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From the granular Leidenfrost state to buoyancy-driven convection
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Grains inside a vertically vibrated box undergo a transition from a density-inverted and horizontally
homogeneous state, referred to as the granular Leidenfrost state, to a buoyancy-driven convective state. We
perform a simulational study of the precursors of such a transition and quantify their dynamics as the bed of
grains is progressively fluidized. The transition is preceded by transient convective states, which increase their
correlation time as the transition point is approached. Increasingly correlated convective flows lead to density
fluctuations, as quantified by the structure factor, that also shows critical behavior near the transition point. The
amplitude of the modulations in the vertical velocity field are seen to be best described by a quintic supercritical
amplitude equation with an additive noise term. The validity of such an amplitude equation, and previously
observed collective semiperiodic oscillations of the bed of grains, suggests a new interpretation of the transition
analogous to a coupled chain of vertically vibrated damped oscillators. Increasing the size of the container shows

metastability of convective states, as well as an overall invariant critical behavior close to the transition.

DOI: 10.1103/PhysRevE.91.042202

I. INTRODUCTION

Granular materials, defined as collections of dissipative
particles large enough so thermal fluctuations can be ignored,
are an archetypal study case of complex dynamical systems.
Decades of research have revealed many novel nonequilibrium
phase transitions and collective behaviors [1-6], the study
of which not only has a fundamental physical interest but
also is relevant for many industries [7-9]. Many of these
behaviors show a striking similarity with molecular fluids
or solid phenomena [10-13], and some have even been
successfully described by equilibrium theories [14]. Studying
the origin of these agreements advances our understanding
of far-from-equilibrium states and explores the limits of
continuum descriptions of discrete systems. Furthermore, the
low number of constituents, when compared to molecular
counterparts, makes granular materials particularly suited for
the study of noise effects in spatially extended transitions, a
subject of increasing physical interest due to the ubiquitous
presence of fluctuations in natural phenomena [3,15-18].

In order to keep granular media fluidized it is necessary
to provide energy to the system. Previously, this has been
done in several distinct ways, as, for example, electromagnet-
ically [19,20], by shearing [21], or by boundary forces such as
rotating a drum [22] or vibrating the grains’ container [23].
In vertically vibrated systems several complex collective
dynamic behaviors have been observed, such as segrega-
tion [24,25], pattern formation [6], and phase separation [2].
One particular case of the latter is the granular Leidenfrost
state, where a dense, solid- or fluidlike region is sustained
by a highly agitated low-density gaseous region in contact
with the vibrated bottom wall [26,27]. It is so called because
of the clear analogy with the water-over-vapor phenomenon
observed in molecular fluids in contact with a high-temperature
surface [28]. If the vibration strength is increased, the Leiden-
frost state evolves to a buoyancy-driven convective state [29],
in analogy to Rayleigh-Bernard convection.

In the following work we study the precursors of the tran-
sition from the granular Leidenfrost to the buoyancy-driven
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convective state in the context of bifurcations and critical the-
ory. Previous experimental and simulational works determined
the transition points as a function of the energy injection and
the amount of particles in the system [27,29]. It was also
shown that granular hydrodynamics is able to quantitatively
capture the critical points of this instability by performing a
linear stability analysis of perturbations over the Leidenfrost
state [29,30]. Here we explore further the regions close to
the transition, motivated by the presence of complex transient
dynamics which are expected to be dominated by fluctuations.
This transition is an excellent candidate for studying the
influence of fluctuations in hydrodynamic-like instabilities,
due in part to its similarity with the Rayleigh-Benard insta-
bility present in regular fluids. Our goal is to increase the
knowledge about the origin and evolution of the perturbations
that lead to the instability, from both the microscopic and
macroscopic perspectives, and relate the transition to other
analogous dynamics through an unstable-mode amplitude
equation.

After specifying the system and simulation methods
(Sec. II), we begin by characterizing the two states involved
in the transition (Sec. II A) and then determining the phase
space of the system by means of a convection intensity order
parameter (Sec. III B). With this, we are then able to study
time-dependent transient convective states that are present far
below the transition and show a critically increasing correlation
time as the transition is approached (Sec. III C). Furthermore,
the static structure function allows us to study the evolution
of the relevant length scale in this pattern formation scenario
and see its behavior prior to the transition (Sec. III D). Finally,
it is observed that the amplitude of the critical pattern follows
a growth ratio that is consistent with a quintic supercritical
bifurcation, associated with parametrically driven spatially
extended systems [17,31,32] (Sec. IIIF). We suggest that
the agreement with this universality class comes from the
presence of collective semiperiodic oscillations, so-called
low-frequency oscillations (LFOs), present in density inverted
systems [33]. All results are presented for different boundary

©2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.91.042202

RIVAS, THORNTON, LUDING, AND VAN DER MEER

conditions and sizes of the container, allowing us to observe
the influence of confinement and variations of the total number
of particles.

II. SYSTEM AND SIMULATIONS

The setup consists of a quasi-two-dimensional rectangular
box with an open top, vibrated in the vertical direction.
Two different box widths are considered, defining the narrow
system, with [, = 50, and the wide one, with [, = 400. The
depth of the container, on the other hand, is kept constant,
I, = 5; a schematic representation of the studied geometries
is shown in Fig. 1. Here, and in what follows, we use
dimensionless quantities with d as length scale and /d/g as
time scale and thus /g/d as velocity units; when necessary,
dimensional quantities will be distinguished by a tilde, i.e.,
I =1I.d. Grains are considered to be perfectly spherical,
frictionless, and monodisperse in size and mass. Their total
number N is determined by the number of filling layers
F = N/(ll,), which we fix at F' = 12. Previous studies show
that both the Leidenfrost and the buoyancy-driven convective
states are observable for this number of layers [34]. The
whole box (base and side walls) is vertically vibrated in a
biparabolic, quasisinusoidal way with a given frequency w
and amplitude A. The use of a quadratic interpolation instead
of a sine function gives a considerable speed advantage in
simulations, as the collision times with the moving walls can
be predicted analytically. Previously, test simulations have
been done using a sine function for exemplary cases, and no
significant difference was observed [33,35]. The amplitude of
oscillation is kept fixed, A = 0.1, and thus the energy injection
is controlled by the angular frequency w. The low amplitude is
chosen to reduce as much as possible geometrical effects of the
moving boundary (such as shock waves [36]) and approximate
the limit of a temperature boundary condition [37]. Moreover,
low amplitudes eliminate other inhomogeneous states for
lower energies, such as undulations [34], which are not the
object of this study. Overall, our selection of parameters is
based on previous experimental setups where the transition
was previously reported [29,34].
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FIG. 1. (Color online) Schematic representation (not to scale) of
the setup. Two different geometries are considered: narrow (top) and
wide (bottom). Lengths are given in units of particle diameters d.
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The system is simulated using an event-driven (ED) hard-
sphere algorithm. The advantage of using ED simulations over
regular time-stepping methods is straightforward: computa-
tional speed. Even though the number of particles is relatively
low (~10*), the high frequencies and very long physical times,
of the order of hours, make the use of discrete particle methods
(DPM) infeasible. In DPM simulations time steps are constant
and should be at least one order of magnitude lower than the
collision time, which in itself must be at least an order of
magnitude smaller than the lowest relevant time scale, in our
case T = 2w /w [38]. Thus, for the high frequencies considered
in our study, the small time step prohibits us from simulating in
a practical time the long transients involved near a transition.
On the contrary, the average time step in ED is determined
mainly by the density of the system, and not directly dependent
on the frequency of oscillation of the container.

Collisions between particles are modeled by a normal
restitution coefficient, r, = 0.9 [39]. In order to avoid inelastic
collapse, the TC model is used, where particle collisions are
considered elastic if they occur within a given time, which
we take as f, = 107> [40]. This essentially sets a lower limit
for physically relevant velocities, as it also slightly decreases
the packing fraction of high density regions; possible relevant
effects will be noted when appropriate.

Regarding boundary conditions, we consider both cases of
periodic (PBC) and solid boundary conditions, with either
elastic or dissipative walls (EBC and DBC, respectively).
The different boundary types are only applied in the x
direction, as we would like to investigate the effects they have
on the transition independent of other factors, as increased
overall dissipation or free volume; setting dissipative or
periodic boundaries also in the y direction would make the
comparison less straightforward. Dissipative walls are set with
the same restitution coefficient as between particles, r,, = 0.9.
The effects of dissipative walls on convective states have
already been studied in similar setups, both experimentally
and numerically [41]. Here we are interested in the effects of
walls on the excitation or suppression of the modes relevant
in the transition. Elastic walls (EBC) are used in order to see
the influence of excluded volume effects near the sidewalls
when comparing with periodic walls (PBC) and to facilitate
the analysis of fluctuations by fixing a reference frame.
Furthermore, PBCs are used to study the dynamics of the
bed of grains without confinement.

III. RESULTS

A. Macroscopic description

The most evident difference between the granular Lei-
denfrost and buoyancy-driven convective states is the level
of horizontal homogeneity. Figure 2 shows time-averaged
number density (n(x,z));, granular temperature (7T (x,z)),, and
velocity fields (¥(x,z)), in each state for narrow systems with
EBC. The fields are obtained by binning the system in squares
of size d. Time averages, ();, are always taken for at least
10°,/d/g, which in dimensional terms for d = 1 mm would
correspond to experiments of about 15 min. The granular
temperature is defined as the kinetic energy of the fluctuating
velocity, 3kzT = m((v?) — (v)?). The fields clearly show that,
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FIG. 2. (Color online) In the narrow system, time-averaged num-
ber density of particles (n(x,z)), (top), granular temperature (7'(x,z)),
(middle), and velocity field (v(x,z)), (bottom) for systems in
the granular Leidenfrost state (left) and in the buoyancy-driven
convective state (right).

in the Leidenfrost state, both p and 7 are homogeneous in
the x direction, while in the convective state the profiles are
modulated by a dominant mode k.. That is, the transition is
morphogenetic [42], as a pattern or new relevant length scale
arises from a homogeneous state. The convective mode defines
the typical size of a pair of convective cells, A.; in the case
shown in Fig. 2, (1), & 50, that is, k, = 1/A, ~ 0.02.

It is important to note that the buoyancy-driven convective
state is also density inverted [see Fig. 2(b)], and thus this
characteristic is not a sufficient condition to define the
Leidenfrost state. We demand two further properties for the
system to be considered in this state: (a) higher-density
regions present distinct dynamics to the lower-density ones
(gas-fluid or gas-solid) to distinguish it from completely
gaseous states [43] and (b) the system remains horizontally
homogeneous to differentiate it from the convective state. In
short, we define the granular Leidenfrost state as a density-
inverted, phase-coexisting, horizontally homogeneous state.

As the energy input increases, the bed of grains in the dense
region progressively loses its horizontal homogeneity, giving
rise to convection; this is what we refer to as the granular-
Leidenfrost-to-buoyancy-driven convection transition or, in
short, the LBC transition. In the following we define an order
parameter based on the evolution of the velocity field and
observe its behavior through the transition.

B. Convection intensity

For the study of critical behaviors it is of fundamental
importance that the transition region between the two states
is accurately measured. The different states can be easily
distinguished by looking at the time-averaged velocity fields,
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FIG. 3. (Color online) Time-averaged convection intensity (C),,
defined in the main text (1) as a function of the angular driving
frequency w, for the narrow (top) and wide (bottom) containers
with the boundary conditions indicated in the labels. The vertical
lines indicate the transition region for the corresponding BC, as
specified in the main text. The thick solid line corresponds to Aw,
the characteristic shaking velocity. The insets show the convection
intensity normalized by the driving frequency, C* = (C),/Aw, as a
function of the bifurcation parameter ¢ = (v — w.)/®,.

which suggest the use of the convection intensity order
parameter, defined as

C = %maxz{maxx[vz(x,z)] — min,[v;(x,2)]}. )]

Here v,(x,z) is the scalar field of velocities in the z direction,
and the maxima are taken first over z and then over x. In
other words, C corresponds to half the highest difference of
the vertical velocities at a particular height of the container. In
a convective state C is expected to be significantly higher than
in a random flux case, due to the presence of stable upwards
and downwards flux regions [as can be seen in Fig. 2(f)]. Even
though the average vertical velocity is expected to scale with
Aw, the localization of the energy fluxes in the convective
states is what produces a higher deviation and thus a higher
C. The time-averaged convection intensity, (C),, captures the
transition as a rapid increase with w, as shown in Fig. 3 for all
considered systems.

In the Leidenfrost state (C), increases linearly with w and
is lower than the characteristic velocity of energy injection,
Aw. This is followed by a transition region, where (C),
increases sharply and superlinearly on Aw, eventually surpass-
ing the Aw line. Finally, (C), saturates as the system enters
the stable buoyancy-driven convective state. Quantitatively,
we define the limits of the transition region by looking at
the intersection of the initial and final linear behaviors with
the increasing transient behavior, the two points defining the
width of the transition, dw, and their average the critical
frequency w., which coincides within measurement error
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with the condition (C); = Aw. For the narrow container,
this results in critical frequencies and widths of transition
w. =33.44+0.1, §w = 0.22 £ 0.01 for EBC and PBC, and
w. =329+0.1, v = 0.26 = 0.01 for DBC, with the error
given by the resolution of the simulations in w. That is,
elastic boundary conditions have no measurable influence
when compared to periodic boundaries, which suggests that
excluded volume effects due to the presence of walls can be
disregarded already for /, = 50d. Dissipative boundaries, on
the other hand, have the (at first) counterintuitive effect of
decreasing w,, while increasing dw; even though overall the
system presents more dissipation compared to the EBC case,
inelastic sidewalls slightly reduce the energy needed to trigger
the transition compared to elastic boundaries.

Boundary conditions in the wide container become irrel-
evant, with all cases given by w, =33.0+0.1 and dw =
0.29 £ 0.02. Quantitatively, the critical points are slightly
lower and the transitions wider, which we believe is due to
the influence of the confinement in the narrow container. It is
worthwhile to note that the amount of energy needed for the
creation of the convective cells is practically invariant on I,
or, equivalently, the number of convective rolls n,. = 2, /A,
suggesting that the interaction between rolls has no influence
on their creation. Nevertheless, we notice that when EBC or
DBC are used, convection cells are seen to appear first at
the boundaries, and the boundary rolls are more stable when
compared to the bulk of the system. This, nevertheless, happens
at the same w, as with PBC, suggesting that solid boundaries
have no relevant influence on the flux (nv) strength but do
promote the appearance of convective cells near them.

When normalized by Aw, we can recognize in C* =
(C),/Aw a shape characteristic of a supercritical pitchfork
bifurcation, as shown in the insets of Fig. 3. The second branch
of the ideal pitchfork supercritical bifurcation would corre-
spond to taking the minimum in x, instead of the maximum,
in (1). When the bifurcation parameter ¢ = (0w — w.)/®, is
used as control parameter, all three boundary condition cases
coincide for all system sizes considered. This suggests that
the transition presents universal behavior, independent of the
amount of dissipation. It is also a confirmation that the critical
points are well defined. With the phase-space determined, next
we characterize the precursors of the transition by looking
first at correlations of the velocity field (Sec. Il C) and then
at density fluctuations by means of the static structure factor
(Sec. III D).

C. Time-dependent fluctuating convective flows

Far below the transition point in the Leidenfrost state,
starting from e > —0.5, time-dependent fluctuating convective
flows can be observed. These are analogous to the precursor’s
fluxes present in the classical fluid Rayleigh-Bénard convec-
tion transition [44], which were theoretically predicted and
relatively recently observed by careful experiments in gaseous
media [45]. In our case, the convective rolls can be easily
identified when observing the evolution of the short-time-
averaged transient velocity fields, as shown in Fig. 4. The
cells are constantly generated anywhere in the container, but
more frequently next to walls; this is, of course, when they are
present, i.e., in the EBC and DBC cases. Two fundamental
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FIG. 4. (Color online) Transient velocity fields for ¢ = —0.15,
each averaged over five oscillation periods, showing the emergence
and decay of a fluctuating convective cell in a section of a wide
container. From yellow (white) to purple (black), the color and size
of the vectors corresponds to their norm.

aspects differentiate such a transient state from the fully
developed buoyancy-driven convective state above & = 0.
First, the circulation of particles is not associated with mean
density or temperature inhomogeneities (it is time dependent).
Second, the convective velocity field is present only as an
average and thus is not correlated with the instantaneous
velocity of the particles. That is, the velocities of the fluctuating
convective flows are much smaller than the amplitude of the
fluctuating velocities (+~/T'), in contrast to the buoyancy-driven
convection case, where they are comparable (see Fig. 2). This
has the consequence that, as there is no localization of the
fluxes, their effect is not reflected in (C),.

In order to characterize the stability of the transient
convective cells, the self-correlation of the fluctuating velocity
field is computed,

Fy(t) = cp(80(X,1 + 1) - §0(X,1)),

with §v = v(xX,t) — (v(xX,1)),, and cr a normalization constant
such that F,,(0) = 1. Figure 5(a) shows F,(t) for characteristic
cases of w. In the following we focus only on EBC and DBC, as
they considerably simplify the computation of self-correlation
functions by impeding the convective rolls to drift in the
x direction, as they do with PBC. Visual inspection and
preliminary analysis of the PBC case suggest that the results
can be generalized to this case as well. All correlations
present a common shape: an initial quick, power-law-like
decay followed by a slower exponential decrease. The rapid
decorrelation at short time scales confirms that the particles’
instant velocities are mostly fluctuating and do not present
a high time correlation. On the other hand, for longer times
the correlation is comparatively lower, but still considerable,
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FIG. 5. (Color online) (a) Velocity correlation functions F, for
several w and EBC in the narrow container. (b) Characteristic time-
scale of fluctuating convection t,, corresponding to the exponent of
the long term exponential decay of the self correlation function F,, as
a function of the bifurcation parameter ¢. The dashed lines indicate
best fits of the form indicated in the main text.

and decays slower. This is a signal of long-term average
preferred fluxes. As expected by the critical slowing down of
fluctuations near the transition, the overall correlation of this
region increases as the critical point is approached, as can also
be seen in Fig. 5(a). The characteristic time of decorrelation
T, is obtained by considering F, ~ exp(—t/t,). Figure 5(b)
shows wt, as a function of ¢, from where we find a power
law 1, ~ ¢75 /o with exponent & ~ 0.59 4 0.02. Closer to
the critical point the measurement error becomes significant.
The data are presented for the whole range in w where the
Leidenfrost state is present, which is one and a half decades in
€.

Wide systems present the same overall features as the nar-
row container; t, can be determined with a higher precision—
as noise is reduced with a higher number of particles—and
presents the same, within error, critical exponent £ as in the
narrow case, & ~ 0.60 £ 0.02. That is, transient convective
flows are independent of the size of the container.

Also visible in F,(t) are wide peaks at regular inter-
vals, signals of a quasiperiodic time scale of correlation.
By observing the evolution of the center of mass, and
computing its fast-Fourier transform, it was verified that
this periodic correlation corresponds to the recently reported
low-frequency oscillations, present in density inverted agitated
systems [33,46]. The quasiperiodic movement is coupled
with a breathing behavior of the dense bed of grains, which
increases and decreases its granular temperature. Here we do
not analyze this further; for a detailed study of the phenomena
we refer the reader to Ref. [33] and a further experimental
study in Ref. [46].

D. Static structure function

As energy input increases, for ¢ > —0.1, density fluctua-
tions arise, clearly recognizable as modulations in the surface
of the bed of grains. To analyze their behavior we compute the
static structure function,

1
Sy =  (Intk.1) = (A0l 2)
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FIG. 6. (Color online) Structure factor, S(k), for narrow (left) and
wide (right) containers for the bifurcation parameters specified. Light
colors (light gray) lines correspond to PBC, while dark colors (dark
gray) lines have EBC. The vertical solid line indicates the 1//, point.

with 7 the Fourier components of the depth-averaged number
density field in the x direction,

Le/bx
Ak,t) = Z n(xj,1)eFrknen, (3)
j

Notice that we define k = 1/, for a more straightforward
comparison between wave number k and wavelength A. The
position x; is given by regular intervals, x; = %Sx + jéx, with
dx = 0.1 the coarse-graining length. Notice that instead of
considering the particles’ position in the definition of /i we use
the averaged density profiles, as it significantly increases the
speed of computation. This approximation holds only for low
wave numbers, that is, 1/k >> éx, which is the region we are
interested in. Test cases were done with the usual definition
with particle positions, and no significant differences were
observed.

Transient modulations of the bed are captured in S(k) by the
appearance and steady increase of a narrow peak at k ~ 0.02,
as shown in Fig. 6 for both the narrow and wide containers. We
define the critical mode k. by the position of this maximum,
that is S,, = max (S(k)) = S(k.). Thus, the associated wave-
length at the transition point, A7 = 50, corresponds to the size
of the smallest stable convection roll, seen to be independent
of [, for [, > A}. Notice that this corresponds to n, = 2 for the
narrow container and n,. = 8 for the wide container. What other
factors may affect A} is not studied further here, although we
notice that previously realized stability analysis of the granular
hydrodynamic equations have found an expression for A* as
a function of the constitutive relations, which are themselves
dependent on the particle properties [30].

Notice from Fig. 6 that for ¢ = —0.1 the correlation of
the transient convective flows was significant, but S(k) has no
relevant maximum. This confirms that fluctuating convective
flows take place in a stable homogeneous Leidenfrost state and
are not accompanied by any relevant excitation of the critical
mode in the density (and temperature) field.

Previous simulational and experimental works have stated
that A, scales linearly with the shaking strength X =
Azc?)z/gd = A’w? [29,47]. The inset of Fig. 7 shows A.(X)
for the wide container and confirms that this is indeed the
case. We cannot distinguish any effect of confinement, which
could be identified as plateaus in the increase of A.; this is
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FIG. 7. (Color online) The most unstable mode k., defined by the
maximum of the structure factor max (S(k)) = S(k.), as a function of
the bifurcation parameter for narrow (left) and wide (right) containers
and the boundary conditions specified. The inset shows the convective
length scale A, as a function of the shaking strength, as defined in the
main text.

to be expected in the A, < [, limit, which is the case for
the wide container. In contrast, in the narrow container solid
walls fix k., while with PBC the behavior is not clear, roughly
increasing before the transition point and then decreasing in a
nonmonotonic way; the uncertainty in the measurements does
not allow a more accurate conclusion in this case. The marked
difference between both boundary condition cases suggests
that, even though EBC and PBC had equal critical points, as
measured by (C),, they do have an influence on the modes
that are being perturbed. In most of the studied range k* is
consistently higher with PBC, showing that solid boundaries
can have the originally unexpected effect of increasing the
critical convection roll size. This is due to excluded volume
effects near the wall, which decrease the density and thus have
the effect of exciting a lower mode, in our case for A =~ 25. On
the wide container wall effects become negligible, and thus k*
coincides for both types of boundary conditions.

By taking into account that k. in the wide container is not
constant, we interpret the LBC transition for [, > A as a series
of transitions between energetically similar states. Inherent
fluctuations are strong enough to allow the constant switching
between contiguous k.. In terms of the relevant scales, this is a
conflict between A., which depends on our control parameter
w, and [, which is fixed. As A} is independent of the container
size, the critical behavior for |e¢| ~ 0 is still expected to be
universal.

Indeed, S,,(¢) shows critical-like behavior for ¢ < 0, as
shown in Fig. 8. In the narrow container, both types of
boundary conditions show the same qualitative growth for
& < 0, although with consistently lower amplitudes in the EBC
case, as previously discussed. For ¢ > 0 the PBC case shows a
growth reminiscent of the critical amplitude of a supercritical
bifurcation. In this case, S,, is directly related to the amplitude
of the critical mode, as the lack of a fixed reference frame
makes (n(x,t)), homogeneous even in the buoyancy-driven
convective state. On the contrary, the EBC case immediately
decays for ¢ > 0. In the wide container both cases coincide
within error for ¢ < 0, showing that the discrepancy between
both cases in the small container is indeed a size effect. S,
again loses significance for ¢ > 0, and the behavior is erratic
due to metastability of the transient region in the wide systems.
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FIG. 8. (Color online) Structure factor maximum, S, as a func-
tion of the bifurcation parameter ¢ for EBC (circles) and PBC
(squares) in narrow (top) and wide (bottom) containers. As a
reference, the best fit for the amplitude of the critical mode is included
(dashed gray, see main text).

E. Dynamics of transient states

The buoyancy-driven convective state presents complex
time evolutions. These are heavily dependent on the /, /A ratio,
based on the constraint that the number of convective rolls
has to be an integer number. Half-integer values are possible
only with solid wall boundary conditions. This implies that
noninteger values of [, /A, lead to metastable states, as the
number of convective cells n. presents intermittent behavior
between the two closest values of k., as also between
convection rolls at different sides of the container if walls are
present. As an example, Fig. 9(b) shows the temporal evolution
of n(x) for a system with [, = 80, that is, [, /A" ~ 1.6. For a
value of w just after the transition point, the convective cell
constantly switches between metastable states; it is possible to
identify two-roll and one-roll configurations at either side of
the system, alternating with no clear periodicity. We believe
this to be an important factor to take into account on any study
of the dynamics of the granular convective state: The size of the
container has no influence on the critical point of the transition
but plays a determining role in the dynamics. In our case, I,
for the narrow and wide containers was chosen a posteriori to
diminish the effects of metastability, considerably facilitating
the study of precursors.

As [, /). is increased further, a new state becomes possible
at the transition region in which convective cells coexist with
regions effectively in the Leidenfrost state. Figure 9(c) shows a
period of coexistence, as two pairs of convective cells emerge
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FIG. 9. (Color online) Spatiotemporal contours plot of the num-
ber of particles field, n(x,t), for (a) [, = 50, (b) [, = 80, and (c)
[, =400, with w =35 (¢ ~ 0.06) and EBC. These correspond to
Le/ME~ 1, [ JAY ~ 1.6, and [, /A} ~ 8, respectively. High-density
regions are shown in purple (black). Over the middle figure, the
number of convection rolls is indicated for exemplary regions.

in a confined region of the system while the rest remains in the
Leidenfrost state. Notice how the Leidenfrost region is roughly
200d wide, far larger than A. We interpret this phenomenon
as the emergence of a localized state in a nonlinear system, a
subject of increased scientific interest [48].

F. Critical mode amplitude

It has been shown that both the correlation of the fluctuating
velocity field and the critical mode of the density fluctuations
present critical-like behavior near the transition. We now look
at the overall transition behavior in the context of bifurcation
theory by following the amplitude in the emergent pattern of
the critical mode, A.. The emergent pattern is more evident
and measured from the vertical velocity field v (x,t). A, is
the amplitude of the mode k. in v,(x,t)/w, with k. determined
by the structure factor maximum. The final value of (A.), is
obtained by averaging over the whole simulation time.

In the seminal work of Swift and Hohenberg, hydrodynamic
fluctuations were studied for a molecular fluid near the
thermal convection instability [49], and a simple model for
the Rayleigh-Bénard instability was derived. In the following
we apply the Swift-Hohenberg model to the LBC transition,
inspired by the evident similarities of both phenomena; in
terms of bifurcation theory, both transitions correspond to
spatial-mode selecting bifurcations. Nevertheless, we expect
the discrete nature of our granular system to have a consider-
able effect close to the transition, manifested as fluctuations
arising from the finite number of particles. Thus, we consider
that the universal behavior of the fluctuating vertical velocity
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w(z,t) = v (x,1) — (v.(x,1)), close to the transition is given
by the Swift-Hohenberg model for pattern formation with a
stochastic term [18],

dw=ew—w — (9 + kf)zw +Vmeen, @)

with the bifurcation parameter given by &’ — k2. In our system
g — k? ~ ¢ (as k. <« 1), and thus in what follows we take
¢’ = ¢. Fluctuations are modeled by the last term, where ¢
is a Gaussian white noise, that is, (¢(x,0)¢(x’,t')) = 8(x —
x)8(t — '), and ' is the parameter of noise intensity [50]. In
our system the zero correlation of ¢ is justified by assuming the
gaseous phase close to the moving plate to be the main source
of fluctuations and to behave strictly as a hard sphere gas. The
lack of temporal or spatial correlations of the particles follows
from the the low packing fractions (¢ < 0.2), the frequent
collisions with the bottom plate compared to the mean free
flight time, and the randomization of velocities due to collision
with the dense region.

It is known that in (4) the base state w(x,#) = 0 is stable
for ¢ <0 and presents a supercritical spatial instability
for ¢ =0, which leads to the appearance of a pattern,
in our case corresponding to convective cells, for & > 0.
Following [17,50], and confirmed by our measured velocity
profiles, solutions for the critical mode k. can be assumed to
be of the form

w— a(‘[)eikfx + &(T)eﬂ'kt.x

V3 V3

with a the amplitude of the pattern with mode k., dependent
on the slow time 7 = ¢t, and U a general function containing
higher-order terms in a. Substituting (5) into (4) one reaches
the amplitude equation corresponding to a stochastic cubic
supercritical spatial bifurcation:

d.a = ea — |al*a + /n¢(t) (6)

with n = 3n’. A solution for the probability function of a,
P;(lal,e,n), can be found from (4) and (5), as shown in
Refs. [17,50]. From the shape of Py the expectation value
can be obtained [50], given by

e+ €2+ 2n

|@max| = f @)

+U(a,a,x) %)

In our case |amax| = (Ac);. Our measurements are consistent
with this form for |¢| < 1, as shown in Fig. 10 for narrow and
wide systems with PBC and EBC. Nevertheless, (7) does not
capture the shape of (A_.),(¢) for higher values of ¢, deviating
considerably already for ¢ ~ 0.05.

A higher level of agreement can be obtained by considering
an stochastic quintic supercritical bifurcation [17]:

nVhe (o), 8)

with h quantifying the strength of the quintic nonlinear
term [17]. This type of bifurcation may be more relevant
for our system, as it has been previously associated with
parametrically driven spatially extended systems, as Faraday
patterns [31] and vertically vibrated series of coupled pen-
dula [32]. The former can be considered closer to our present
system than the Rayleigh-Bénard scenario, taking into account

9.a = ea — |al*a +
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FIG. 10. (Color online) Amplitude of the critical pattern of the
vertical velocity field v,(x,?), A., as a function of the bifurcation
parameter ¢, for EBC (circles) and PBC (squares) in narrow (top) and
wide (bottom) containers. The dashed lines correspond to fits given
by the Swift-Hohenberg model with a stochastic term (see main text),
with noise level n = 0.0001. The solid lines correspond to fits based
on a quintic supercritical bifurcation, for noise intensity o = 0.0008
in the small container systems and o = 0.001 for the wide cases.

that the bed of grains is also a vertically vibrated medium with a
free surface. The latter case, on the other hand, could be related
to the already-mentioned low-frequency oscillations [33].
Previously, it was shown that density inverted granular states
in a quasi-one-dimensional container (I, ~ I, ~ d) behave
approximately as harmonic oscillators. It can thus be inferred
that for wider containers, as the ones considered in this study,
the dynamics are analogous to a series of coupled oscillators,
with a yet unspecified coupling mechanism by shear or other
interactions.

Following a similar method as the previous analysis, an
expression for the expected value of the amplitude of the
unstable mode can be obtained (for details of the derivation
we again refer the reader to Ref. [17]),

|amax| = 0'/°/B/ 2+ /3 9)

with Q@ = 3/4)13(9 + /327 — 1683))"/* and B = ¢/0?/3,
with o = nv/h. The shape of (9) is also shown in Fig. 10,
now in good agreement for higher ¢ in all cases.

All systems present the same overall shape of A.(¢g), with
the most significant difference being lower amplitudes for
& > 0 in the wide containers. More importantly, there is no
significant difference in the noise intensity for all cases, except
for the narrow container with EBC, where the noise term is
lower, 0 = 6 x 10~* £ 107>, In the narrow container with
PBC 0 =9x107*+£2x 107 and 0 =103 £2 x 1074
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for the wide container with any boundary condition. The
independence of the noise intensity on N suggests that the
relevant quantity for the critical dynamics is the amount of
particles per critical length scale, A}, which in our cases
remains constant.

IV. CONCLUSIONS

We have studied the granular-Leidenfrost-to-buoyancy-
driven convection transition, characterized the precursors and
proposed a new interpretation of its universal dynamical
behavior. The overall picture is of a continuously fluidized
bed of grains which goes from homogeneous Leidenfrost
configurations to increasingly velocity correlated convective
states, until flows are strong enough to sustain the density
inhomogeneous buoyancy-driven convective state. From a
bifurcation theory perspective, the convection transition can
be understood as a pattern formation phase transition, with
the emergence of convective cells with a critical length scale
independent of the domain size, which is consistent with
previously realized hydrodynamic stability analysis of the
Leidenfrost state [30].

The time-dependent fluctuating convection state can be
characterized by the correlation time of the fluctuating velocity
field, which shows critical-like behavior with an exponent of
approximately 0.51. From the self-correlation it is also possible
to observe the influence of low-frequency oscillations [33] on
the fluctuating velocity field.

The static structure factor shows the emergence and growth
of the pattern dominant length scale. The amplitude of the
critical mode is also seen to show critical behavior, consistent
with a supercritical bifurcation. By following the most unstable
mode throughout the transition in wide systems it was possible
to confirm that the size of the convective cells is indeed
proportional to the frequency of energy injection.

In the transient state of wider systems the Leidenfrost and
buoyancy-driven convective states can coexist. The convec-
tive state in this region is constantly evolving, presenting
metastability between states with different number of rolls. As
energy increases the stability of the convective cells increases,
although their number is determined by the amount of cells
that can be fitted in the container. Further increasing the
energy leads to a comparatively slower process of merging of
convective cells. The rich dynamics of merging and splitting
of convective cells in coexistence with the Leidenfrost state in
the wide systems calls for further research.

Elastic walls and periodic boundaries present the same
critical points, disregarding any significant confinement ef-
fects for containers much bigger than the critical convective
wavelength (i.e., larger than 50 particle diameters in the cases
studied). Slightly dissipative side walls, on the other hand,
have the effect of decreasing the amount of energy needed
to trigger the transition, showing that the excitation of the
unstable mode at the boundaries has a more significant effect
than the added dissipation. In systems 400 particle diameters
wide, in all cases studied, the boundary conditions did not have
any visible influence.

The amplitude of the critical mode of convection is
seen to be coherent with a quintic supercritical amplitude
equation. The agreement is much better than with a cubic
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supercritical bifurcation, associated with the Swift-Hohenberg
equation. This suggests a new interpretation of the transition,
closer to spatially extended parametrically driven systems
than to Rayleigh-Bénard convection. We hypothesize that the
source of the parametric driving is not the vibration of the
container (which has too-low amplitude and -high frequency
to couple with the bed dynamics), but the low-frequency
oscillations present in a density inverted bed of grains, i.e.,
the granular Leidenfrost state. In general, we remark that the
universal behavior of the density field can only be captured
by considering a noise term in the corresponding amplitude
equation which quantifies the discrete, finite-number effects.
The noise intensity is seen to be independent on the system

PHYSICAL REVIEW E 91, 042202 (2015)

size, except in the confined small container. This suggests
that the transition in wider systems is a local phenomenon,
with the size of the critical convective cell as relevant length
scale.

A derivation of the quintic supercritical amplitude equation
from a series of coupled oscillators with the form derived in
Ref. [33] would be a way of confirming the proposed amplitude
equation.
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