of deferred unscheduled jobs νd did not change significantly since the last
iteration, the procedure stops. If not, the entire process is repeated. A detailed description of the iterative procedure is given
in Section 6.



N. Kortbeek et al. / Performance Evaluation 80 (2014) 5–26 9

Fig. 1. The iterative procedure.

4. Model I: access time evaluation

In this section, a discrete-time cyclic queuingmodel is presented that allows for an evaluation of the access time for sched-
uled jobs, given an arbitrary capacity cycle. To this purpose, we focus on the backlog, Bd, at the start of each day d. We define
the backlog as the number of jobs for which a request for an appointment has already been made, while the appointment
itself has not yet taken place.We formulate a Lindley-type equation to characterize the backlog, and use a probability gener-
ating function approach to derive expressions for the distribution of the backlog at the start of each day in the cycle. From the
backlog distribution,wederive the access timedistribution. A summary of the notation used in this section is given in Table 2.
Lindley-type equation. Consider day d. During the day, a maximum number of jobs, kd, is served, and a number of new jobs,
Ad, arrives. At the start of day d, there is a backlog Bd. Since it is not possible to make an appointment on the day of arrival
itself, the backlog at the start of the next day equals the backlog on day dminus the number of jobs served on day d plus the
number of jobs that arrived on day d. This can be formalized in the following Lindley-type equation:

Bd+1
= (Bd

− kd)+ + Ad,

where (x)+ = x if x > 0, and 0 otherwise.
A generating function approach. Using an approach based on generating functions [35], we derive expressions for the distri-
bution of the backlog at the start of each day in the cycle. The transition probabilities for going from state Bd

= i to state
Bd+1

= i′ are given by:

P

Bd+1

= i′|Bd
= i


=


P


Ad

= i′


if i − kd ≤ 0
P


Ad

= i′ − i + kd


if i − kd > 0.

Let πd
j denote the stationary probability that at the start of day d, the backlog equals j jobs. Furthermore, let adj denote

the probability that Ad
= j. Note that the underlying probability distribution does not necessarily have to be Poisson. The

stationary probabilities can be computed recursively, under the condition that the capacity for scheduled jobs is larger
than the average demand, i.e.,

D
d=1 E[Ad

] <
D

d=1 k
d, since otherwise we would be dealing with an unstable system. For

d ∈ {1, . . . ,D} and j ≥ 0 we obtain:

πd+1
j = adj

kd−1
i=0

πd
i +

j
r=0

adj−rπ
d
kd+r . (1)
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We multiply both sides of (1) with the complex number z(j), where |z| ≤ 1, and z(j) denotes z raised to the power j, as
opposed to index d in πd

j , a
d
j and kd. The summation of both sides of the resulting equation over j yields the probability

generating function for πd+1:

PBd+1(z) =

∞
j=0

πd+1
j z(j) =

∞
j=0

adj
kd−1
i=0

πd
i +

j
r=0

adj−rπ
d
kd+r

 z(j).

From this we obtain:

PBd+1(z) =

∞
j=0

πd+1
j z(j) = PAd(z)z

(−kd)PBd(z) + PAd(z)z
(−kd)

kd−1
i=0

πd
i


z(k

d)
− z(i)


.

Rearranging terms and changing the order of summation leads to the probability generating function of Bd:

PBd(z) =

D
i=1

kd+D−i
−1

r=0
(z(k

d+D−i)
− z(r))πd+D−i

r


d+D−i−1

s=d
z(k

s)
i−1
r=0

PAd+D−r−1(z)


D
g=1

z(kg ) −
D

h=1
PAh(z)

,

where, since we consider days in a repeating cycle, we define:

d :=


D, d mod D = 0
d mod D, otherwise.

The generating functions uniquely determine the stationary probabilities πd
j , j ∈ {0, . . . , kd − 1}, d ∈ {1, . . . ,D}. To cal-

culate these probabilities, we build upon the approach given in [50]. Define k as the total number of available appointment
slots in a capacity cycle, i.e., k =

D
d=1 k

d. Then, the denominator of PBd(z) has k − 1 zeros inside the unit disk; this can be
shown by using Rouché’s theorem [51]. All generating functions, including PBd(z), are bounded for |z| ≤ 1, and therefore
the zeros of the denominator are also zeros of the numerator [35]. Thus we obtain k − 1 equations, and use PBd(1) = 1 to
secure the last equation. The k − 1 zeros of the denominator of PBd(z) are found by solving:

D
r=1

z(k
r )

−

D
h=1

PAh(z) = 0. (2)

The solutions of (2) also represent zeros of the numerator. Togetherwith the normalizing equation PBd(1) = 1, PBd(z) is com-
pletely defined for d = 1, . . . ,D. Note that now only the backlog probabilities for j ∈ {0, . . . , kd − 1}, have been derived.
The remaining backlog probabilities are calculated directly using (1).
Performancemeasures. The access time distribution can be directly derived from the backlog probabilities, since appointment
requests are served according to the FCFS principle. The FCFS service order and the impossibility of making an appointment
request for the day of arrival result in an access time of at least one day. Several performance measures can be derived. Of
particular interest are the probability distribution of the access time, the expected access time and the access time service
level.

1. The probability distribution of the access time. First we derive the conditional access time probability that the access
time for a client arriving on day d exceeds y days, given that the backlog at the start of day d equals b clients. As argued, for
y = 0, we have that

P[W d > y|Bd
= b] = 1 ∀b.

For y > 0, we have that

P[W d > y|Bd
= b] =


1 if b ≥

y
i=0

kd+i

∞
j=s+1

(j − s) · P[Ad
= j]

E[Ad]
otherwise,

(3)

where s represents the number of jobs arrived on day d that is served within y days:

s = min


y

i=1

kd+i,

y
i=0

kd+i
− b


.

We can explain formula (3) as follows. First, when the backlog b outnumbers the available capacity in y days, the conditional
probability that the access time exceeds y days equals 1. Otherwise, all arrivals beyond the number s wait for more than y
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Table 2
Notation introduced in Section 4.

Symbol Description

Bd Backlog at start of day d
PBd (z) Generating function of Bd

Ad Number of appointment requests arriving on day d
adj Appointment request arrival probabilities, P


Ad

= j


PAd (z) Generating function of Ad

πd
j Stationary backlog probabilities, P


Bd

= j


k Total number of available appointment slots in a capacity cycle, k =
D

d=1 k
d

E[W d
] E[Access time for an appointment request arriving on day d]

E[W ] E[Access time for an arbitrary appointment request]

days. There are j−s such arrivals. Then, the probability that the access time for a client arriving onday d exceeds ydays, equals

P[W d > y] =

∞
b=0

P[W d > y|Bd
= b] · P[Bd

= b].

2. The expected access time. Analogously, the expected access time for an appointment request that arrives on day d is
computed with:

E[W d
|Bd

= b] =

∞
y=0

P[W d > y|Bd
= b],

and thus

E[W d
] =

∞
b=0

E[W d
|Bd

= b] · P[Bd
= b],

and

E[W ] =

D
d=1

E[W d
]

E[Ad
]

D
r=1

E[Ar ]

.

3. The access time service level. Using the access time probability distribution, we determine the fraction of scheduled jobs
for which the access time does not exceed y. We define this as follows:

S(y) =

D
d=1


1 − P[W d > y]

 E[Ad
]

D
r=1

E[Ar ]

.

5. Model II: day process evaluation

In this section, we present a model to evaluate the performance of a single day in the CAS. Recall that the CAS consists
of a capacity cycle, K = (k1, . . . , kD), that prescribes the maximum number of jobs that can be scheduled for day d. Using
Model I, we are able to evaluate the access time performance of a given capacity cycle. In this section, we evaluate the day
process of a given appointment schedule, by formulating a Markov reward process.

Note that although day appointment schedule Cd is open for scheduling appointments, there may be less backlog than
the kd =

T
t=1 c

d
t available appointment slots. Therefore, we introduce the notationCd to represent the realized day plan-

ning, which is the schedule we evaluate. Now,Cd
=

cd1, . . . ,cdT  expresses the actually utilized appointment slots. Since
appointments are planned on a FCFS basis, the realized appointment day schedule,Cd, is always a ‘bottom-up filled’ version
of the day schedule, Cd. Of course, unoccupied appointment slots can be used for unscheduled jobs.

Since we consider the day performance on a day-by-day basis, in the remainder of this section we drop the superscript
d for notational convenience. Table 3 provides a summary of the notation introduced in this section.
Assumptions. For clarity of presentation, some of the assumptions introduced in Section 3 are repeated. During one day the
facility of R resources is operational during T intervals of length h. Two types of jobs have to be served: scheduled and un-
scheduled jobs. Service always takes one time slot of length h. At the beginning of each time slot, a service can start. If there
are both scheduled and unscheduled jobs, scheduled jobs are given priority. Overtime is not allowed.

Scheduled jobs arrive on time, according to the schedule C . Unscheduled jobs arrive at the facility according to an in-
homogeneous Poisson process with slot-dependent arrival rate χt . If the service of an unscheduled job cannot start within
g time slots after arriving, it leaves the facility and an appointment is planned for another day. The decision to defer an
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Table 3
Notation introduced in Section 5.

Symbol DescriptionC Realized schedule under CAS C ,C = (C1, . . . ,CD),Cd
=

cd1 , . . . ,cdT 
et,g Number of slots available for unscheduled jobs in the next g intervals after time t

pst (s) P(Number of scheduled jobs arriving at the start of slot t = s)

put (u) P(Number of unscheduled jobs arriving during interval (t − 1, t] = u)
P [(s, u)t+1|(k, l)t ] Transition probability from state (t, k, l) to state (t + 1, s, u)
Qt (s, u) P(Number of scheduled, unscheduled jobs waiting at the start of slot t = s, u)
νt E[Number of deferred jobs in time interval (0, t]]
ν E[Total number of deferred jobs]
φt Distribution of the number of deferred jobs in time interval (t − 1, t]
φ Distribution of the total number of deferred jobs

unscheduled job is based on the anticipated number of free slots. We assume that the facility has no pre-knowledge about
potential no-shows. Therefore, an unscheduled job arriving during interval (t − 1, t] stays if – and only if – the number
of unscheduled jobs already waiting is strictly smaller than the minimum number of service slots during the upcoming g
intervals that are not utilized by scheduled jobs. The number of time slots anticipated to be available for unscheduled jobs
during the upcoming g intervals is denoted by et,g :

et,g =

min{t+g−1,T }
j=t

(R −cj). (4)

States. The state of the system is denoted by the tuple (t, s, u), which specifies that at the beginning of time slot t , s scheduled
and u unscheduled jobs are present.
Transition probabilities. Let pst(s) denote the probability that s scheduled jobs arrive at the beginning of time slot t . Since each
no-show is assumed to occur independently, these probabilities are calculated as follows (recall that q denotes the no-show
probability):

pst(s) =


ct

s


(1 − q)s(q)ct−s, 0 ≤ s ≤ ct

0, s > ct .
Let put (u) denote the probability that u unscheduled jobs arrive during time interval (t−1, t]. As specified, put (u) is Poisson

distributedwith slot-dependent parameterχt . Note thatχ1 represents the arrival rate of unscheduled jobs that arrive before
the opening time of the facility. Furthermore, note that any distribution function put can be used in the day process evaluation
model. Therefore, for Model II the assumption of a Poisson arrival process is not strictly required.

LetP [(s, u)t+1 | (v,w)t ] denote the transition probability of jumping from state (t, v, w) to (t+1, s, u). Belowwe specify
these transition probabilities for all possible events. In Fig. 2, the state space for an arbitrary time slot t is displayed in which
the seven different possible events (a)–(g) are indicated. The events are separated into three groups: first, cases (a)–(c) in
which no scheduled job is served (v = 0), second, cases (d) and (e) in which both scheduled and unscheduled jobs are
served (v < R), and third, cases (f) and (g) in which only scheduled jobs are served (v ≥ R). As a clarification on how the
system evolves when no-shows occur, recall that unscheduled jobs arrive in the time interval (t − 1, t] and the decision
of acceptance is made directly at the time of arrival based on the policy described above. So at time t no-shows can be
observed, and only the unscheduled jobs that are still in the queue can be served in a slot which was at first reserved for an
appointment slot but now released due to a no-show. In the expressions below, 1A represents the indicator function; 1A = 1
if condition A is satisfied, and 0 otherwise.

Fig. 2. Day process state space and events.
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Case(a) v = w = 0; no job served:

P [(s, u)t+1 | (v,w)t ] = pst+1(s)p
u
t+1(u).

Case(b) v = 0, 0 < w ≤ et,g ; unscheduled job(s) served:

P [(s, u)t+1 | (v,w)t ] = pst+1(s)p
u
t+1(u − w + min{R, w})1(u≥w−min{R,w}).

Case(c) v = 0, w > et,g ; unscheduled job(s) served, unscheduled job(s) deferred:

P [(s, u)t+1 | (v,w)t ] = pst+1(s)p
u
t+1(u − et,g + R)1(u≥et,g−R).

Case(d) 0 < v < R, w ≤ et,g ; scheduled and unscheduled job(s) served:

P [(s, u)t+1 | (v,w)t ] = pst+1(s)p
u
t+1(u − w + min{(R − v),w})1(u≥w−min{(R−v),w}).

Case(e) 0 < v < R, w > et,g ; scheduled and unscheduled job(s) served, unscheduled job(s) deferred:

P [(s, u)t+1 | (v,w)t ] = pst+1(s)p
u
t+1(u − et,g + R − v)1(u≥et,g−R+v).

Case(f) v = R, w ≤ et,g ; scheduled job(s) served:

P [(s, u)t+1 | (v,w)t ] = pst+1(s − v + R)put+1(u − w)1(s≥v−R)1(u≥w).
Case(g) v = R, w > et,g ; scheduled job(s) served, unscheduled job(s) deferred:

P [(s, u)t+1 | (v,w)t ] = pst+1(s − v + R)put+1(u − et,g)1(s≥v−R)1(u≥et,g ).

Performance measures. Let Qt(s, u) denote the probability that at the start of slot t there are s scheduled and u unscheduled
jobs present. Qt(s, u) can be calculated as follows:

Q1(s, u) = ps1(s) · pu1(u).
For t = 2, . . . , T :

Qt+1(s, u) =

∞
v=0

∞
w=0

Qt(v,w)P [(s, u)t+1 | (v,w)t ] .

The expected number of deferred jobs ν = νT is calculated accordingly (recall that ν is the total number of deferred jobs
that is accumulated at the end of the day and that need an appointment during one of the upcoming days):

ν1 =

∞
s=0

∞
u=e1,g+1

(u − e1,g) · Q1(s, u).

For t = 2, . . . , T :

νt = νt−1 +

∞
s=0

∞
u=et,g+1

(u − et,g) · Qt(s, u).

The distribution of the number of deferred jobs, φ, can be calculated as follows. For t = 1, . . . , T :

φt(j) =


∞
s=0

et,g
u=0

Qt(s, u), j = 0

∞
s=0

Qt(s, et,g + j), j > 0,

and
φ = φ1 ∗ · · · ∗ φT ,

where ∗ denotes the discrete convolution operator.

6. Balancing scheduled and unscheduled arrivals

In this section, we link the access and day process in order to maximize the number of unscheduled jobs served during
the day of arrival, given the pre-specified access time service level norm for scheduled jobs. Since unscheduled jobs that
cannot be served within g time slots receive an appointment, in order for a certain CAS to satisfy the access time service
level norm, the deferred jobs φd resulting from that CAS should be accounted for in the appointment request arrival distri-
bution γ d. Therefore, we present an iterative procedure that uses Models I and II to find a candidate CAS in each iteration,
which adapts the number of jobs to schedule by adding the deferred jobs from the previous iteration. The iterative procedure
approximates the optimal value of F , the expected fraction of unscheduled jobs served on the day of arrival.

In the remainder of this sectionwe first present the iterative procedure, followed by twodifferent procedures for finding a
candidate CASwithin each iteration. The first procedure, complete enumeration, finds the optimal CASwithin each iteration,
but is computationally intensive. The second, heuristic, procedure, is not guaranteed to find the optimal CAS in each iteration,
but is very fast and thus applicable to real-life instances. Table 4 summarizes the notation introduced in this section.
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Table 4
Notation introduced in Section 6.

Symbol Description

n Iteration counter
φd(n) Distribution of the number of deferred jobs on day d in iteration n
νd(n) Expected number of deferred jobs on day d in iteration n
γ d(n) Total appointment request arrival distribution on day d in iteration n
ϵ Precision of the iterative procedure’s stop criterion
K(nf ) Capacity cycle option f consisting of (k1(nf ), . . . , kD(nf )) in iteration n
C(nf ) The best CAS given capacity cycle K(nf )

π̄d
j (nf ) The probability that in iteration n under capacity cycle K(nf )j appointment reservations are utilized by appointments on day d

ν∗

C (nf ) E[Total number of deferred jobs in iteration n under capacity cycle K(nf ) and CAS C]

νdCd |j(nf ) E[Number of deferred jobs on day d in iteration n under capacity cycle K(nf ) and CAS C when j appointment slots are utilized by
scheduled jobs]

k(n) Total number of appointment slots to allocate in iteration nwhen heuristically constructing a capacity cycle
ψd(n) Estimated ‘excess capacity’ on day d in iteration n
b Maximum number of appointment slots to swap between days within the capacity cycle in local search procedure
θdt (nf ) Value indicating the attractiveness of planning appointments on day d in time slot t under capacity cycle K(nf )

r Number of neighboring day schedules evaluated in local search procedure

6.1. Iterative procedure

At the start of the iterative procedure, the expected number of deferred jobs is set to zero. Then, a candidate capacity cycle
(using Model I) with accompanying appointment schedule (using Model II) is determined, given the appointment request
arrival processes with rate λd and those of unscheduled job arrivals with rate χd

t . The distribution of the number of deferred
jobs on day d in iteration n is denoted by φd(n), and the expected number by νd(n). If the expected number of jobs that has
to be deferred under the resulting CAS is significantly larger than in the previous iteration, then apparently the reserved
capacity for appointments was not sufficient. In this case, a new iteration starts.

In the subsequent iteration, to account for the jobs that were deferred, the distribution of appointment request arrivals
γ d(n) is set to:

γ d(n) = Poisson(λd) ∗ φd(n − 1),

where Poisson(λd) denotes the Poisson distribution with parameter λd. As such, the appointment requests generated by
deferred jobs are taken into account on the day of occurrence in the previous iteration. Then, a new candidate CAS is
calculated. As more appointment slots are reserved, this may result in more deferred jobs than in the previous iteration.
This iterative procedure is repeated until on each day in the cycle, a balance is found between the anticipated extra demand
for appointments from deferred unscheduled jobs (whichwas νd(n−1)) and the realized deferred unscheduled jobs (which
is νd(n)). The iterative procedure terminates if, for some small ϵ,

|νd(n)− νd(n − 1)| < ϵ, d ∈ {1, . . . ,D}.

It is important to note thatwe aim for balance on a day-by-day basis. Balance just on a cycle basis (|
D

d=1 ν
d(n)−νd(n−1)| <

ϵ) is not sufficient, since only in the case that
νd(n)− νd(n − 1)

 < ϵ, d ∈ {1, . . . ,D}, it is guaranteed that the appointment
requests of deferred jobs occur in the way that was anticipated. Only thenwe can assure that in the access time calculations,
we account for the deferred jobs on the day they occur since the access time calculations that use φd(n − 1), based upon
which the capacity cycle is designed, are still valid forφd(n) in this case. Fig. 3 displays the iterative procedure in pseudocode.

6.2. Complete enumeration

The first method to determine a candidate CAS within an iteration is to apply complete enumeration, which yields an
optimal CAS within each iteration.

Generating capacity cycles. Using Model I, all capacity cycles fulfilling the specified access time service level norm are
generated. Thus, given γ d(n), the set of capacity cycles K = (k1, . . . , kD) that satisfy (y, Snorm(y)) is generated. Suppose that
this set consist ofm elements, then denote these elements for iteration n by K(nf ) = (k1(nf ), . . . , kD(nf )), f ∈ {1, . . . ,m}.
From these elements, the best capacity cycle is selected, which is the capacity cycle that minimizes the expected number of
deferred jobs. To do this, for each element K(nf ), the best CAS C(nf ) is determined.

Determining day schedules. The best CAS’s are determined by applying Model II as follows. First, observe that although in
a capacity cycle K(nf ) there are kd(nf ) appointment slots reserved on day d, not all of these reserved slots are necessarily
utilized by scheduled jobs. Since appointments are planned according to the FCFS principle, we know from the queue length
probability vectors πd(nf ) of Model I, the probabilities of utilizing the first j out of the kd(nf ) reservations under capacity
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Fig. 3. The iterative procedure.

cycle K(nf ). Let us denote these probabilities by π̄d
j (nf ):

π̄d
j (nf ) =


πd
j (nf ), j ∈ {0, . . . , kd(nf )− 1}
∞

r=kd(nf )

πd
r (nf ), j = kd(nf ).

By evaluating each day appointment schedule for d ∈ {1, . . . ,D}, f ∈ {1, . . . ,m} and j ∈ {0, . . . , kd(nf )}, the best CAS
is determined for each capacity cycle K(nf ) (i.e., by complete enumeration). Let νC (nf ) denote the expected total number
of deferred jobs in cycle K(nf ) under appointment schedule C , and let ν∗(nf ) denote the expected total number of deferred
jobs in cycle K(nf ) under the best appointment schedule. Then, for the best CAS, the best CASs are those that minimize:

ν∗(nf ) = min
C
νC (nf ) = min

C

D
d=1

kd(nf )
j=0

π̄d
j (nf ) ν

d
Cd|j(nf ),

where νdCd|j(nf )denotes the expected number of deferred jobs on day dunder capacity cycleK(nf ) andCAS C , if j appointment

slots are utilized by scheduled jobs. Note that Cd
|j is a truncated version of Cd, in exactly the same way thatCd was defined

in Section 5.
Selecting the best CAS. Now, the final step is to select the capacity cycle K(nf ) and accompanying CAS, which is the CAS with
the lowest expected number of deferred jobs, namely:

ν∗(n) = min
f
ν∗(nf ), f ∗(n) = argmin

f
ν∗(nf ), C∗(n) = argmin

C
νC (nf ∗).

6.3. Heuristic procedure

The heuristic procedure aims at finding a CAS quickly. In each iteration, the heuristic generates a limited number of
capacity cycles fulfilling the specified access time service level norm (using Model I), and for each capacity cycle constructs
an appointment schedule (using Model II).
Generating capacity cycles. The first step is to determine k, the total number of appointment slots to distribute over the days
in the cycle. It is set as small as possible in order to minimize the number of deferred jobs, but larger than the expected
demand for appointment slots:

k(n) :=


D

d=1

γ d(n)


.

Second, a constructive heuristic generates a capacity cycle by distributing these k(n) appointment slots over the days in
the cycle, while aiming at minimizing the number of deferred jobs. Let ψd be the estimated ‘excess capacity’ on day d, i.e.,
capacity neither reserved for scheduled jobs nor, in expectation, needed to serve unscheduled jobs:

ψd(n) = R · T − kd(n)−

T
t=1

χd
t .

The constructive heuristic starts with kd(n) = 0 for d ∈ {1, . . . ,D}, and consecutively assigns an appointment slot to the
day d̂ := argmaxd ψd(n), until all appointment slots k(n) have been assigned.
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Third, based on the cycle just generated, a local search procedure increases the number of capacity cycles by, for all
possible combinations of a day d1 and another day d2 in the cycle, constructing all capacity cycles in which b̂ appointment
slots fromday d1 are reassigned to day d2 (where b̂ ∈ {1, . . . , b}, with b a parameter, b ≥ 1). This local search procedure thus
generates at most b ·D · (D− 1) additional capacity cycles. Finally, all generated capacity cycles are evaluated using Model I,
and the m capacity cycles satisfying the access time service level norm are taken along to the second phase of the heuristic
procedure. Note that it couldhappen thatm = 0, inwhich casewe set k(n) := k(n)+1 and repeat the constructive procedure.
Determining day schedules. In the second phase, for each capacity cycle K(nf ), a constructive heuristic generates an initial
day schedule whereupon a local search procedure improves it. For each day d in the cycle, the constructive heuristic aims
at minimizing the number of deferred jobs. Let θdt be the estimated ‘excess capacity’ in time slot t on day d, i.e., capacity
neither reserved for scheduled jobs nor needed to serve unscheduled jobs in time slots t − g + 1 to t:

θdt (nf ) =

t
t̂=max{t−g+1,1}

R − cdt̂ (nf )− χd
t̂ .

The constructive heuristic starts with cdt (nf ) = 0, t ∈ {1, . . . , T }, and consecutively assigns an appointment slot to the
time slot t̂ := argmaxt θdt (nf ), until all appointment slots kd(nf ) have been assigned. If the number of appointment slots
to allocate on day d is the same as in the previous iteration, i.e., kd(nf ) = kd((n − 1)f ∗), we set Cd(nf ) := Cd((n − 1)f ∗)
and do not execute this constructive heuristic. Analogous to Section 6.2, we evaluate the resulting schedule using the prob-
abilities π̄d

j (nf ). Next, we generate a neighboring schedule Cd(nf ′) by randomly selecting a slot with and a slot without a
reservation, and interchanging these. If νd(nf ′) < νd(nf ), we set Cd(nf ′) as our new schedule and proceed generating a new
neighbor from there; otherwise we generate a new neighbor from Cd(nf ). This random search procedure terminates when
r neighbor schedules have been evaluated. Note that our random search procedure is similar to the neighborhood search
heuristic in [26]. Like [26], we also experimented with several local search variants and concluded that random search is
best-performing with respect to the combination of solution quality and computation time.
Selecting the best CAS. Now, each capacity cycle K(nf ) has an accompanying CAS, and the final step is to select the CAS with
the lowest expected number of deferred jobs ν∗(n).

Remark 1 (Convergence). The system is stable when
D

d=1 λ
d
+

D
d=1

T
t=1 χ

d
t


< R · T , so that total demand does not

exceed capacity. In addition, we would like to determine the conditions under which the iterative procedure converges.
Therefore, first observe that since the unscheduled job arrival rate χd

t is fixed and the first iteration starts with no deferred
jobs, i.e., νd(0) = 0, in each iteration it is not possible to choose a CAS for which

D
d=1 ν

d(n) <
D

d=1 ν
d(n − 1). The total

expected number of deferred jobs
D

d=1 ν
d(n) is thus monotonically non-decreasing. Also, if the access time norm Snorm(y)

is set such that it can be satisfied if all jobs are planned, we ensure that in each iteration it is possible to find feasible capac-
ity cycles, i.e., capacity cycles for which S(y) ≥ Snorm(y). However, convergence of the iterative procedure is not assured.
Although not likely for practical instances, it theoretically cannot be guaranteed that the iterative procedure does not keep
jumping between points for which the total expected number of deferred jobs does not change, but without day-by-day
balance, i.e.,

D
d=1 ν

d(n)− νd(n − 1)
 < ϵ, and not |νd(n) − νd(n − 1)| < ϵ, ∀d. If such a case occurs, an additional rule

to act as a tie-breaker is required. We extensively tested the iterative procedure by evaluating numerous different instances
(see Section 7). Convergence was obtained for all instances.

7. Numerical experiments

This section presents the experimental results. Allmethodswere codedwith the CodeGearDelphi programming language
and tested on an Intel 2.5 GHz PC with 4 GB of RAM. We test our methodology on a variety of 36 test instances, each with
different characteristics, and perform a case study. Section 7.1 describes the input for both the test instances and the case
study. The test instances (Section 7.2) provide insight in the execution of our method, and demonstrate the performance of
the iterative procedure bothwith Complete Enumeration (in this section referred to by CE) andwith the Heuristic Procedure
(HP). We present the numerical results for the case study in Section 7.3, where we exhibit the practical potential of our
methodology by presenting an appointment schedule for the mixed system of walk-in and appointment patients at the
CT-scan facility of the AMC.

7.1. Input parameters

This section describes the input parameters for the 36 test instances and for the case study.
Test instances. We consider a facility with one resource, which operates in a cycle of length D = 5 days, where each day
consists of T = 8 slots. We vary over three different arrival patterns for scheduled and unscheduled jobs. The initial demand
per day for appointment requests is given by (λ1, . . . , λ5) = (5, 0, 2, 0, 7) for Pattern 1, (2, 3, 4, 3, 2) for Pattern 2, and
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Fig. 4. Unscheduled job arrival rates per slot per day for the test instances.

(3, 3, 3, 3, 3) for Pattern 3. The arrival rates of unscheduled jobs χd
t in each pattern are displayed in Fig. 4, and are chosen

such that different days in the cycle represent different unscheduled arrival patterns. Note that the total expected demand
for scheduled jobs per cycle is 14, 14, and 15 for Patterns 1, 2, and 3 resp., and the total expected demand for unscheduled
jobs per cycle is 22, 22, and 20.7 resp. Since there are D · T = 40 time slots available within a cycle, the load of the system is
90%, 90%, and 89.25% resp. The access time service level norm is also varied; it is set such that 95% of the scheduled jobs are
served within one, two, or three cycles, i.e., (y, Snorm(y)) ∈ {(5, 0.95), (10, 0.95), (15, 0.95)}. Furthermore, unscheduled
jobs are willing to wait for a maximum of two or four time slots, i.e., g ∈ {2, 4}. We also vary the no-show probability of
scheduled jobs: all scheduled jobs show up, or 15% does not show up, i.e., q ∈ {0, 0.15}. The stop criterion of the iterative
method applies the threshold ϵ = 0.0001. For HP, the maximum number of appointment slots to swap is set to b = 2 and
the number of neighboring day schedules generated is set to r = 10. Table 5 provides an overview of the input parameters.
By taking all possible combinations over three different arrival patterns and service level norms, and two values for both
the unscheduled job patience and the no-show probability, we obtain 36 test instances.
Case study. The AMC has two CT-scanners for elective patients, i.e., R = 2, both available from 8:00 to 16:30 on each week-
day, with time divided in 15-min slots, so T = 34 time slots per day. In the current situation all patients are served on
appointment basis. Based on the expert opinions of the health care professionals who studied all scanning protocols of the
various patient types, 72% of patients are eligible to be served on walk-in basis. To estimate the appointment request and
walk-in arrival rates, one year of data of the CT-scan facility was combined with information on appointment schedules and
referral rates from all outpatient clinics. Both arrival processes followed a weekly cycle, i.e., D = 5. The initial demand per
day for appointment requests is given by (λ1, . . . , λ5) = (12.0, 11.9, 11.6, 13.5, 10.3); Fig. 5 displays the estimated walk-
in arrival rates. These arrival rates result in a load of 62.3%, equivalent to the utilization rate in the data. In line with AMC
policy, the access time service level norm is set such that 95% of the patients who are eventually scheduled are servedwithin
10 days, i.e., (y, Snorm(y)) = (10, 0.95). A patient survey revealed that walk-in patients are willing to wait for a maximum of

Fig. 5. Unscheduled patient arrival rates per slot per day for the case study.
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Table 5
Input parameter settings of the test instances.

Parameter Description Value

Fixed
R Number of resources 1
D Cycle length 5
T Number of time slots 8
ϵ Iterative method’s precision 0.0001
b Maximum number of slots to swap 2
r Stop criterion random search 10

To be varied
λd, χd

t Arrival patterns {Pattern 1, Pattern 2, Pattern 3}
(y, Snorm(y)) Service level norm {(5, 0.95), (10, 0.95), (15, 0.95)}
g Unscheduled job patience {2, 4}
q No-show probability {0, 0.15}

30 min, i.e., g = 2. The no-show rate in the data is 5%, i.e., q = 0.05. As before, the stop criterion of the iterative procedure
applies the threshold ϵ = 0.0001. For HP, the maximum number of appointment slots to swap is set to b = 2. With the
number of neighboring day schedules generated set to r = 10 as for the test instances, the iterative procedure does not
converge within 48 h. When r is small compared to the size of the instance, subsequent iterations may yield considerably
different day schedules, impeding convergence. We gradually increased the value of r until we reached r = 75, for which
the iterative procedure does again converge within reasonable time. Table 6 provides an overview of the input parameters.

7.2. Performance of the iterative procedure

In this section, we first illustrate the execution of the iterative procedure by discussing one of the test instances in detail.
This test instance, Instance 13, has arrival Pattern 1, service level norm (y, Snorm(y)) = (10, 0.95), unscheduled job patience
g = 2, and no-show probability q = 0. After illustrating the execution of the iterative procedure based on this instance, we
discuss its results in detail. Finally, we present the overall results on all 36 test instances, and compare the performance of
CE and HP.
Execution of the iterative procedure. Since the evolution of CE and HP is similar, with minor differences only in the path
followed, we illustrate the execution using CE. CE was executed for Instance 13 and the results obtained from each iteration
are displayed in Table 7. In the first iteration the number of deferred unscheduled jobs is positive on each day of the cycle,
νd(1) > 0, d ∈ {1, . . . ,D}. The total number of deferred jobs is

D
d=1 ν

d(1) = 4.055. Therefore, the deferred jobs are added
to the scheduled arrival stream and a new iteration is started. This procedure repeats until in iteration 14 balance is obtained
for each day, i.e., |νd(n)−νd(n−1)| < ϵ, d ∈ {1, . . . ,D}. FromTable 7 it can be seen that (as described in Remark 1, Section 6)
the total number of deferred jobs is monotonically non-decreasing, while deferrals on the day level are both increasing and
decreasing. The fluctuations are substantial in the first iterations and the system stabilizes after six iterations.

This behavior is also reflected by the dynamics of the capacity cycles found. The total number of slots reserved for
appointments develops as follows: (16, 19, 21, 21, 21, 22, . . . , 22). Again, although the total number of reserved slots


d k

d

is monotonically non-decreasing, for a specific day kd may decrease. For example, the capacity cycles of iterations 3–5 all
have a total capacity of 21, but the one obtained in the third iteration is changed in iteration 4 so that one appointment
is shifted from day 5 to day 3. This change is reversed in iteration 5. The final capacity cycle is obtained in iteration 6. The
only purpose of iterations 7–14 is to obtain the desired balance in the daily deferrals. Note that this is a direct result of the
magnitude of ϵ. If ϵ were>0.0001, the iterative procedure would have stopped earlier.
Results Instance 13. Table 8 presents the final results for Instance 13, for CE and HP. When both procedures have the same
result for a given indicator, the table only presents the result once. The percentage of unscheduled jobs served on the day of

Table 6
Input parameter settings of the case study.

Parameter Description Value

R Number of available resources 2
D Cycle length 5
T Number of time slots 34
ϵ Iterative procedure’s precision 0.0001
b Maximum number of slots to swap 2
r Stop criterion random search 75
(λ1, . . . , λ5) Appointment request arrival rates (12.0, 11.9, 11.6, 13.5, 10.3)
(y, Snorm(y)) Service level norm (10, 95%)
g Unscheduled job patience 2 (i.e., 30 min)
q No-show probability 0.05
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Table 7
Results per iteration step of the iterative procedure using CE.

n Day Tot. app. req. rate Deferral rate Difference Capacity cycle CAS
d γ d νd(n − 1) νd(n) |νd(n − 1)− νd(n − 1)| kd Cd

1 1 5 0 1.133 1.133 1 (1, 0, 0, 0, 0, 0, 0, 0)
2 0 0 0.865 0.865 1 (1, 0, 0, 0, 0, 0, 0, 0)
3 2 0 0.547 0.547 4 (1, 1, 0, 1, 0, 0, 1, 0)
4 0 0 0.637 0.637 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 7 0 0.873 0.873 2 (1, 1, 0, 0, 0, 0, 0, 0)

2 1 6.133 1.133 1.456 0.323 2 (1, 1, 0, 0, 0, 0, 0, 0)
2 0.865 0.865 1.296 0.431 2 (1, 0, 0, 0, 0, 0, 1, 0)
3 2.547 0.547 0.549 0.002 4 (1, 1, 0, 1, 0, 0, 1, 0)
4 0.637 0.637 0.736 0.099 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 7.873 0.873 1.371 0.498 3 (1, 1, 0, 0, 0, 0, 1, 0)

3 1 6.456 1.456 1.456 0.000 2 (1, 1, 0, 0, 0, 0, 0, 0)
2 1.296 1.296 1.296 0.000 2 (1, 0, 0, 0, 0, 0, 1, 0)
3 2.549 0.549 0.952 0.403 5 (1, 1, 1, 0, 0, 1, 0, 1)
4 0.736 0.736 0.715 0.021 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 8.371 1.371 1.752 0.381 4 (1, 1, 0, 0, 0, 1, 1, 0)

4 1 6.456 1.456 1.456 0.000 2 (1, 1, 0, 0, 0, 0, 0, 0)
2 1.296 1.296 1.296 0.000 2 (1, 0, 0, 0, 0, 0, 1, 0)
2 1.296 1.296 1.296 0.000 2 (1, 0, 0, 0, 0, 0, 1, 0)
3 2.952 0.952 1.498 0.546 6 (1, 1, 1, 0, 1, 0, 1, 1)
4 0.715 0.715 0.742 0.027 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 8.752 1.752 1.402 0.350 3 (1, 1, 0, 0, 0, 0, 1, 0)

5 1 6.456 1.456 1.456 0.000 2 (1, 1, 0, 0, 0, 0, 0, 0)
2 1.296 1.296 1.296 0.000 2 (1, 0, 0, 0, 0, 0, 1, 0)
3 3.498 1.498 0.954 0.544 5 (1, 1, 1, 0, 0, 1, 0, 1)
4 0.742 0.742 0.771 0.029 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 8.402 1.402 2.049 0.647 4 (1, 1, 0, 0, 1, 0, 1, 0)

6 1 6.456 1.456 1.456 0.000 2 (1, 1, 0, 0, 0, 0, 0, 0)
2 1.296 1.296 1.296 0.000 2 (1, 0, 0, 0, 0, 0, 1, 0)
3 2.954 0.954 1.495 0.541 6 (1, 1, 1, 0, 1, 0, 1, 1)
4 0.771 0.771 0.721 0.050 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 9.049 2.049 1.794 0.255 4 (1, 1, 0, 0, 0, 1, 1, 0)

.

.

.
.
.
.

14 1 6.456 1.456 1.456 0.000 2 (1, 1, 0, 0, 0, 0, 0, 0)
2 1.296 1.296 1.296 0.000 2 (1, 0, 0, 0, 0, 0, 1, 0)
3 3.497 1.497 1.497 0.000 6 (1, 1, 1, 0, 1, 0, 1, 1)
4 0.743 0.743 0.743 0.000 8 (1, 1, 1, 1, 1, 1, 1, 1)
5 8.897 1.897 1.897 0.000 4 (1, 1, 0, 0, 0, 1, 1, 0)

arrival is 69%, so F = 0.69. This fraction is composed by fractions F 1, . . . , FD that differ from day to day (F d
= (


t χ

d
t −νd)/

t χ
d
t ). For example, since day 4 is a quiet day with respect to unscheduled job arrivals, it is completely filled with

appointments. Only if no appointment request is made in one of the reserved slots, an unscheduled job can be served.
Apparently, it pays off to serve on average only 7% of the unscheduled jobs directly on day 4 in the cycle. This is a result of
the fact that only 3.6% of the unscheduled jobs arrive on day 4, and that accordingly appointments are preferably planned on
this day. The deferred unscheduled jobs stream per day and the expected number of unscheduled jobs served on the day of
arrival are displayed in Table 8,which also reflects that onday4 a small amount of unscheduled jobs is directly servedbut also
relatively few jobs are deferred. The realized service level S(10) = 0.99 is well above the defined service level norm of 0.95.

The resulting capacity cycle is K = (2, 2, 6, 8, 4), with corresponding day schedules as shown in Table 8. Note that to
achieve the service level norm it is required to reserve a buffer capacity of 1.11 to account for variability in appointment
request arrivals, since 22 appointment slots are reserved while the average total number of jobs to schedule within a cycle
is


d(λ

d
+ νd) = 14 + 6.89 = 20.89. The service level norm is achieved with only 5% buffer capacity, thus in this instance

reserved capacity for appointments can be used efficiently.
For day 3, HP finds another day schedule than CE. Because HP employs random search, it may generate different results

when executed multiple times with the same input parameters. Therefore, we ran HP twenty times for each of the test
instances, and kept track of the results for each run. For Instance 13, this procedure found the same capacity cycle as CE in
all runs. In twelve of the twenty runs, however, a different day schedule was found for day 3. Table 8 contains the results
for such a run. Although minor differences in performance measures were found due to the different CAS, these differences
are so small that they do not show up in the other values in Table 8.
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Table 8
End results for Instance 13.

Indicator Description Value

F Fraction unscheduled directly served 0.69
F 1, . . . , F 5 Daily fraction unscheduled directly served 0.78, 0.78, 0.50, 0.07, 0.67
S(10) Service level scheduled jobs 0.99
ν1, . . . , ν5 Deferral rate per day 1.46, 1.30, 1.50, 0.74, 1.90

t χ
1
t − ν1, . . . ,


t χ

5
t − ν5 Unscheduled job service rate per day 5.04, 4.70, 1.50, 0.06, 3.80

L1, . . . , L5 Realized utilization per day 0.88, 0.84, 0.94, 0.96, 0.88

K Capacity cycle (2, 2, 6, 8, 4)
C1 CAS day 1 (1, 1, 0, 0, 0, 0, 0, 0)
C2 CAS day 2 (1, 0, 0, 0, 0, 0, 1, 0)
C3 CAS day 3 (1, 1, 1, 0, 1, 0, 1, 1) (CE)

(1, 1, 1, 1, 0, 1, 0, 1) (HP)
C4 CAS day 4 (1, 1, 1, 1, 1, 1, 1, 1)
C5 CAS day 5 (1, 1, 0, 0, 0, 1, 1, 0)

The realized expected load per day, denoted by L1, . . . , LD, is a result of the capacity cycle, the probabilities that the
reserved appointment slots are utilized by appointment requests and the expected number of unscheduled jobs served on
day of arrival


t χ

d
t − νd


. Each day’s load lies between 84 and 96%.

Results all test instances. Table 9 shows the overall results for all 36 test instances. For HP, we present the minimum (Fmin),
average (Fav), and maximum (Fmax) fraction of unscheduled jobs directly served over twenty runs.

The fraction of unscheduled jobs served on the day of arrival, F , ranges from 63% to 83%. As expected, this fraction in-
creases when unscheduled jobs arewilling towait longer, or when the no-show probability of scheduled jobs is higher. Also,
when y is set less tight, F increases, since there is more flexibility to spread the appointments. However, Table 9 indicates
that this effect is bounded. This is most apparent for arrival Pattern 3; F increases when going from y = 5 to y = 10, but
F remains stable when going from y = 10 to y = 15. This is due to the fact that, regardless of the access time service level
norm, a certain minimum number of appointments is required for the system to be stable.

The conclusion is that the resulting CAS and its performance is the outcome of the complex interaction between the
scheduled job arrival rates λd, the unscheduled jobs arrival patterns χd

t , and the service level requirement Snorm(y).
Comparison complete enumeration and heuristic procedure. Table 9 compares the performance of CE and HP. CE outperforms
HP in 35 out of 36 instances when considering F , the fraction of unscheduled jobs served on the day of arrival. For Instance
3, HP outperforms CE in two runs, while five runs find the same solution, and the remaining 13 runs perform worse. The
differences between the two procedures are small. In 13 of the 36 instances the maximum deviation between the two
procedures is less than 0.01%, and the maximum deviation over all runs of all instances is 3.19%. The average deviation over
all runs and instances is 0.19%. There is no consistency with regard to the influence of the different parameter settings on
how well the two procedures perform compared to each other.

Regarding run time, HP outperforms CE. The average run time for HP is 0.69 min, while the average run time for CE is
481.55 min. This difference will further increase when increasing the problem size, due to the non-linear increase in the
total number of possible CAS’s.

We conclude that CE finds slightly better solutions thanHP.However, the run timeof CEmakes thismethodnot applicable
to analyze large problem instances. Hence, HP is applied to analyze the case study in Section 7.3.

7.3. Case study results

In this section, we present the results for the case study introduced in Section 7.1. We first apply HP to the data obtained
from the CT-scan facility in the AMC with a system load of 62.3%, the so-called base case, and discuss the results. Subse-
quently we evaluate a scenario with increased load, to investigate the performance of our approach under higher loads and
the facility’s growth potential when implementing a mixed system.
Results base case. Table 10 presents the results for the base case. The percentage of unscheduled jobs served on the day of
arrival is 99%. This fraction is composed by fractions F 1, . . . , FD that are similar on each weekday, such that an unscheduled
patient arriving at the CT-scan facility on a particular weekday has a similar probability of being served directly each day.
This is an advantage for patient equity, and also simplifies communication about the mixed system to patients and referring
physicians. Again, the realized service level for scheduled jobs, S(10) = 1.00, is well above the defined service level norm
of 0.95. The resulting capacity cycle is K = (14, 10, 12, 10, 15), with corresponding day schedules which we discuss one-
by-one below.

It turns out that the realized expected load per day, denoted by L1, . . . , LD, is balanced throughout the cycle where each
day has a realized load between 60% and 64%. This is an advantage in terms ofwork load for laboratoryworkers, and therefore
increases the acceptability of the new mixed system for them. Moreover, although a balanced load tends to be viewed as
one of the advantages of an appointment system, and one of the things being at risk in amixed system, these results indicate
that a balanced load can also be achieved in a mixed system.
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Table 9
Results for all instances.

Instance Input settings Results CE Results HP Max. deviation
(y, Snorm(y)) g q Arrival pattern F Time (min) Fmin Fav Fmax Time (min) |(Fmin −F)/F | (%)

1 (05, 95) 2 0.00 1 0.66 938.08 0.65 0.65 0.66 1.30 0.44
2 (05, 95) 2 0.00 2 0.65 467.45 0.63 0.65 0.65 0.57 3.19
3 (05, 95) 2 0.00 3 0.64 337.29 0.64 0.64 0.64 1.14 0.20
4 (05, 95) 2 0.15 1 0.70 911.00 0.70 0.70 0.70 0.97 0.33
5 (05, 95) 2 0.15 2 0.69 503.50 0.68 0.68 0.68 0.67 2.22
6 (05, 95) 2 0.15 3 0.70 272.99 0.70 0.70 0.70 0.99 0.03
7 (05, 95) 4 0.00 1 0.75 967.98 0.75 0.75 0.75 0.93 0.05
8 (05, 95) 4 0.00 2 0.72 781.58 0.72 0.72 0.72 0.69 0.00
9 (05, 95) 4 0.00 3 0.76 303.96 0.75 0.76 0.76 0.97 1.70

10 (05, 95) 4 0.15 1 0.79 612.31 0.79 0.79 0.79 0.76 0.00
11 (05, 95) 4 0.15 2 0.76 434.35 0.76 0.76 0.76 0.49 0.00
12 (05, 95) 4 0.15 3 0.81 287.67 0.81 0.81 0.81 0.83 0.23
13 (10, 95) 2 0.00 1 0.69 760.00 0.69 0.69 0.69 0.97 0.01
14 (10, 95) 2 0.00 2 0.69 467.00 0.69 0.69 0.69 0.46 0.00
15 (10, 95) 2 0.00 3 0.69 287.95 0.68 0.69 0.69 0.89 0.70
16 (10, 95) 2 0.15 1 0.73 537.00 0.73 0.73 0.73 0.76 0.25
17 (10, 95) 2 0.15 2 0.71 474.00 0.71 0.71 0.71 0.40 0.00
18 (10, 95) 2 0.15 3 0.73 264.49 0.73 0.73 0.73 0.72 0.31
19 (10, 95) 4 0.00 1 0.78 802.66 0.78 0.78 0.78 0.66 0.00
20 (10, 95) 4 0.00 2 0.76 372.57 0.75 0.76 0.76 0.48 0.33
21 (10, 95) 4 0.00 3 0.79 292.91 0.79 0.79 0.79 0.80 0.00
22 (10, 95) 4 0.15 1 0.80 527.00 0.80 0.80 0.80 0.60 0.00
23 (10, 95) 4 0.15 2 0.79 384.00 0.78 0.79 0.79 0.35 1.23
24 (10, 95) 4 0.15 3 0.83 219.61 0.83 0.83 0.83 0.57 0.03
25 (15, 95) 2 0.00 1 0.71 722.00 0.71 0.71 0.71 0.72 0.01
26 (15, 95) 2 0.00 2 0.69 456.74 0.69 0.69 0.69 0.41 0.00
27 (15, 95) 2 0.00 3 0.69 321.62 0.68 0.69 0.69 0.87 0.74
28 (15, 95) 2 0.15 1 0.74 530.00 0.74 0.74 0.74 0.56 0.00
29 (15, 95) 2 0.15 2 0.71 472.00 0.71 0.71 0.71 0.40 0.00
30 (15, 95) 2 0.15 3 0.73 291.35 0.73 0.73 0.73 0.78 0.30
31 (15, 95) 4 0.00 1 0.79 525.46 0.78 0.78 0.78 0.62 0.55
32 (15, 95) 4 0.00 2 0.76 368.98 0.76 0.76 0.76 0.42 0.10
33 (15, 95) 4 0.00 3 0.79 323.77 0.79 0.79 0.79 0.80 0.00
34 (15, 95) 4 0.15 1 0.82 524.46 0.81 0.81 0.82 0.49 1.25
35 (15, 95) 4 0.15 2 0.79 358.79 0.79 0.79 0.79 0.35 0.00
36 (15, 95) 4 0.15 3 0.83 233.10 0.83 0.83 0.83 0.58 0.06

Finally, we discuss the resulting day schedules, to explain themoments onwhich the appointments are planned (see also
Fig. 6).

Monday. Only in the first two time slots, both CT-scanners are reserved for appointments. This is due to the very low
unscheduled arrival rates in these time slots, but also to the waiting behavior of unscheduled patients. Since un-
scheduled patients arewilling towait for two time slots, a peak in arrivals has an impact until two slots afterwards.
If appointments were planned at the end of the day, there is no possibility to serve arriving unscheduled patients,
while when planning appointments at slots at the beginning of the day, early unscheduled arrivals can be served
in the third time slot.

Tuesday. The appointments are planned around the unscheduled arrival peaks. It is remarkable that the last appointment
does not occur exactly during the off-peak hours but later, which can also be explained by the aforementioned
delayed impact of unscheduled arrival peaks.

Wednesday. Again, the tendency to plan appointments early on the day is evident. Although the latest time slot has an un-
scheduled arrival rate that is lower than some of the time slots reserved for an appointment, the latest time slot is
not reserved for an appointment, to be able to serve unscheduled patients arriving during interval (15:45, 16:15].

Thursday. As described before, only in the first two time slots, both CT-scanners are reserved for appointments. During
the rest of the day always one scanner is kept free, so to spread the possibilities for unscheduled job service. This
spreading is further promoted by the fact that the two later appointment slots are not planned consecutively.

Friday. The demand for unscheduled jobs is relatively low. Therefore, more slots are reserved for scheduled jobs on Friday,
compared to other days. Again, the appointments are planned around the unscheduled arrival peaks, and the ten-
dency to plan appointments with a two time slot delay after an unscheduled arrival peak can be clearly witnessed
from the appointments planned at 13:15 and 15:15.

The results presented here were found within a run time of 38.5 min, which seems to be a very reasonable amount of
time to generate an appointment schedule that will be updated at most a few times per year.
Results increased load. We constructed the scenariowith higher load by scaling the original appointment request andwalk-in
arrival rates such that the resulting load is 85.0%. Table 11 displays the results for this scenario. These results were found in a
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Fig. 6. The CAS versus the unscheduled patient arrival rates.

run time of 161.5 min, which indicates that the run time remains acceptable under higher loads. Similar to the base case, we
find that appointments are planned in the beginning of the day, and during times when the walk-in rates are relatively low.
Furthermore, we see that also for this case with increased load, the procedure is able to find an appointment schedule that
allows 94% of walk-in patients to be served within 30 min of their arrival. As before, the realized service level is well above
the pre-specified norm, and both the daily fraction of unscheduled patients directly served and the realized utilizations per
day are equally spread over the days.

Concluding, we see that the developed methodology finds a good appointment schedule in a reasonable amount of time
for a real-life instance.
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Table 10
End results for the case study (base case).

Indicator Value

F 0.99
F 1, . . . , F 5 0.99, 0.99, 0.99, 0.99, 1.00
S(10) 1.00
ν1, . . . , ν5 0.20, 0.18, 0.17, 0.21, 0.11

t χ
1
t − ν1, . . . ,


t χ

5
t − ν5 30.16, 32.58, 30.58, 32.17, 25.99

L1, . . . , L5 0.64, 0.63, 0.62, 0.62, 0.60

K (14, 10, 12, 10, 15)
C1 (2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0)
C2 (2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
C3 (2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
C4 (2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
C5 (2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0)

Table 11
End results for the case study (increased load).

Indicator Value

F 0.94
F 1, . . . , F 5 0.94, 0.94, 0.94, 0.94, 0.94
S(10) 1.00
ν1, . . . , ν5 2.68, 2.64, 2.44, 2.62, 2.08

t χ
1
t − ν1, . . . ,


t χ

5
t − ν5 38.76, 42.09, 39.54, 41.59, 33.57

L1, . . . , L5 0.86, 0.85, 0.84, 0.85, 0.84

K (20, 16, 18, 16, 24)
C1 (2, 2, 1, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0)
C2 (2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
C3 (2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0)
C4 (2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0)
C5 (2, 2, 1, 2, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0)

8. Discussion and conclusion

In this article we have outlined a methodology to develop an appointment schedule for facilities with scheduled and
unscheduled arrival streams. The methodology consists of two separate models, one to evaluate the access and the other
to evaluate the day process. The two models are linked by an iterative algorithm. An advantage of this modular approach is
that the models and the algorithm can be updated separately, so that a high level of flexibility is obtained.

In order to generate suitable appointment schedules, two methods, complete enumeration and a heuristic procedure,
were employed and tested on a considerable number of test instances. Both methods performwell, with complete enumer-
ation slightly outperforming the heuristic procedure on solution quality, while the latter is significantly faster. The heuristic
procedure was then used to develop appointment schedules for the CT-facility at the AMC, thereby demonstrating its prac-
tical value. For the instances considered, our methodology balances both the workload and the percentage of unscheduled
jobs served on the day of arrival throughout the cycle, while realizing service levels for scheduled jobs well above the de-
fined service level norms. The fraction of unscheduled jobs served on the day of arrival is well above 90% for the considered
practical instances.

Some extensions can readily be incorporated in our approach. For instance, the management of a facility may want to
incorporate service levels on more than one of the percentiles of the access time distribution. Also, different choices for the
time jobs arewilling towait (job patience) could be studied, just as overbooking to anticipate for no-shows. Furthermore, the
access time for scheduled jobs and the fraction of unscheduled jobs that cannot be served on the day of arrival are outcomes
of Model I and Model II respectively, and serve as input for the iterative procedure. Of course, other model outcomes could
be chosen as well. Another direct extension would be to incorporate planned maintenance of a service facility: the number
of available slots in the day process can easily be amended by closing slots.

The practical contribution of our methodology is that it supports the realization of one-stop shopping at outpatient
care facilities. In many settings one-stop shopping is highly valuable to patients to offer the combination of consultations,
diagnostics, and treatments during a single visit. By one-stop shopping the number of hospital visits can be reduced, and
required treatments can earlier be commenced and better be coordinated.

To conclude, the case study for the AMC showed the advantages of offering combined walk-in and scheduled service at
its CT-scan facility. The research project was performed in close cooperation with healthcare professionals of the Radiology
department of the AMC. Based on our findings the AMC decided to start offering walk-in service by implementing a mixed
appointment/walk-in system.
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