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Motivated by the need to characterize the spatio-temporal structure of turbulence
in wall-bounded flows, we study wavenumber–frequency spectra of the streamwise
velocity component based on large-eddy simulation (LES) data. The LES data are
used to measure spectra as a function of the two wall-parallel wavenumbers and
the frequency in the equilibrium (logarithmic) layer. We then reformulate one of the
simplest models that is able to reproduce the observations: the random sweeping
model with a Gaussian large-scale fluctuating velocity and with additional mean
flow. Comparison with LES data shows that the model captures the observed
temporal decorrelation, which is related to the Doppler broadening of frequencies.
We furthermore introduce a parameterization for the entire wavenumber–frequency
spectrum E11(k1, k2, ω; z), where k1, k2 are the streamwise and spanwise wavenumbers,
ω is the frequency and z is the distance to the wall. The results are found to be in
good agreement with LES data.
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1. Introduction

Characterization of the spatio-temporal structure of wall-bounded turbulence at high
Reynolds numbers is important from both a fundamental and an applied point of
view. From a fundamental perspective, one is, for example, interested in the evolution
of spatially extended boundary layer flow structures as well as their time evolution
(see, e.g., Smits, McKeon & Marusic 2011, Jimenez 2013 and references therein).
The region in which both the mean velocity and the variance exhibit a logarithmic
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dependence with distance to the wall as (possibly) universal statistical features is of
particular interest. From a practical viewpoint, a space–time description of fluctuations
is, for example, important to understand correlations of wind-turbine power output at
different points and times inside wind farms interacting with the turbulent atmospheric
boundary layer.

Here, we study the space–time correlations of a high-Reynolds-number wall-
bounded flow in the logarithmic layer. Spatio-temporal correlations can be equivalently
described in Fourier space, which leads us to the study of the wavenumber–frequency
(k–ω) spectrum in the present work. To capture spatial correlations we are interested
in the joint spectrum as a function of both the streamwise and spanwise wavenumbers,
in addition to the frequency.

To resolve the joint space–time structure in the logarithmic layer, extensive data
are needed to cover the relevant length and time scales of the problem as well as
to allow for sufficient statistical convergence. We are interested in the logarithmic
layer outside the near-wall regions, where viscosity is expected to play an important
role. While direct numerical simulations (DNS) would be prohibitive, large-eddy
simulations (LES) enable us to resolve a comparably extended logarithmic region at
affordable computational cost. In turn, this allows us to accumulate long-time data
to capture the temporal structure with sufficient resolution. As the smallest turbulent
scales are not resolved by LES, small-scale effects are explicitly neglected (see He,
Wang & Lele 2004 for analyses of related issues). Because decorrelation in turbulent
flows is dominated by large-scale sweeping effects, we anticipate that the inherent
limitations of LES will not greatly affect the results, although we must keep these
limitations in mind, from the outset.

In addition to evaluating the spectra from numerical data, we also introduce a model
for the k–ω spectrum. While theoretical models for the streamwise wavenumber
spectrum exist, for example in terms of the ‘attached eddy hypothesis’ (Perry &
Chong 1982) and classical Kolmogorov phenomenology, less emphasis has been
placed on including temporal correlations in analytically tractable models. Two
major processes affect time correlations of turbulent fluctuations: advection with a
mean velocity as well as turbulent advection with large-scale eddies, also known as
random sweeping. The latter effect has been proposed as a mechanism for temporal
decorrelation by Kraichnan (1964) and Tennekes (1975) and has been studied in
many works ever since. To name only a few, Lumley (1965), Wyngaard & Clifford
(1977) and George, Woodward & Hussein (1989) have studied the influence of
large-scale flow variation on measured one-dimensional spectra in the context of
establishing corrections to Taylor’s frozen flow hypothesis. The validity and limitations
of the random sweeping hypothesis have been studied, for example, by Praskovsky
et al. (1993) and by Katul et al. (1995). With respect to atmospheric flows, a
recent monograph by Wyngaard (2010) provides an excellent account of the matter.
Chen & Kraichnan (1989) (see also references therein) discuss various theoretical
implications of random sweeping decorrelation. Spatio-temporal correlations in the
context of wall-bounded flows have been discussed with respect to the question of
local convection velocity, for example, by Fisher & Davies (1964), Wills (1964) and
more recently by Del Álamo & Jiménez (2009). Space–time correlations in turbulent
shear flows have recently been discussed by He & Zhang (2006) and Zhao & He
(2009), who proposed an elliptical parameterization of space–time correlations of
turbulent velocity fluctuations. We note in passing that experimental measurements
of the k–ω spectrum have been discussed by LeHew, Guala & McKeon (2011). A
recent review on the history of space–time correlations in turbulent flows is given by
Wallace (2014).
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In the derivation of our model we combine some of these ideas to obtain a
parameterization for the full k–ω spectrum of the streamwise velocity, E11(k1, k2, ω; z),
where k1, k2 are the streamwise and spanwise wavenumbers, ω is the frequency and
z is the distance to the wall in the equilibrium layer. Extending a recent work by
Wilczek & Narita (2012), the model is obtained from a linear advection equation
featuring mean flow and large-scale random sweeping advection. We show that the
advection model predicts the k–ω spectrum as a product of the wavenumber spectrum
and a frequency distribution. To test this prediction, we evaluate the wavenumber
spectrum as well as the mean and sweeping velocities from LES data, construct the
k–ω spectrum based on the linear advection equation and compare it with the k–ω
spectrum obtained from the LES data.

For practical purposes also an analytical model parameterization for the full
spectrum is desirable. In the final part of the paper we combine classical asymptotic
behaviour of spectra from homogeneous isotropic turbulence with parameterizations
of boundary layer flows to provide a parameterization of the k–ω spectrum which is
then also compared with the data.

2. Large-eddy simulation results

The results presented in this section are obtained from an LES of (wall-modelled)
fully rough-wall turbulent (half) channel flow. In these simulations the mean
flow is driven by a constant pressure gradient in the streamwise direction. The
computational domain is Lx/H × Ly/H × Lz/H = 4π × 2π × 1, discretized on a grid
with 1024 × 512 × 256 grid points. As usual, the imposed pressure gradient and
the domain height H can be used to define the imposed friction velocity u∗, with
the pressure gradient equalling −u2

∗/H. The flow is fully developed and periodic
in both the streamwise and spanwise directions. The LES code uses pseudo-spectral
discretization in the horizontal directions and an energy-conserving second-order finite
differencing scheme in the vertical direction (Albertson & Parlange 1999; Porté-Agel,
Meneveau & Parlange 2000; Bou-Zeid, Meneveau & Parlange 2005). The imposed
roughness scale at the ground is z0/H = 10−4, where a standard equilibrium wall
model is used to prescribe the wall stress. The subgrid-scale stresses are modelled
with the scale-dependent Lagrangian model (Bou-Zeid et al. 2005). The presented
simulation corresponds to case D2 from Stevens, Wilczek & Meneveau (2014), where
further details about the simulation can be found. The time step has been fixed at
2.5 × 10−5H/u∗, and data have been gathered during a period of 8.2 × 104 time
steps after the statistically stationary state has been reached. For later post-processing,
8200 snapshots of the velocity field (i.e. every tenth time step) from five horizontal
planes at varying distances from the wall have been stored. To calculate the spectra,
windowing has been used in the time domain. In this paper we present results
for a fixed height z/H ≈ 0.154, but we have checked their validity for a range of
different heights within the logarithmic layer, which is the topic of another publication
(Wilczek, Stevens & Meneveau 2015).

Figure 1 shows space–time plots of the streamwise velocity component, in both
the streamwise and spanwise directions. The cut along the streamwise direction
(a) clearly shows signatures of mean-flow advection as well as random sweeping
effects. Compared with this, the cut along the spanwise direction (b) lacks the
advection with the mean flow, which leads to a quite different space–time pattern,
dominated by large-scale random sweeping effects as well as the temporal evolution of
the small-scale fluctuations. The streamwise wavenumber spectrum of the streamwise
velocity component is depicted in figure 1(c). Although no clear scaling behaviour is
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FIGURE 1. Space–time plots of the streamwise velocity fluctuations, along the
streamwise (a) and spanwise (b) directions from LES at z/H ≈ 0.154 (colour bar
in units of the friction velocity u∗). (c) Streamwise wavenumber spectrum of the
streamwise velocity component along with the frequency spectrum, interpreted in
terms of wavenumber using Taylor’s hypothesis (k1 = ω/U(z), where U(z) denotes the
height-dependent mean velocity).
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FIGURE 2. The k1–ω spectra of the streamwise velocity component at z/H ≈ 0.154:
(a) the spectrum evaluated entirely from LES; (b) the spectrum obtained from (3.6), for
which only the wavenumber spectrum and the mean and random sweeping velocities (U≈
19.0 u∗, 〈v2

1〉 ≈ 4.33 u2
∗ and 〈v2

2〉 ≈ 1.70 u2
∗) evaluated from the LES data have been used;

(c) normalized cuts through the k1–ω spectrum from LES (coloured thick lines), along
with the results from the linear random advection model (black lines). The wavenumbers
for the cuts are indicated in (a).

observed due to the limited resolution of the LES, the spectrum is not incompatible
with two distinct ranges, an approximate k−1

1 scaling at low wavenumbers (associated
with the log region of the flow below k1z ∼ 1) and an ∼k−5/3

1 range at higher
wavenumbers. We have also evaluated the frequency spectrum, interpreted as a
wavenumber spectrum by means of Taylor’s hypothesis for comparison. As expected
for a moderate turbulence intensity of approximately 11 % at this height, the
frequency spectrum compares well across a broad range of scales. Only close to
the high-wavenumber cutoff do differences become apparent, as the pronounced LES
wavenumber cutoff is smeared out in the frequency domain. These results indicate
that evaluation of the spatial correlation in terms of the k1 spectrum or the temporal
correlations in terms of the ω spectrum (using Taylor’s hypothesis) alone yields nearly
identical information.

Further insights can be gained from studying the joint k1–ω spectra. Figure 2
shows the k1–ω spectrum of the streamwise velocity component, i.e. the spectrum
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resolved with respect to the streamwise wavenumber and the frequency. It is obtained
by first calculating the spectrum of a space–time slice of the streamwise velocity
component in the streamwise direction. Averaging over the spanwise direction is
used to increase the statistical convergence. As can be inferred from figure 2(a), the
spectrum is tilted towards positive frequencies due to the Doppler shift induced by
the mean velocity. Moreover, the Doppler broadening due to the random advection is
clearly visible. Both effects become more pronounced with increasing wavenumber.
It is interesting to note that also the low wavenumbers feature a significant Doppler
broadening. This aliasing effect can be attributed to contributions from modes in the
spanwise and vertical directions not resolved in this projection. We note that the
observed magnitude of Doppler broadening depends on the resolution of the LES; for
a better resolved LES higher modes with larger Doppler broadening contribute to the
aliasing. From the data sets suited for the current study in terms of stored temporal
resolution, we therefore use the one with the highest spatial resolution available.

3. Linear random advection model

In this section we present a compact rederivation of the linear random advection
model. In spite of its very strong inherent assumptions and limitations, it will
be shown to provide excellent predictions of the measured k–ω spectrum of the
streamwise velocity component u in a horizontal plane. As summarized in § 1, the
subject has a rich history, and various formulations for the random sweeping model
have been introduced (Kraichnan 1964; Lumley 1965; Tennekes 1975; Wyngaard &
Clifford 1977). Additional background on the presently used formulation is provided
by Wilczek & Narita (2012), in which a similar model spectrum has been worked
out for homogeneous isotropic turbulence with mean flow.

The starting point of the model derivation is to consider the advection of the
streamwise velocity fluctuations u, assumed to be statistically homogeneous, in a plane
at height z with a mean velocity U(z)=U(z)e1, where e1 is the unit vector pointing
in the streamwise direction. Additionally, large-scale random advection by a planar
velocity field v with zero mean is included. We make the strong assumption of scale
separation between the large-scale velocity field and the fluctuating velocity u, such
that the random advection velocity can be considered to be approximately constant in
space and time compared with the small-scale velocity fluctuations u being advected.
Randomness is included by assuming a Gaussian ensemble distribution for v with
covariance 〈vivj〉(z). With these assumptions we are in first approximation led to
a linear advection equation (u is treated as a passive scalar). The equation can be
conveniently written in Fourier space for the planar Fourier transform of the velocity
fluctuation at a given height z:

∂

∂t
û(k, z, t)+ i(U + v) · k û(k, z, t)= 0, (3.1)

with k representing the streamwise and spanwise wavenumbers, k = (k1, k2)
T. It

should be noted that this equation represents a combination of Taylor’s frozen eddy
and the Kraichnan–Tennekes random sweeping hypotheses (Taylor 1938; Kraichnan
1964; Tennekes 1975).

We would also like to stress that the assumption that there are no dynamical
interactions between the mean velocity, the random advection and the turbulence
cannot be strictly true (Praskovsky et al. 1993; Katul et al. 1995). It is used here as
the simplest possible model for the purpose at hand. Conveniently, advection of u with
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constant large-scale velocities implies that an initially solenoidal small-scale velocity
field remains solenoidal, such that we do not need to explicitly include a pressure
term to enforce the divergence-free condition. In this approach we are neglecting the
effect of shear on the propagation and sweeping velocities. Such effects could be
included, for example, as a shear-enhanced sweeping velocity as proposed by Zhao
& He (2009). Solution of (3.1) yields

û(k, z, t)= û(k, z, 0) exp[−i(U + v) · k t]. (3.2)

This result can be used to obtain the two-time covariance of Fourier coefficients.
Together with the assumption that v and the initial condition for u are statistically
independent we obtain

〈û(−k, z, t)û(k, z, t+ τ)〉 = 〈û(−k, z, 0)û(k, z, 0)〉〈exp[−i(U + v) · k τ ]〉. (3.3)

This result directly translates into a relation between the instantaneous and the two-
time wavenumber spectrum:

E11(k, τ ; z)= E11(k; z)〈exp[−i(U + v) · k τ ]〉. (3.4)

We now evaluate the average on the right-hand side explicitly. The mean velocity U
is assumed to be the same across all realizations, whereas we assume a Gaussian
ensemble distribution for the large-scale random advection velocity v. Under these
assumptions, the integration over a Gaussian probability distribution for v can be
carried out analytically, and we obtain for the average in (3.3) and (3.4)

〈exp[−i(U + v) · k τ ]〉 = exp[−iU · k τ ] exp[− 1
2 〈(v · k)2〉τ 2]. (3.5)

The same term for the random sweeping contribution has, for example, been obtained
by Wyngaard & Clifford (1977). A Taylor expansion retaining only the first two terms
has been studied by Lumley (1965). Here, we take the final step to obtain the k–ω
spectrum by an additional Fourier transform into frequency space, yielding

E11(k, ω; z)= E11(k; z)[2π〈(v · k)2〉]−1/2exp
[
−(ω− k · U)2

2〈(v · k)2〉
]
. (3.6)

In the framework of the linear advection equation we thus obtain the k–ω spectrum
as a product of the wavenumber spectrum with a Gaussian frequency distribution. The
mean of this distribution is parameterized by the mean velocity, whereas the variance
is related to the covariance of the large-scale random advection velocity. The mean
velocity leads to a Doppler shift of frequencies, whereas the random advection results
in a Doppler broadening. We note in passing that the Gaussian frequency contribution
is a direct consequence of the quadratic τ dependence in the exponential in (3.5).
This quadratic dependence is related to assuming a constant-in-time large-scale
random advection velocity. The model can be generalized to include temporal
decorrelation of the large-scale sweeping velocity, which affects the shape of the
frequency distribution.

In figure 2(b) we test the prediction of the model for a fixed height z/H≈ 0.154. To
this end, we obtain the wavenumber spectrum of the streamwise velocity component
resolved with respect to the streamwise and spanwise wavenumbers from LES.
Moreover, the values of the mean velocity and the variance of the streamwise
and spanwise random advection (approximated by the variance of the streamwise
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and spanwise velocity components) have been obtained from LES. The joint k–ω
spectrum is then evaluated according to (3.6) before it is projected to the streamwise
wavenumber and frequency. We note that this comparison does not involve any
adjustable parameters. Figure 2 shows that the resulting spectrum captures the
Doppler shift and broadening, including the non-vanishing Doppler broadening at
low wavenumbers, quite well. On projecting the spectrum to the k1–ω-plane, as
shown in figure 2, an aliasing-like effect takes place: the spectral energy for a
fixed k1 and ω contains contributions from all k2. As a consequence, the Doppler
broadening associated with high k2, for example, also contributes to low k1. One
of the immediate consequences is that the k1–ω spectrum exhibits a non-vanishing
Doppler broadening at k1 = 0. This observation demonstrates that at least two spatial
directions have to be taken into account in order to reproduce the ‘aliasing’ by
random sweeping effects (an early model focusing on the streamwise direction only
was lacking this effect (Wilczek et al. 2014)).

The prediction of the model can be tested more quantitatively by considering
normalized cuts through the k1–ω spectrum, as presented in figure 2(c). The model
captures the frequency distributions from LES quite well, and only slight deviations,
especially in the amplitude of the Doppler broadening, are visible. These could be
related to the various assumptions made in the derivation of the model, including the
neglect of sweeping in the vertical direction. Moreover, a slight asymmetry of the
LES distributions can be noted, which is not captured by the model. The noticeable
transition from Gaussian to non-Gaussian frequency distributions at decreasing
wavenumbers, however, is captured quite accurately by the model. It should be
noted that from these data we did not find it necessary to introduce corrections to the
local convection velocity. Further refinements could make use of the existing body
of work that examines such possible corrections (see, e.g., the works by Krogstad,
Kaspersen & Rimestad 1998 and Del Álamo & Jiménez 2009).

4. Full parameterization for E11(k1, k2, ω; z)
The last section showed that the linear random advection model captures the

frequency part of the k1–ω spectrum. For application purposes a model for the
wavenumber spectrum and parameterizations of the mean velocity and the random
advection effects are desirable. This is the topic of this section.

The spectrum of the streamwise velocity component resolved with respect to the
streamwise and spanwise wavenumbers already contains a considerable amount of
information. Practical model parameterizations for joint streamwise–spanwise spectra
are not firmly established, although a number of experimental measurements have
been presented, for example, by Tomkins & Adrian (2005). On the other hand,
observations (see, e.g., Marusic et al. 2013) suggest that the streamwise wavenumber
spectrum E11(k1; z) for a range of heights in the logarithmic layer takes the form

E11(k1; z)=



C1

κ2/3
u2
∗H, k1 6 1/H,

C1

κ2/3
u2
∗k
−1
1 , 1/H < k1 6 1/z,

C1

(
u3
∗
κz

)2/3

k−5/3
1 , k1 > 1/z.

(4.1)

Here, C1 = (18/55)CK is the Kolmogorov constant for the streamwise wavenumber
spectrum related to the Kolmogorov constant CK ≈ 1.6 from the energy spectrum
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function and κ ≈ 0.4 is the von Kármán constant. The mean energy dissipation ε is
estimated as ε = u3

∗/(κz). It should be noted that the functional form (4.1) implies
a logarithmic behaviour for the variance as a function of the distance from the wall
(Perry, Henbest & Chong 1986; Davidson, Krogstad & Nickels 2006). Less is known
about E11(k2; z). We assume a −5/3 range for k2 > 1/z and a constant behaviour
for k2 6 1/z, which appears to be a reasonable working hypothesis based on our
limited-resolution LES data.

These considerations serve as guiding conditions for the parameterization of the
joint wavenumber spectrum E11(k; z). In the following E11(k; z) is defined on the
half-plane with positive k1 as well as positive and negative k2.

To model the high-wavenumber part of the model we assume isotropic turbulence
obeying Kolmogorov scaling. The wavenumber spectrum in this range, in the
following denoted as E>11, can then be related to the spectral energy tensor for
homogeneous isotropic turbulence,

Φij(k̃)= E(k̃)

4πk̃2

(
δij − k̃ik̃j

k̃2

)
, (4.2)

where k̃ = (k1, k2, k3)
T is the three-dimensional wavevector and E(k̃) is the energy

spectrum function for which we assume a Kolmogorov spectrum E(k̃)= CKε
2/3k̃−5/3.

To obtain a simple analytical result we assume an infinitely extended inertial range,
for which the wavenumber spectrum E>11 is obtained by

E>11(k; z)= 2
∫

dk3Φ11(k̃)=
∫

dk3
E(k̃)

2πk̃2

(
1− k2

1

k̃2

)
= Γ ( 1

3)CK

5
√

πΓ ( 5
6)
ε2/3

[
1− 8

11
k2

1

k2

]
k−8/3,

(4.3)
with Γ (1/3)/(5

√
πΓ (5/6))≈ 0.268 (here, Γ denotes the gamma function). As can be

expected, even for isotropic turbulence E>11 is not an isotropic function in the plane,
i.e. it depends not only on k but also on k1.

At the large scales, wall-bounded flows are clearly anisotropic. To approximate the
low-wavenumber transition between a k−1

1 and a constant spectrum, we use a power-
law blending according to

E<11(k; z)=D(z)zu2
∗[(1/H)β + kβ1 ]−1/β, (4.4)

with a non-dimensional height-dependent amplitude D(z), which is determined
numerically such that the fluctuation variance of the model spectrum matches the
one obtained from the log law (4.8) below. The exponent β = 4 is chosen by
empirical fitting.

Between these two regimes we smoothly blend with a sigmoidal function θα(x)=
(tanh[α log(x)] + 1)/2, where α controls the steepness of the step. We choose α = 4
in the following. Combining these individual pieces, our model wavenumber spectrum
takes the form

E11(k; z)= [1− θα(kz)]E<11(k; z)+ θα(kz)E>11(k; z). (4.5)

Figure 3 shows a comparison of the streamwise–spanwise spectrum from LES data
and the model spectrum at z/H≈ 0.154. While the qualitative features compare quite
well, the LES spectrum, as compared with the model, exhibits a more pronounced
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FIGURE 3. (a) Spectrum of the streamwise velocity component from LES at z/H≈ 0.154,
resolved with respect to the streamwise and spanwise wavenumbers. (b) Model spectrum
(4.5). (c,d) The same as (a,b) but in premultiplied representation.

large-scale anisotropy and a faster decay at large wavenumbers. This means that
the current model wavenumber spectrum leaves room for improvement with respect
to capturing the statistical features of the large scales as well as of the turbulent
fluctuations on smaller scales. We furthermore note that the model wavenumber
spectrum (4.5) only approximately reduces to the one-dimensional spectrum (4.1). In
particular, the low-wavenumber range deviates slightly from a clean −1 range (not
shown). This is related to the circular blending of the two contributions and aliasing
of the −5/3 range of the model spectrum to the low-k1 range.

As seen in § 3, the temporal part of the model includes a Gaussian frequency
distribution with a mean µ(z)= k1U(z) and a variance σ 2(z)= 〈(v · k)2〉. We restrict
ourselves to the logarithmic layer, so that for a rough boundary layer with a roughness
length z0 the mean velocity profile is well approximated by

U(z)= u∗
κ

log
(

z
z0

)
. (4.6)

The variance of the frequency distribution depends on both components of the random
advection velocity,

σ 2(z)= 〈(v · k)2〉 = 〈v2
1〉k2

1 + 〈v2
2〉k2

2. (4.7)
The cross-term vanishes because 〈v1v2〉= 0. Recently, a logarithmic dependence of the
streamwise velocity fluctuation has also been established (Marusic & Kunkel 2003;
Hultmark et al. 2012; Marusic et al. 2013), and since the major contribution to the
total variance comes from the large scales, we model the variance as

〈v2
1〉 = u2

∗
[
B− A log

( z
H

)]
. (4.8)
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FIGURE 4. (a) Fully modelled k1–ω spectrum of the streamwise velocity component at
z/H≈ 0.154. From the log laws (4.6) and (4.8), we obtain U≈ 18.4 u∗ and 〈v2

1〉 ≈ 4.21 u2
∗.

(b) Frequency distributions for the same model spectrum at various wavenumbers (black
lines) compared with the normalized cuts through the wavenumber frequency spectrum
from LES (coloured thick lines).

Here, A is the ‘Perry–Townsend’ constant and B is a non-universal constant depending
on the specific flow. For our evaluations we obtain A = C1/κ

2/3 ≈ 0.965 and
B = 5C1/(2κ2/3) ≈ 2.41, which can be derived from the model spectrum (4.1) for
the streamwise velocity component. For an extensive discussion on the logarithmic
behaviour of streamwise velocity fluctuations and its relation to a spectral budget
model we refer to Banerjee & Katul (2013). We note, however, that larger values
for A (close to A ≈ 1.25) have also been reported in the literature (see, e.g.,
Marusic et al. 2013). The values of B vary across different numerical data sets
and experiments; however, they are not expected to be universal. To simplify the
model parameterization, we assume that 〈v2

2〉 is proportional to 〈v2
1〉 (which is an

approximation), such that the variance of the frequency distribution takes the form

σ 2(z)= 〈v2
1〉[k2

1 +Ck2
2]. (4.9)

Our LES simulations suggest a typical value of C≈ 0.41 in the range of heights under
consideration.

The entire model for E11(k, ω; z) is thus fully specified by evaluating the prediction
based on the linear advection equation (3.6) in conjunction with (4.3)–(4.9) and the
quoted numerical parameters. Figure 4(a) shows the streamwise k1–ω spectrum for
z/H ≈ 0.154 from the full model. The integration over the spanwise wavenumber,
necessary to obtain the projected streamwise k1–ω spectrum, was carried out
numerically. To this end the analytical model was discretized on a grid matching
the one of the reference LES data presented here. The spectrum agrees well with the
LES data. This is also confirmed by a plot of the normalized cuts, see panel (b) of
the same figure. The good agreement also rests on the fact that the model spectrum
is restricted to the same wavenumber range as the LES data. If we extend the model
spectrum to higher wavenumbers, aliasing effects contribute to additional Doppler
broadening into lower frequencies. This also implies that LES, compared with an
infeasible DNS, underestimates the frequency broadening in the projected streamwise
k1–ω spectrum.

5. Summary

We have evaluated the k–ω spectrum of the streamwise velocity component from
LES data in the logarithmic region of a wall-bounded flow. The frequency distribution
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exhibits a Doppler shift induced by mean-flow advection as well as a Doppler
broadening, which to leading order is caused by large-scale random advection effects.
These effects were then used as the main ingredients for a model for the k–ω
spectrum, leading to the prediction that the joint k–ω spectrum can be written as a
product of the wavenumber spectrum with a Gaussian frequency distribution. We find
that the model predictions agree well with the LES data.

In order to obtain an analytically tractable model for the entire k–ω spectrum, we
proposed a model parameterization in which the Doppler shift and broadening in the
frequency distribution were parameterized by means of log laws for the mean velocity
and the variance. Along with a model for the wavenumber part of the spectrum, this
full model parameterization also exhibits good agreement with the LES data.

Based on the simple idea of large-scale advection of the small-scale fluctuations,
the model can be generalized to include additional effects like shear (see, for
example, Mann 1994 for such an approach). It can also be combined with alternative
parameterizations of the spectral energy tensor. Furthermore, the analytical model for
the k–ω spectrum can be extended to applications such as characterizing velocity
fluctuations in wind farms interacting with the turbulent atmospheric boundary layer,
which is the topic of ongoing work.
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