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Composite materials, as the name indicates, are composed of different materials that yield superior performance as compared to individual

components. Pultrusion is one of the most cost-effective manufacturing techniques for producing fiber-reinforced composites with constant

cross-sectional profiles. This obviously makes it more attractive for both researchers and practitioners to investigate the optimum process

parameters. Validated computer simulations cost less as compared to physical experiments, therefore this makes them an efficient tool for

numerical optimization. However, the complexity of the numerical models can still be ‘‘expensive’’ and forces us to use them sparingly. These

relatively more complex models can be replaced with ‘‘surrogates,’’ which are less complex and are therefore faster to evaluate representative

models. In this article, a previously validated thermochemical simulation of the pultrusion process has shortly been presented. Following this,

a new constrained optimization methodology based on a well-known surrogate method, i.e., Kriging, is introduced. Next, a validation case is

presented to clarify the working principles of the implementation, which also supports the upcoming main optimization test cases. This design

problem involves the design of the heating die with one, two, and three heaters together with the pulling speed. The results show that the

proposed methodology is very efficient in finding the optimal process and design parameters.

Keywords Composites; Constraint handling; Curing; Global optimization; Kriging; Pultrusion; Surrogate; Thermochemical simulation.

INTRODUCTION

Pultrusion is one of the most cost-effective manufac-
turing techniques for producing fiber-reinforced
composites with constant cross-sectional profiles. A sche-
matic view of the process setup is shown in Fig. 1. The
reinforcement is most often fiberglass; however, carbon
fiber, aramid, or mixture can also be used. The reinforce-
ment material is pulled and guided through a resin
impregnation system, which can be either open resin bath
or resin injection chamber. The fiber reinforcement is
fully wetted out such that all the fibers are saturated in
the resin. The reinforcements and the resin pass through
a heated die once the resin impregnates the reinforcement
material. Inside the heated die, the state of the resin
gradually changes from liquid to solid because of the exo-
thermic reaction of the thermosetting resin. The cured
and solidified product is pulled via a pulling mechanism,
and at the end of the process is cut to the desired length.

In order to have a better understanding for the thermo-
chemical aspects of the process, several studies have been
investigated related to the numerical modeling of the
pultrusion process in the literature [1–10]. In the thermo-
chemical analysis, the evolution of the temperature
and the degree of cure inside the heated die has been
predicted during the process. The effects of the thermal
contact resistance (TCR) at the die–part interface on

the pultrusion process of a composite rod have been
investigated by using the control volume-based finite dif-
ference (CV=FD) method in [6], and it was found that the
use of a variable TCR is more reliable than the use of a
constant TCR for the simulation of the process. In the
work [7], three-dimensional (3D) numerical modeling
strategies of a thermosetting pultrusion process were
investigated considering both transient and steady-state
approaches. For the transient solution, an uncondition-
ally stable alternating direction implicit Douglas–Gunn
(ADI-DG) scheme was implemented. The process-
induced residual stresses and distortions have been pre-
dicted in [8]. It was found that tension stresses prevail
at the end of the process for the inner region of the com-
posite since the curing rate is higher here as compared to
the outer regions where compressive stresses are obtained.
The separation between the heating die and the part due
to shrinkage was also investigated using a mechanical
contact formulation at the die–part interface.

Having given an overview about the general activities
and challenges about the multi-physics simulation of
the pultrusion process, it is worth here to note that the
evaluation of these manufacturing process simulations
brings with them long waiting hours due to their compu-
tationally intensive nature [11]. This inherently motivates
the desire to exploit the efficient and cheaper approximat-
ing methods which are called as surrogates, meta-models,
or response surfaces in mathematical parlance [12–16].
Most known surrogates in the literature vary from simple
polynomial regression models and moving least squares
to neural networks [17–19], radial basis functions,
Kriging, and support vector regression [20]. Some of
these methods are listed under machine learning,
statistical learning, or in general supervised learning
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techniques. Despite the variety in their mathematical
construction, they all work on the same consecutive
principles: training (learning) and testing (prediction or
generalization). Training, in simple terms, is the pro-
cedure of learning the behavior of the underlying
response as a function of some chosen parameters, which
can also be called as the mathematical mapping. Once
this mapping is learned considering limited sample size,
e.g., in case of using multidisciplinary manufacturing
process simulations, it can be replaced with the computa-
tionally expensive black-box function. This simpler
model allows the user to predict any response at an
unknown design set at a negligible cost. However, the
sample size easily fall short with respect to the number
of unknowns as well as the competing combinations of
them in engineering design problems [20]. At this point,
reminding the fact that the main purpose of constructing
the surrogate is to use it within a proper search strategy.
The surrogate-based optimization strategies can be
grouped into three subclasses: (i) exploitation-based
techniques, (ii) exploration-based techniques, and (iii)
balanced techniques which combine the first two. The
first group of algorithms is constructed with an emphasis
of finding a local optimum of the predictor; however, the
uncertainty in the surrogate built upon the limited
number of samples is overlooked at the first place which
results in high probability of premature convergence. On
the other hand, the second group of surrogate-based opti-
mization algorithms puts more emphasis on exploring the
design space, thereby reducing the uncertainty in the sur-
rogate, which inevitably makes them slower but more
robust as compared to the first group of algorithms. As
expected from the course of this discussion, the most
important challenge is obviously to construct an algor-
ithm which balances both goals by letting the algorithm
to explore the search space sufficiently but at the same
time avoiding waste of resources and finally reach the
global optimum. Efficient global optimization (EGO),
popularized by the work of Jones et al. [21] and
developed by many others, is such an algorithm com-
posed of two iterative stages: (1) construction of the sur-
rogate and (2) employing an optimization procedure
following a balanced infill criterion.

The remainder of the article is organized as follows.
The section ‘‘Thermochemical Analysis’’ introduces the
numerical model in which the energy equations and
the particular solution technique employed as part of
the thermochemical analysis of the pultrusion process
are given. The section ‘‘Surrogate Model: Kriging’’ pre-
sents the surrogate model, i.e., Kriging, gives an overview

of the standard EGO algorithm, and then details the new
constrained EGO algorithm proposed by the authors.
Following the description of the process optimization
problem, The section ‘‘Results and Discussions’’ first pre-
sents a validation case to visualize the progress of the
algorithm on a two-dimensional optimization problem.
Second, the main process optimization cases involving
one-, two-, and three-heater cases, in which the number
of design variables is varying as 7, 10, and 13, respect-
ively, are given. Finally, the section ‘‘Conclusions’’ pre-
sents the concluding remarks.

MATERIALS AND METHODS

Thermochemical Analysis

The temperature and the degree of cure fields are
obtained using the CV=FD method [6, 7] implemented
in MATLAB mathematical computing environment. In
the numerical scheme, the steady-state approach is used
and the corresponding energy equations for the com-
posite and the die are given in Eqs. (1) and (2), respect-
ively. Here, x3 is the pulling (axial or longitudinal)
direction; x1 and x2 are the transverse directions.

qcCp;c u
@T

@x3

� �
¼ kx1;c

@2T

@x1
2
þ kx2;c

@2T

@x2
2
þ kx3;c

@2T

@x3
2
þ q;

ð1Þ

0 ¼ kx1;d
@2T

@x1
2
þ kx2;d

@2T

@x2
2
þ kx3;d

@2T

@x3
2
; ð2Þ

where T is the temperature; u is the pulling speed; q is
the density; Cp is the specific heat; and kx1, kx2, and
kx3 are the thermal conductivities along x1, x2, and x3

directions, respectively. The subscriptions c and d corre-
spond to composite and die, respectively. Lumped
material properties are used and assumed to be constant
throughout the process. The volumetric internal heat
generation (q) [W=m3] due to the exothermic reaction
of the epoxy resin can be expressed by [5]:

q ¼ 1� Vfð ÞqrHtrRr a;Tð Þ; ð3Þ

where Vf is the fiber volume fraction, qr is the resin den-
sity, a is the degree of cure, and Htr is the total heat of
reaction during the complete cure of the resin sample
which is obtained by using a differential scanning calor-
imetry (DSC) analysis [4, 5]. Rr(a, T) is the rate of degree
of cure da=dt defined by an Arrhenius type of relation
and expressed in Eq. (4). Generally, da=dt is linearly cor-
related with the rate of heat, dH(t)=dt, generated during
the curing of the resin sample, as seen in Eq. (4).

Rr a;Tð Þ ¼ da
dt
¼ 1

Htr

dH tð Þ
dt
¼ K0exp � E

RT

� �
1� að Þn;

ð4Þ

where K0 is the pre-exponential constant, E is the
activation energy, R is the universal gas constant, and

FIGURE 1.—Schematic view of the pultrusion process.
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n is the order of reaction (kinetic exponent). K0, E, and n
can be obtained by a curve-fitting procedure applied to
the experimental data evaluated using the DSC [5].

The transient time integration scheme for da=dt can be
derived by using the chain rule. Using this, the rate of the
cure degree [Eq. (4)] can be expressed as:

da
dt
¼ @a
@t
þ @a
@x3

dx3

dt
¼ @a
@t
þ u

@a
@x3

; ð5Þ

and from Eq. (5), the steady-state relation of the resin
kinetics equation can be expressed by discarding the
time-dependent term as

Rr a;Tð Þ ¼ u
@a
@x3

; ð6Þ

where it is the expression in Eq. (3) which is used in the
steady-state numerical model (i.e., Eq. (1)).

In order to obtain stable results and overcome any
oscillatory behavior in the numerical implementation,
the upwind scheme is used for the discretization of the
convective terms in the energy and resin kinetics equa-
tions. The convergence limits for reaching the steady-
state conditions are set to 0.001�C and 0.0001 for the
temperature and the degree of cure, respectively [6, 7].

In this section, a validation analysis of the present
thermochemical numerical model is performed for the
pultrusion of a thick flat beam. The material of the
pultruded composite is selected as unidirectional
glass=epoxy system and steel is used for the die block
as provided in [5]. The material properties of the com-
posite and resin kinetic parameters are given in Tables 1
and 2 [10], respectively, and assumed to be constant.
Since all the thermal boundary conditions (BCs) are
assumed to be symmetric, a quarter of the pultrusion
domain is considered to be used in the present study
and the corresponding schematic view of this 3D model
is shown in Fig. 2. The details of the parameters used
in the numerical model given in Fig. 2 are listed in
Table 3. The set temperature of the heaters is assumed
to be constant throughout the process [6, 7]. At the sym-
metry surfaces, adiabatic boundaries are defined across
which no heat is transmitted. The remaining exterior sur-
faces of the die are exposed to ambient temperature with
a convective heat transfer coefficient of 10 W=m2K
except for those located at the heating regions. Perfect
thermal contact is assumed at the die–part interface as
also considered by [5, 6, 22]. The temperature and the
degree of cure values of all composite nodes at the die

inlet are set to the resin bath temperature 30�C and 0,
respectively.

The temperature and degree of cure distributions are
calculated at the steady state since pultrusion is a con-
tinuous process such that the composite part entering
the heating die experiences these steady-state profiles
during processing. The predicted evolution of the tem-
perature and cure degree profiles, together with the cor-
responding contour plots at the die exit, are depicted in
Fig. 3. These profiles obtained by using the steady-state
approach are also compared with the ones calculated
using a transient finite element method approach in
Fig. 3 (left), and it is seen that there is a good agreement
between the results. This shows that the proposed
numerical scheme is stable and converged to a reliable
solution. It is also seen from Fig. 3 (right) that nonuni-
form temperature and cure degree distributions, pro-
moting large through-thickness thermal and cure
gradients, are obtained inside the heating die such that
the point B cures faster than the point A. The cure
degree at the die exit is calculated approximately as
0.86 and 0.90 at points A and B, respectively. The
maximum temperature is found to be approximately
217�C at the inner region of the flat plate (i.e., point
A) since the internal heat generation plays a more
important role at the inner regions as compared to the
outer regions.

Surrogate Model: Kriging

Kriging is a well-known surrogate technique that is fre-
quently used to approximate computationally expensive
functions in the course of optimization. The method,
named after a South African geologist Krige [23], was
developed to estimate mineral concentrations within a
particular field and popularized by the work of Sacks
et al. [24], which made it also known as Design and
Analysis of Computer Experiments. The procedure starts
with obtaining a sample data of limited size (i.e., n-design
sets each having d-variables), X¼ {x(1), x(2),. . ., x(n)}T,
and a corresponding vector of scalar responses
y¼ {y(1), y(2),. . ., y(n)}T. It is assumed that if design
points, e.g., x(i) and x(j), are positioned close together in
the design space, their respective function values y(i)

and y(j) are expected to be similar, and vice versa. This
can be formulated statistically by considering the corre-
lation between two points as,

cor y x ið Þ
� �

; y x jð Þ
� �h i

¼
Yd

k¼1
exp �hk x

ið Þ
k

��� � x
jð Þ

k

���2� �
¼ exp �

Xd

k¼1

hk x
ið Þ

k

��� � x
jð Þ

k

���2 !
ð7Þ

TABLE 1.—Thermal properties used in the process simulation [5, 6–9].

p [kg=m3]
Cp

[J=kg K)
kx3

[W=m K]
kx1, kx2

[W=m K]

Composite Vf¼ 0.639 2090.7 797.27 0.9053 0.5592

Steel die 7833 460 40 40

TABLE 2.—Epoxy resin kinetic parameters [5, 6–9].

Htr [kJ=kg] K0[1=s] E[kJ=mol] n

324 192,000 60 1.69
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where hk is a correlation parameter or hyperparameter
(i.e., h¼ {h1,h2,. . .,hd}T) which controls how fast the
correlation changes from one point to the other one along
each dimension. Here, Gaussian basis function is used;
therefore the exponent is fixed at 2 yielding a smooth
and continuous transition at x(i). Equation (7) is used to
build the symmetric correlation matrix (R) of all n-points
in X, which will be used in the process of tuning the
unknown hyperparameter hk to maximize the likelihood
of the assumed Gaussian model on the given dataset.
Having the Kriging model parameters tuned, the next step
is to predict a new response value, i.e., an objective or a
constraint function value, at an unobserved design point
using the sample data that are used to train the Kriging
model. Ordinary Kriging predictor (ŷy) has such a form,

ŷy x�ð Þ ¼ l̂lþ r x�;xð ÞTR xð Þ�1 y xð Þ � 1l̂lð Þ; ð8Þ

where r(x�, x) is the linear vector of correlations between
the unknown point to be predicted (x�) and the known

sample points (x), l̂l is the estimated mean, and 1 is an unit
vector of size n� 1. Ordinary Kriging assumes a constant
term (l̂l) for the global fitting term in the predictor
equation, whereas the universal Kriging uses a known
functional form. The second part on the right side of
Eq. (8) represents the local deviation from the global
term. Kriging is in general known for its good perfor-
mance in fitting complex functional behavior; however,
what makes Kriging a very popular surrogate technique
is in essence its ability to estimate the mean squared error
(MSE) at the unknown point,

s^2 x�ð Þ ¼ r̂r2 1� rTR�1rþ 1� 1TR�1r

1TR�11

� �
; ð9Þ

where s 2̂ represents the MSE estimate. The third term
inside the square parentheses is very small and is often
neglected. Since Kriging is an interpolation method, s 2̂

reduces to zero at the sample points and consequently ŷy
ecomes equal to the corresponding response value.

Efficient Global Optimization (EGO)

Knowing the fact that the Kriging model just con-
structed on the limited number of sample points (initial
sample set) is only an approximation for the underlying
black-box function; thus, new sample points (infill
points) should iteratively be sought to update or in other
words to improve the accuracy of the surrogate. This
update procedure, i.e., infill criterion, may consider
either only focusing on the optimum region of the predic-
tor (running the risk of premature convergence) or to
continue exploring the search space to increase the
overall accuracy thereby having a higher probability of
finding the global optimum. Another strategy is to
balance both efforts, i.e., simultaneously utilizing the
information of the predictor ŷy(x) calculated by Eq. (8)
and the estimation of the variance s2(x) calculated by
Eq. (9). Schonlau [25] and Jones et al. [26] suggested a
criterion for their EGO algorithm which is based on
improving upon the best sample found so far ybest. Recall

FIGURE 2.—Schematic view of the quarter pultrusion domain.

TABLE 3.—The details of the parameters (see Fig. 2) used in the thermo-

chemical analysis by Chachad et al. [5].

# Parameter Description Value

1 Lin Initial free length 0.06 m

2 L1 Length of the first heater 0.27 m

3 L2 Length of the second heater 0.27 m

4 L3 Length of the third heater 0.27 m

5 S1 Spacing between the first and second

heaters

0.015 m

6 s2 Spacing between the second and third

heaters

0.015 m

7 T1 Set temperature of the first heater 270�C
8 T2 Set temperature of the second heater 270�C
9 T3 Set temperature of the 3 rd heater 270�C
10 nheaters Number of heaters 3

11 Ldie Length of the die 0.915 m

12 u Pulling speed 0.0033 m=s

13 2w Width of the die 0.0762 m

14 2h Height of the die 0.0762 m

CONSTRAINED EGO FOR PULTRUSION 541
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that the Kriging predictor is the realization of a Gaussian
process Y(x) with the mean ŷyðxÞ and the variance ŝ 2(x);
therefore, due to the uncertainty in the predictor, an
improvement at a point x can be defined as,

I xð Þ ¼ max ybest � Y xð Þ; 0ð Þ; ð10Þ

which can be used to maximize the expectation of it
(expected improvement) as the infill criterion [27, 28],

E½I xð Þ� ¼ ybest � ŷy xð Þð ÞU ybest � ŷy xð Þ
ŝs xð Þ

� �
þ

ŝs xð Þ/ ybest � ŷy xð Þ
ŝs xð Þ

� �
; ð11Þ

where U(.) and /(.) are the cumulative distribution func-
tion and the probability density function of a normal dis-
tribution, respectively. Readers are referred to [29] for the
derivation of Eq. (11). EGO iterates until a user-defined
stopping criterion is met, e.g., total number of infill points,
change in the objective function, tolerance on MSE, etc.

Constrained EGO

The present article introduces a new parameter-less
penalty function-like approach into the standard EGO
algorithm enabling simultaneously handling of analytical
and numerical constraints, some of which have to be sat-
isfied in order to evaluate the performance of designs
often occurring in engineering optimization problems.

To distinguish these types of constraints from the rest
which are calculated without any concern, they are here
named as rigid constraints, whereas others are named
as flexible constraints. The particular way of dealing with
the rigid constraints in this article avoids the disadvan-
tage associated with the commonly applied intuitive
approach, in which those solutions having not-a-number
(NaN) flag are disregarded while constructing the surro-
gate, eventually resulting in loss of valuable information.

The proposed algorithm starts with the calculation of
the expected improvement E[I(x)] as usual; however, the
best solution found so far, ybest, is replaced with the current
best feasible sample response. Then this modified E[I(x)] is
multiplied with a term called the measure of feasibility,
F(x), to obtain the constrained expected improvement cri-
terion, Ec[I(x)], which will eventually be maximized.

Ec½I xð Þ� ¼ E xð Þ½ �F xð Þ; ð12Þ
The measure of feasibility calculated using the corre-
sponding prediction of each constraint function, bGiGi(x),
and their constraint limit, gi,limit, is given by

Fi xð Þ ¼
0:5þ 0:5erf

ĜGi xð Þ�gi;limit

ŝsi xð Þ

� �
; if erf

ĜGi xð Þ�gi;limit

ŝsi xð Þ

� �
� 1

2:0� erf
ĜGi xð Þ�gi;limit

ŝsi xð Þ

� �
; if 0< erf

ĜGi xð Þ�gi;limit

ŝsi xð Þ

� �
< 1

0; otherwise

8>><>>:
ð13Þ

FIGURE 3.—Temperature and degree of cure evolutions inside die for point A and B (left) and the corresponding contour plots at the die exit (at 915 mm

from the die inlet) (right).
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where ŝsiðxÞ is the MSE prediction of i-th constraint
function. Figure 4 shows the discontinuous function
combining these three conditions.

(i) If all of the constraints are satisfied [first condition in
Eq. (13)], i.e., if ĜGi xð Þ � gi;limit 0 and ŝsiðxÞ is rela-
tively low, it results in Fi(x)¼ 1. The constrained
expected improvement, Ec[I(x)], then becomes
exactly the same as that for the objective function
(E[I(x)]) alone.

(ii) If all of the constraints are satisfied with an
additional condition of at least one of them being
very close to the constraint boundary, the second
condition in Eq. (13) is applied and an Fi(x) value
greater than 1 is obtained.

(iii) If any of the constraints is violated or strictly equal
to the constraint limit [third condition in Eq. (13)],
i.e., if ĜGi xð Þ � gi;limit � 0 without checking any
other measure of feasibility for the rest of the
constraints, Fi(x) is assigned a value 0.

Having the conditions in Eq. (13) explained, Ec[I(x)] can
either be 0 (i.e., case (iii)), E[I(x)] (i.e., case (i)), or E[I(x)]
multiplied with a scalar Fi(x)> 1 (i.e., case (ii)) which pro-
vides that particular solution a higher probability of being
selected in the process of max(Ec[I(x)]). In other words, an
infeasible solution has a zero expected improvement func-
tion value, a feasible solution closer to the constraint limit
is preferred due to the common experience that the opti-
mum solution in general lies on the constraint boundary
in engineering design problems, and a feasible solution well
inside the feasible search region has an identical expected
improvement function value as that of the objective func-
tion alone. This preference also provides the advantage of
updating the most critical regions of the surrogate of the
constraint in a faster manner.

As expected, there is no need for constructing a surro-
gate for an analytical function, because it is cheap to

evaluate; however, there are some special cases to be
considered while dealing with analytical constraints
in the current implementation of the surrogate-based
optimization algorithm,

1. Since they are directly calculated (i.e., there is no
uncertainty, ŝsiðxÞ ¼ 0Þ;FiðxÞ can either be 1 (case
(i)) or 0 (case (iii)).

2. If the analytical constraint being considered is a rigid
constraint and is not satisfied, the infeasible design
xinfeasible is altered with the standard binary-coded
genetic algorithm (GA) that is also used for the opti-
mization of Ec[I(x)]. Instead of starting with a ran-
dom solution, the infeasible solution is replaced
with xbest, which is the current best feasible design
vector, and is then modified in a specific manner:
the individual design variables of xbest which are used
in that particular analytical rigid constraint are kept
the same (i.e., the rigid constraint is automatically
satisfied), but the rest of the variables are perturbed
with the GA operators to provide a diversity.
It should be kept in mind that, in this way, only the
analytical rigid constraints (such as geometrical con-
straints) are ensured to be satisfied and the analytical
or numerical flexible constraints (such as constraints
related to a process response) are evaluated in the
usual way formulated via Eq. (13). This safety issue
can occur either at the execution of the initial
sampling plan or during the maximization of the
constrained expected improvement function; there-
fore, this procedure is added wherever it is necessary
in the constrained EGO methodology.

Description of the Optimization Problem

There are a limited number of studies in the numerical
optimization aspects of the pultrusion process. These
limitations can in general be related to the nature of
the multidisciplinary physics and interactions between
them involved in the process simulation or the challenges
in the field of numerical optimization [11]. The more
physics involved with the use of integrated models, the
more set of parameters need to be considered for the
optimization procedure. Current attempts in optimizing
manufacturing processes (based on simulations) with
the design of experiments techniques will eventually be
replaced or extended by the automated and=or interac-
tive optimization procedures due to the need for efficient
way of calculation of immense number of parameter
combinations. However, even though these optimization
methodologies are efficient in an algorithmic point of
view, they may still suffer from the computing time spent
to evaluate the objective and constraint function values
extracted from the multidisciplinary computer models.

In this section, the optimization problem that the
manufacturers often have to deal with in the pultrusion
process is briefly described, and the mathematical formu-
lation concerning the thermochemical aspects of the
process is presented. It is in essence a scalable problem
where the number of unknowns varies depending on aFIGURE 4.—Feasibility function Fi(x).
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particular design variable, i.e., the number of heaters
(nheaters¼ 1, 2, or 3) used on the heater die configuration.
In the most complex case, there are 13 design parameters
and these are the length, width, and height of the die
(Ldie, w, and h, respectively); the initial free length (Linit);
the length of the heating platens (L1,2,3), the spacing
between the heaters (s1,2), the set temperatures of the hea-
ters (T1,2,3), and the pulling speed (u) as depicted in Fig. 2.
The objective f(x) is to maximize the average cure degree
in composite at the die exit. This is constrained with a
geometrical and a process response-related constraint
as well as the side constraints for the design variables
resulting in a total of 15 constraints in case three heaters
are used. If only one heater is used, the number of
unknowns are reduced to 7 (i.e., Ldie, w, h, Linit, L1, T1,
and u), whereas the number of unknowns increases to
10 in case of two-heater die configuration (i.e., Ldie, w,
h, Linit, L1,2, s1, T1,2, and u). These three optimization
cases are investigated separately in addition to a vali-
dation case having only two unknowns (i.e., L1 and T1)
in order to make it easy to visualize the progress of the
constrained EGO algorithm. The geometrical constraint
makes sure that the length of the die is bigger than the
total length of the initial length, heater, and spacing
between the active heaters. It can be realized that this
constraint can directly be calculated without the need
of a surrogate. At the same time, it is a rigid constraint
which has to be satisfied in order to be able to evaluate
the objective function value or the other constraint
related to the process response, otherwise the simulation
code cannot be executed properly. The process-related
constraint is defined as follows: the maximum tempera-
ture in the composite Tmax should not exceed 240�C. This
constraint function, which is in this context classified as a
flexible constraint, is evaluated with the use of the non-
linear process simulation model that will be replaced with
a surrogate model. This is also the case for the objective
function related to the average cure degree. The general
constrained optimization problem is formulated below:

Maximize : f xð Þ ¼ aavg;exit

subjectto : g1 xð Þ ¼Ldie�Linitþ
Xnheaters

i¼1
Liþ

Xnheaters�1

i¼1
si;

g2 xð Þ ¼Tmax < 240�C;

g3 xð Þ ¼ 0:06�Linit < 0:240m;

g4�6 xð Þ ¼ 0:06�L1;L2;L3 < 0:36m;

g7�8 xð Þ ¼ 0:015� s1;s2 < 0:25m;

g9�11 xð Þ ¼ 150�T1;T2;T3 < 250�C;

g12 xð Þ ¼ 0:75�Ldie < 1:5m;

g13 xð Þ ¼ 0:0016� u< 0:01m=s;

g14�15 xð Þ ¼ 0:0454�w;h< 0:2m; ð14Þ

RESULTS AND DISCUSSIONS

The results of the constrained design optimization
problems related to the pultrusion process are given in

detail in the following subsections. First, the validation
case with two design variables is introduced. Following
this, the results of the three optimization cases (i.e.,
one-, two-, and three-heater configuration with 7, 10,
and 13 design variables, respectively) are presented.
The proposed constrained EGO is run five times for each
optimization case with a different initial sample set and
the best-mean-worst values of these analyses have been
recorded. These are then compared with the results
obtained using the standard GA that is also used to train
the Kriging model and to optimize the constrained
expected improvement function. The GA is run three
times with two different population sizes in each case
to see if it has any effect on the results. It should be noted
that the number of generations is chosen as to have the
total number of generations being greater than or at least
equal to 10 times the number of function evaluations
spent by the constrained EGO in each separate problem
case. For instance, in the one-heater optimization prob-
lem, the initial sample set has been prepared with a total
of 35 samples (i.e., five samples per each design variable
which results in 5� 7¼ 35 number of samples in total)
using an optimized Latin hypercube sampling (LHS).
Then, 70 infill points (i.e., twice the size of the initial sam-
ple set) are iteratively added by the constrained EGO
procedure using the infill criterion, which results in a
total of 35þ 70¼ 105 true function evaluations or pro-
cess simulations. The population size and the total num-
ber of generations of the GA are set up in a way that the
total number of true function evaluations spent by the
GA will be at least 10 times the one spent by the con-
strained EGO (i.e., minimum 105� 10¼ 1050). The
number of generations is set up as 17 when the popu-
lation size is 64 (i.e., 17� 64¼ 1088> 1050) and as 11
when the population size is 96 (i.e., 11� 96¼
1056> 1050). It should also be noted that the population
size of the GA is selected as a multiple of 8 due to the
available number of processors; therefore it is run in par-
allel, and however the comparison is made considering
the total number of function evaluations, not the com-
puting time. The optimization results for the other two
cases are also compared in a similar manner and the
results of the GA runs are summarized in Tables 4–6.

Validation Case: Optimization of the Length and Set
Temperature of the Heater

The validation case is prepared in order to make it
easier to visualize the progress of the constrained EGO
algorithm by reducing the number of unknowns to only
2. The other five design parameters in the one-heater
die configuration is fixed as Linit¼ 0.2 m, Ldie¼ 1 m,
u¼ 0.0016 m=s and w, h¼ 0.0454 m. The set temperature
(T1) and the length (L1) of the first heater are the design
parameters, whereas the objective is to maximize the
average cure degree in the composite at the die exit
(aavg,exit); meanwhile the maximum temperature at any
point in the composite (Tmax) is desired to be kept below
240�C. As a reminder, lower pulling speed indicates that
the composite will stay inside the heating die for a longer
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period, and therefore the temperature distribution will be
more uniform, and what is more to the point is that the
maximum temperature will be relatively higher as com-
pared to the case in which the pulling speed is higher.
The heat input has a directly proportional effect on the
temperature field; hence the design parameters T1 and
L1 should be chosen carefully in order to satisfy the tem-
perature constraint meanwhile maximizing the aavg,exit

(see Fig. 5, left). A simple interpretation of this relation-
ship would indicate that the upper limits of these
unknowns would result in the highest cure degree; how-
ever the maximum temperature would also reach its
maximum value which is above the limit. The response
surface to the right in Fig. 5 shows Tmax� 240, where
the level of zero indicates the constraint limit; therefore,
the negative values represent the infeasible solutions (fig-
ure is rotated for visibility concerns). It should be noted
that the geometrical constraint is automatically satisfied
for any design set, considering the lower limit of the die
length versus the upper limits of the initial spacing and
the length of the first heater (i.e., max(LinitþL1)¼
0.2þ 0.36¼ 0.56 m< 0.75 m). This means that there is
no need to consider this constraint for the validation
case. Two surrogates (i.e., for aavg,exit and Tmax) will be
built in the surrogate-based design optimization pro-
cedure, and moreover the constraint is classified as a flex-
ible constraint where infeasibility condition is allowed.

The surrogate-based optimization procedure starts
with preparing an initial sample set having size of 5 �
k (i.e., k is the number of design variables). The chosen
multiplier coefficient of 5 is up to the user; for instance,
Jones et al. [26] had suggested the use of 10 � k. In this
study, an optimized LHS is used, but it is again up to
the user to select any available uniform space-filling

sampling strategy. The distribution of 10 samples is
shown in Fig. 6 (left) with bold black circles. The Kriging
models of both the objective (aavg,exit) and constraint
(Tmax) functions are constructed upon these 10 design
samples at the beginning of the optimization procedure.
As expected, the initial fitting is not very accurate; the
change in the contour lines can be seen by comparing
with the one built at the last stage of the optimization
procedure (Fig. 11 (left)). According to Fig. 6 (left), the
current optimum of the surrogate built for the objective
function lies roughly at somewhere [L1, T1]¼ [0.25,
240], which is away from the true optimum [L�1, T�1 ]
[0.36, 231.08]. The bold black contour line drawn in
Figs. 6–11 indicates the constraint limit (i.e., of the surro-
gate of Tmax constraint), of which the upper design area is
infeasible. Therefore, referring to Fig. 6, there is only one
infeasible solution in the initial sample set. The surrogate
models constructed for the objective and the constraint
functions are used within the constrained EGO frame-
work (i.e., by maximizing the constrained expected
improvement criterion plotted to the right in Figs. 6–11)
to find out where to add the next infill point. At the same
time, the unconstrained standard E[I(x)] function
[Eq. (11)] is also plotted next to the constrained E[I(x)],
i.e., middle graphs in Figs. 6–11, in order to show the
effect of the constraint handling strategy. The optimum
locations of the standard E[I(x)] and the constrained
one are indicated by a red marker in these figures. As
clearly seen, the optimum of the unconstrained E[I(x)] lies
in the infeasible region. The maximization of the con-
strained E[I(x)] computed using the initial sample set
gives the new update point as [L1

1; T1
1 ]¼ [0.273, 223.83]

(see Fig. 6 (right)). This infill point, marked with the bold
square (‘‘1’’) in Fig. 7 (left), is used to update the Kriging
models of the objective and constraint functions. The
change in the contour lines, especially the one represent-
ing the constraint limit, can be seen in the same figure.
The new infill point (‘‘2’’) is again sought by maximizing
the constrained E[I(x)] function drawn in Fig. 7 (right).
This update loop continues until the user-defined toler-
ance of 0.0001 for the constrained E[I(x)] value is met.
Due to the limitation of the space, some of the update
steps are not shown here. Figure 11 shows the last stage
of the update procedure where the exact optimum is
found after seven infill points, and the contour lines of
the surrogate function surfaces captured the form of the
original functions especially in the region where the global
optimum lies.

Even though the objective space is not multimodal, it is
difficult to find the global optimum since it lies in a
wide flat region, like in the case for the well-known
Rosenbrock function. A gradient-based mathematical
programming algorithm, the sequential quadratic pro-
gramming (i.e., fmincon function in MATLAB
[30]) was used for test purposes and it got stuck on any
arbitrary point along the contour line of the constraint
limit depending on the randomly chosen multiple start-
ing points provided by the user. However, the proposed
algorithm found the exact global optimum in each run
with different initial sample set. This supports how

TABLE 4.—Summary of the results obtained using the constrained EGO

algorithm.

Best Mean Worst

One-Heater Case (7 var., Initial¼ 35, Infill¼ 70) 0.9932 0.9925 0.9918

Two-Beater Case (10 var.. Initial¼ 50,

Infill¼ 100)

0.9962 0.9949 0.9926

Three-Heater Case (13 var.. Initial¼ 65,

Infill¼ 130)

0.9975 0.9970 0.9967

TABLE 5.—Results of three GA runs for the one-heater optimization.

Best Mean Worst

Popsize¼ 64, Gen¼ 17 0.9920 0.99183 0.9917

Popsize¼ 96,Gen¼ 11 0.9916 0.99073 0.9896

TABLE 6.—Results of three GA runs for the two-heater optimization.

Best Mean Worst

Popsize¼ 64, Gen¼ 24 0.9963 0.99612 0.9960

Popsize¼ 96,Gen¼ 16 0.9962 0.99603 0.9959
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FIGURE 5.—(Left) Validation case: Surface plot of the cure degree at the die exit (aavg,exit) as a function of L1 and T1. (Right) Validation case: Surface plot

of the maximum temperature in the composite (Tmax) as a function of L1 and T1.

FIGURE 6.—Validation case: The surrogates of the objective (a) and constraint (b) functions built on the initial sample data (circles) determined with the

LHS.

FIGURE 7.—Validation case: Updated surrogate functions of the objective and constraint functions after one infill point (shown with the square).

FIGURE 8.—Validation case: Updated surrogate functions of the objective and constraint functions after two infill points (shown with the square).
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efficient and robust the proposed methodology is. It
should also be noted that, in order to be able to fairly
evaluate the performance of the procedure, the distance
of the visited points to the global optimum should also
be kept in mind while keeping an eye on the progress
of the decrease in the objective function. In such a flat
region, the overall improvement in the objective function
may be very low; however, the global optimum may lie
far from the current location.

In the following three sections, the main optimization
cases are presented. Due to the high number of variables,
the visualization is not possible and the location of the
global optimum is not predictable due to the higher order
of complexity in the process model and the design prob-
lem. Therefore, the results of the proposed constrained
E[I(x)] algorithm are compared with multiple runs of
the standard binary-coded GA that is also used in the
surrogate-based optimization procedure.

Optimization Case 1: One-Heater Configuration

In this section, the optimization results of the
one-heater die configuration used for the pultrusion
process considering seven variables (Linit, L1, T1, Ldie, u,
w, and h) are given. The initial sample set is prepared with
35 design sets and 70 more are added along the optimiza-
tion procedure. The progress of the optimization, i.e., the
cure degree versus iterations, is shown in Fig. 12. Feasible
solutions are depicted by circles, whereas the infeasible
solutions are drawn with crosses. The initial sampling
set is separated with the dashed line. The global optimum,
max(aavg,exit), is indicated with (-.) line. It should be
recalled that even though the objective values of the
feasible solutions are close to each other, the global opti-
mum is found at the 91st iteration out of 105 iterations
(i.e., 105 true function evaluations or compute-heavy pro-
cess simulations). In order to have more confidence about
the convergence of the algorithm, this proposed algorithm

FIGURE 9.—Validation case: Updated surrogate functions of the objective and constraint functions after three infill points (shown with the square).

FIGURE 10.—Validation case: Updated surrogate functions of the objective and constraint functions after four infill points (shown with the square).

FIGURE 11.—Validation case: Last update on the surrogates of the objective and constraint functions after seven infill points (shown with the square).

Optimum solution is, after seven infill points (total of 17 high-fidelity model runs), [L1, T1]¼ [360 mm, 231.02�C]. Stopping tolerance is 0.0001.
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is executed five times with different initial sample sets, and
the results are summarized in the first row of Table 4.
Figure 12 shows the progress of the best run listed in
the first row of Table 4. The results obtained with the
use of the constrained GA (i.e., three runs with different
initial populations) are also summarized in Table 5. The
criterion for the particular setting of the population size
and the total number of generations is explained in the
Results and Discussion section. It can be clearly seen that
the results obtained using the constrained EGO algorithm
is better than those obtained by the constrained GA with

only 1=10th of the computational cost (i.e., total number
of true function evaluations).

Optimization Case 2: Two-Heater Configuration

The optimization results of the two-heater die con-
figuration used for the pultrusion process considering
10 variables (Linit, L1,2, s1, T1,2, Ldie, u, w, and h) are given
here. The initial sample set is prepared with 50 design sets
and 100 more are added along the optimization pro-
cedure. The progress of the optimization is shown in
Fig. 13. The global optimum is found at the 107th iter-
ation out of 150 iterations. The results of five different
constrained EGO runs are summarized in the second
row of Table 4. Figure 13 shows the progress of the best
run listed in this row of Table 4. The results obtained
with the use of the constrained GA runs (i.e., three runs
with each population size) are also summarized in
Table 6, and they show a quite similarity which supports
the confidence in the proposed methodology. It should be
kept in mind that almost the same results are obtained
with only 1=10th of the computational cost.

Optimization Case 3: Three-Heater Configuration

In this last optimization case study, the results of the
three-heater die configuration used for the pultrusion
process considering 13 variables (Linit, L1,2,3, s1,2, T1,2,3,
Ldie, u, w, and h) are given. The initial sample set is

FIGURE 12.—One-heater optimization case (seven variables, 105

iterations). (-.) indicates the best solution which is (aavg,exit)best¼ 0.9932

and found at the 91st iteration at third run. (aavg,exit)mean¼ 0.9925,

(aavg,exit)worst¼ 0.9918 in a total of five constrained EGO runs.

FIGURE 14.—Three-heater optimization case (13 variables, 195 iterations).

(-.) indicates the best solution which is (aavg,exit)best¼ 0.9975 and found at

the 177th iteration at the third run. (aavg,exit)mean¼ 0.9970, (aavg,exit)worst¼
0.9967 in a total of five constrained EGO runs.

FIGURE 13.—Two-heater optimization case (10 variables, 150 iterations).

(-.) indicates the best solution which is (aavg,exit)best¼ 0.9962 and found

at the 107th iteration at first run. (aavg,exit)mean¼ 0.9949, (aavg,exit)worst¼
0.9926 in a total of five constrained EGO runs.

TABLE 7.—Results of three GA runs for the three-heater optimization.

Best Mean Worst

Popsize¼ 64, Gen¼ 31 0.9975 0.9973 0.9971

Popsize¼ 96,Gen¼ 21 0.9974 0.99711 0.9969
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prepared with 65 design sets and 130 more are added
along the optimization procedure. The progress of the
optimization is shown in Fig. 14. The global optimum
is found at the 177th iteration out of 195 iterations.
The results of five different constrained EGO runs are
summarized in the third row of Table 4. Figure 14 shows
the progress of the best run listed in this row of Table 4.
The results obtained with the use of the constrained GA
are also summarized in Table 7, and they again show
negligible difference which supports the confidence in
the proposed methodology. Here, in Fig. 15, the distance
between each iterative solution (xi) and the global opti-
mum (xbest) is also drawn in order to show the progress
of the algorithm in the design space rather than only
the objective space (Fig. 14). At iteration 177, the norm
(x177 �xbest) vanishes because x177¼ xbest.

CONCLUSIONS

In the present work, a steady-state thermochemical
simulation of the pultrusion of a thick flat beam has
been implemented, validated with the transient solution
given in [6, 7], and optimized using a surrogate-based
optimization methodology, here called as constrained
EGO algorithm. The optimization problem to be solved
has a single objective that is to maximize the average
cure degree at the exit of the heating die. The problem
includes a geometrical and a process-related constraint
besides particular parameter bounds. Three different
cases for the same optimization problem are considered
which also indicates that it is a scalable problem. The
number of variables varies in each case due to the geo-
metrical configuration of the heating die, i.e., the num-
ber of heaters used, nheaters¼ 1, 2, and 3, whereas the
number of parameters, n¼ 7, 10, and 13. A two-variable
optimization case is presented beforehand to make it
easier to visualize the progress of the proposed method-
ology. Findings can be summarized as follows:

1. Due to the compute-heavy nature of the implemented
numerical model of the pultrusion process, an
approximations or the so-called the surrogates of
the objective and constraint functions are con-
structed. Kriging is chosen as the surrogate model.
The procedure starts with an initial set obtained with
the optimized LHS. The infill strategy that is using the
proposed constrained expected improvement cri-
terion is iteratively applied to update (to improve
the accuracy of) the model by simultaneously balanc-
ing the exploitation and the exploration concerns.

2. A new parameter-less penalty function-like constraint
handling methodology is proposed. The selection of
the best response (objective function) value, ybest, in
Eq. (11) differs in the constrained EGO algorithm
in a way that the best feasible objective function value
is selected instead of the overall best one.

3. Analytical and numerical constraints are handled
together. Since it is very straightforward to evaluate
the analytical constraints, surrogates are considered
only for the numerical objective and constraint
functions.

4. A classification of rigid and flexible constraints is
introduced. Rigid constraints are those which have
to be satisfied in order to be able to evaluate the cor-
responding objective or constraint function value of
the design under consideration. For instance, as it is
encountered in this study, the die length should be
bigger than the total length of the active heater
lengths, initial die length, and space between the hea-
ters in order to be able to evaluate the temperature
field (i.e., as a consequence, the cure degree, aavg,exit,
and the maximum temperature at any point in the
composite, Tmax). Instead of directly ignoring such
solutions having a flag of NaN, a fast methodology
to gain a feasible solution is developed by utilizing
the best design vector, xbest. However, this is con-
sidered only for the analytical rigid constraint in this
particular design problem.

5. The results of the three optimization cases are
compared with those obtained with the standard
binary-coded GA that is also used to tune the para-
meters of the surrogate model and to maximize the
constrained expected improvement criterion for the
infill strategy. Both the surrogate-based procedure
and the constrained GA have been run several times
with different starting conditions to be statistically
sure of the convergence of the results. Finally, it is
found that the proposed methodology solves each
design problem at a much lower cost, i.e., 1=10th of
the total number of true function evaluations
(numerical process models) spent by applying a stan-
dard global optimization algorithm (GA).

This is a common methodology where the specific surro-
gate model, Kriging in this case, can be replaced with
another approximation model under one circumstance
that the estimation of the prediction error should be
available in order to compute the constrained expected
improvement criterion. An alternative for the Kriging

FIGURE 15.—Evolution of the norm for the three-heater optimization

problem.
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model, such as the radial basis function or the support
vector regression, can be considered due to the fact that
it computationally gets heavier at high dimensions to
update the model while iteratively computing the inverse
of the correlation matrix.

Optimization problems in engineering in general com-
prise multiple objectives often having conflict with each
other. Evolutionary multiobjective optimization algo-
rithms provide an ideal way of solving this type of prob-
lems, where multiple solutions are sought in parallel,
without any biased treatment of objectives such as weight-
ing constants serving as presumed user preferences. Their
population approach provides an advantage of inherent
parallel processing capability. However, as expected, this
advantage does not come free. Evaluation of multiple
objectives and constraints generally requires a larger
population size and=or more iterations. This obviously
means more function evaluations, which again emphasizes
the need for an efficient surrogate-based optimization
methodology for especially the simulation-based multiob-
jective optimization problems in engineering design.

Although we shall investigate these aspects next, the
current study makes a significant contribution in devel-
oping and applying a surrogate-based design optimiza-
tion method for a practical manufacturing problem in
the pultrusion industry.
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