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Two Methods to Improve the Performance of Monte 
Carlo Simulations of Ion Implantation 

in Amorphous Targets 
EDDIE VAN SCHIE AND JAN MIDDELHOEK 

Abstmct-This paper describes two methods to improve the results 
of a Monte Carlo technique to simulate the transport of energetic ions 
in amorphous targets in two dimensions. The target considered is a 
homogeneous monolayer. The Monte Carlo technique used is based on 
the program TRIM 151, [6]. The first method relies on the fact that 
some calculated data can he used more than once. The second method 
relies on the fact that a point source results in a rotation-symmetric 
ion distribution. To study the behavior of the two methods a smooth- 
ness indicator has been defined. It is a measure for the distance of a 
simulation result to the ideal result, i.e., the result based on an infinite 
number of ion trajectories. This indicator showed that a CPU time re- 
duction of a factor 80 has been achieved. 

I. INTRODUCTION 
EVELOPMENT of advanced VLSI processes re- D quires detailed modeling of each stage of the total 

fabrication process to predict device geometry and im- 
purity profiles and to provide the input for device simu- 
lation programs. Ion implantation is the primary method 
for introducing dopants into semiconductors. The control 
over the particular dopants as well as over the energy and 
dose has made implantation an indispensable tool for the 
fabrication of micron and submicron structures. Espe- 
cially for submicron processes detailed understanding of 
the implantation process in two or three dimensions is re- 
quired. Modeling inaccuracies which in the past remained 
hidden by extended thermal treatments, can now cause 
significant differences between theory and experiment. 

Ion implantation is the introduction of accelerated ion- 
ized atoms into targets with kinetic energies up to about 
1000 keV. An individual implanted ion undergoes scat- 
tering events with electrons and atoms of the target, re- 
ducing the ion’s kinetic energy until it comes to rest. The 
scattering of the ion with the target atoms causes a change 
in the direction of motion of the ion, resulting in a lateral 
straggling of the ion distribution. For small device ge- 
ometries needed in VLSI applications, the lateral ion 
straggling effects become extremely important. In MOS 
transistors the lateral ion straggle of the source and drain 
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implantation is a limiting fundamental factor determining 
the doping between source and drain and the electrical 
channel length. 

Two calculation strategies exist for modeling implan- 
tation in two dimensions. In the first strategy the ion beam 
is viewed as the summation of infinitesimal thin ion 
beams. The two-dimensional distribution of such a thin 
ion beam can “easily” be calculated. This distribution is 
called a line source response function (LSR) because a 
two-dimensional distribution is the result of a line source. 
In the second strategy the calculations are performed over 
the full width of the target. It is clear that the second strat- 
egy consumes much CPU time. 

In the present work the LSR is calculated by means of 
a Monte Carlo method in a layer of amorphous silicon. 
The results which are obtained by Monte Carlo simula- 
tions are quite noisy and require much CPU time. This 
can be overcome by using a large number of simulated 
ions or using a coarse discretization of the simulation area. 
The first solution increases the CPU time. The last solu- 
tion decreases the obtained resolution. Some methods ex- 
ist to improve the results of a Monte Carlo simulation. 
Giles [l] used projections on the depth axis and lateral 
axis. However for high energies this appears to be inap- 
propriate since then the lateral spread is a function of the 
depth [2]. Albers [3] used the fact that a two-dimensional 
distribution is symmetric. Petersen [4] performed calcu- 
lations on a supercomputer. In this paper two methods are 
introduced to improve the performance of the Monte Carlo 
results. Our computer code is based on the program TRIM 
[51, [6]. A summary of this code is given in Section 11. 
In Section I11 both methods will be introduced. In Section 
IV results are analyzed and discussed. In Section V an 
example is shown. In Section VI the conclusions are sum- 
marized. 

11. THE TRIM MONTE CARLO CODE 
As with other Monte Carlo programs, the method con- 

sists of following a large number of individual ion trajec- 
tories in a target. Each history begins with a given energy, 
position and direction. There are two basic assumptions 
made in the program TRIM [5]. The first one is that the 
ion does not sense any crystallographic order in the target, 
i.e., the target is amorphous. In practice this is achieved 
by tilting the target away from open crystallographic axes. 
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The second one is that a particle is assumed to change 
direction as a result of nuclear collisions and to move in 
straight free-flight paths between collisions. The energy 
is reduced as a result of (elastic) nuclear collisions and an 
(inelastic) electron gas energy loss. Both loss mechanisms 
are assumed to be independent. 

The typical sequence of calculating the motion of an 
ion is as follows. The ion is assumed to be incident from 
the top surface of the target. Given this direction, position 
and the starting energy an impact parameterp is selected 
randomly. The nuclear energy loss and scatter angle are 
calculated using the functional approximation of the scat- 
tering integral according to Biersack [6]. To be able to 
calculate new coordinates, a random azimuthal angle $I is 
also needed: $I = 27rE where 4 E ( 0 ,  1 ) is a random 
number. The average free-flight path length between col- 
lisions is L = where p is the atomic density. For 
this path length L the inelastic energy loss is calculated. 
This electronic stopping is approximated by the energy 
dependent method described in [ 5 ] .  Given the scatter an- 
gle, the azimuthal angle and the path length L,  the new 
direction, position and energy of the ion can be calcu- 
lated. This procedure is repeated until the ion comes to 
rest. An ion is considered to be stopped when its energy 
drops below a prespecified value or when its position is 
outside the target. The trajectory which has been obtained 
is three dimensional, as shown in Fig. 1. To obtain a LSR, 
this trajectory is projected into a plane. During the cal- 
culation of the trajectory the position of the ion is tracked 
in this two-dimensional plane. 

During a simulation many ion trajectories are calcu- 
lated. The coordinates of the positions where the ions stop 
are stored in a histogram. This corresponds to a two-di- 
mensional discretized target as shown in Fig. 1. A cell 
element i ,  j with position: 

y i  = ( i  - 1) A Y  

zj = ( j  - 1) A 2  ( 1 4  

is defined by the cell boundaries: 

( j - 1 - i) A 2  I z < ( j - 1 + i) AZ.  ( l b )  

If an ion stops in cell i ,  j then the histogram is adapted as 

Hi,j : = Hi,, + 1. (2)  

F . .  ' 3 J  = H i , j / N .  ( 3 )  

The related probability function is then 

where N is the number of calculated trajectories. The ob- 
tained histogram can be used to calculate a two-dimen- 
sional impurity distribution under an arbitrarily shaped 
mask edge t11, P I ,  141, P'1-M. 

111. DESCRIPTION OF THE METHODS 
Two methods to improve the results of the previously 

described Monte Carlo method are now presented. The 

Fig. 1.  Projection of a three-dimensional ion trajectory on a discretized 
yz-plane. 

first method is based on the fact that certain calculated 
values during the evolution of one ion trajectory can be 
used more than once. The second method is based on the 
fact that the formulation using a point source response is 
rotationally symmetric. 

A .  Identical Energy Histories 

Among them are: 
During a collision several values have to be calculated. 

1) the scatter angle and energy loss using a randomly 
selected impact parameter. 

2) the electronic energy loss during the movement over 
a distance L. 

3) the new coordinates given the scatter angle, a ran- 
dom selected azimuthal angle and the distance L. 

The azimuthal angle does not influence the energy trans- 
fer of a collision but only the direction of the ion after a 
collision. So the third calculation may be performed M 
times to obtain different ion trajectories in space, which 
have identical energy loss sequences during the move- 
ment of the ions. 

A question to be considered is how large M can be 
chosen. There are two constraints concerning this choice. 
The first constraint is that these M trajectories will be re- 
lated in some sense, i.e.,  it will be impossible to obtain a 
correct Monte Carlo result when only one energy loss se- 
quence is calculated and for instance M = IO4 is used. In 
Fig. 2 some trajectories are plotted for a Boron implant 
at 20 keV. The horizontal axis corresponds with the dis- 
tance R between the position of the ion and the beam axis. 
The vertical axis corresponds with the depth z of the ion. 
In Fig. 2(a) 10 trajectories are plotted based on 10 differ- 
ent energy loss sequences. In Fig. 2(b) 10 trajectories are 
plotted based on only one energy loss sequence. A com- 
parison of both types of trajectories reveals a certain re- 
lation between trajectories based on the same energy loss 
sequence. This is an indication that one energy loss se- 
quence cannot be used too often. Although it is difficult 
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Fig. 2.  (a) 10 boron trajectories calculated with 10 energy sequences. (b) 

10 boron trajectories calculated with only 1 energy sequence. 

to prove analytically, a large number of simulations 
showed that this effect has a minor influence on the LSR 
when N is large and M << N .  

The second constraint is given by the estimated saving 
in CPU time. The CPU time of the calculation of one ion 
trajectory can be split into two parts: a, the average CPU 
time spent to calculate energy losses and 0, the average 
CPU time spent to calculate coordinates. The total CPU 
time to calculate N I  different ion trajectories is thus given 
by 

T I  = a N ,  + P N , .  (4) 
Another way to obtain NI trajectories is to calculate N2 
energy loss sequences and use them M times to obtain N I  
= N2 M trajectories. The CPU time is then given by 

( 5 )  

So the CPU time reduction is limited by 

In the used computer code the ratio a/P roughly equals 
3 ,  so qlim = 1 /4. Choosing M = 10 results in a CPU time 
reduction of 1 /3.9.  Increasing M above 10 does not lead 
to a significant reduction of CPU time. 

B. Rotation Symmetry 
In the conventional Monte Carlo technique in two di- 

mensions, the three coordinate axes x, y ,  z are chosen at 
the beginning of the simulation and all ion trajectories are 
projected into one plane, for instance the yz  plane. This 
plane is identical with the discretized sidewall of the cube 
in Fig. 1. However this choice is arbitrary. If the cube 
in Fig. 1 is rotated the ion trajectory does not change but 
the projection on the sidewall changes. Thus using one 
set of three-dimensional trajectories gives rise to different 
two-dimensional projections, which is an indication that 
the data set is not used efficiently. This is caused by the 
fact that the result of a Point Source should be rotationally 
symmetric. A three-dimensional histogram in a three-di- 
mensional discretized space will not be rotationally sym- 
metric using the data set. To force this three-dimensional 
histogram to be rotationally symmetric one could rotate 
each trajectory. This can be considered to be equivalent 
with the choice of an infinite number of azimuthal angles 
for the first collision. 

The mathematical treatment depends on the interpreta- 
tion but gives identical results. Firstly, one could store 
several histograms each corresponding with a projection 
in a rotated plane. From these histograms an average his- 
togram can be calculated which will be smoother than a 
single histogram. It is possible to derive an analytical 
expression to update the average histogram of an infinite 
number of rotated planes after the calculation of a single 
three-dimensional trajectory. Secondly, one could store a 
radial histogram and project it on a plane after the calcu- 
lation of all the three-dimensional trajectories. Finally one 
gets the most simple treatment if each three-dimensional 
trajectory is rotated and projected in the plane of Fig. 1. 

Consider an ion trajectory with end point coordinates 
x p ,  y,,, z,. In the xy plane a circle C with radius R,, can be 
drawn through the points x,,, y,, around the beam axis. 
Imagine that this trajectory is rotated Q times with rota- 
tion angle A { .  

Thus Q trajectories are obtained all having their endpoints 
on the circle C. If these trajectories are projected into the 
yz  plane of Fig. 1, a cell with y index i will get Pi ions, 
with Pi about: 

A{ = 27r/Q. ( 8 )  

(9)  
The reduction in CPU time is given by the quotient of (4) 
and ( 5 ) :  

where is the angle between the x-axis and the in- 
tersection between the cell boundary y i p  /2 and the circle 
C. Now the weight function Wi (R,,) is defined: 

W (Rp) = p i /Q  
(6) 

T2 1 + ( a / P ) I M  
TI 1 + ( c . / P )  . q = - =  
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which evaluates to 

( 10) 

Note that for y l +  
and for y, - I 

jectory (1 )  is replaced by 

> R,, one should use y I +  ,l2/R,, = 1 

To update the histogram after the calculation of a tra- 
< -R,, one should use y,  - I /2/R,, = - 1. 

HI., : = H,,, + w, (R,) (11) 

for all the cells i if the ion stops at cell depth j with a 
radius R,,. 

IV. ANALYSIS OF THE RESULTS 
To study the behavior of the methods it is checked 

whether usage of the methods speeds up the convergence 
to the final solution. The final solution is the probability 
function F based on an infinite number of trajectories. The 
following error definitions are introduced: 

io5 - F~. ,  - io5 F;  
max ( 1. lo5 F ;  

where F,m, represents the histogram for N = 03. The factor 
lo5 is used to transform the results as if they were histo- 
grams constructed out of lo5 ions. With this error measure 
one can check: a) how far a solution is from the final so- 
lution and b) if there exist some systematical error. 

The problem is that the final solution has to be calcu- 
lated first before this error measure can be calculated. The 
function F ;  is represented by a fit function for the pur- 
pose of this study. The form of the function is 

Fly = k * f d e p k )  . h a t ( Z ,  Y). ( 1 3 )  

The functionha, represents the lateral spread. It is a func- 
tion of the depth and is given by 

(14) hdt(z, y)  = c ( z )  . e-l’(z) & I p ( ‘ ) .  

This function has been introduced by Hobler er al.  [2]. In 
[2] also some parametrized functions for c ( z ) ,  b ( z )  and 
p ( z )  are given. Forfdep(z) some well known alternatives 
are available such as Pearson IV, Gaussian and double 
sided Gaussian. For the present study however none of 
these functions fitted the Monte Carlo data good enough. 
A splitted pseudo-Gaussian is used 

f ( ) = e - 4 z l P ’  
dep z 3 z 5 ZYpllt 

f ( ) 
= e - 0 2 1 z l ~ ”  

d tp  z ’ Gpll t .  (15) 

All the fit parameters are obtained by means of the flexible 
parameter extractor PROMEA [ 101. 

The obtained results are presented in an example for a 

0 . C O  0.OU d.08 0 .  12 d. 16 
LRTERAL [MI C R U N S I  

Fig. 3. The dotted line is a contour plot of the histogram based on N = 
10.000 energy sequences which are M = 10 times used and with rotation 
symmetry. The drawn line is a contour plot of the histogram based on N 
= 10.000 energy sequences which are now M = 1 times used and with- 
out rotation symmetry. 
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Fig. 4. The result of the fitting procedure. The dotted lines are the fit re- 

sults, the drawn lines are the MC results. 

boron implant of 20 keV. The yz-plane is discretized with 
A 2  = A Y = 16 Angstrom. The method based on multiple 
use of energy sequences uses M = 10. In Fig. 3 some 
contours of the result using both methods are plotted (dot- 
ted line) and when none of the methods is used (drawn 
line). Because the LSR is symmetric only one half is 
shown. The result with no special method is calculated 
with a coarser discretization, because otherwise the figure 
would contain too much noise. The histogram of Fig. 3 is 
used to obtain the fit parameters. The result of the fit is 
shown in Fig. 4.  

Values of the fit errors given by (12a) and (12b) as 
function of the number of calculated trajectories, found 
after repeating the calculations are shown in Fig. 5 .  The 
error estimates of four histograms are shown: 

1) the result when none of the methods is applied, 
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Fig. 5 .  Error estimates as a function of the number of simulated ions (a) 
the absolute error estimates. (b) the relative error estimates. 
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Fig. 6. Results of the smoothing operation. The drawn line is the smoothed 
histogram, the dotted line is the original. 
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Fig. 7. (a) Contour plot of a boron implant of 300 keV. The drawn line is 

the correct Monte Carlo result. The dotted line is a reconstruction out of 
the projections on the depth axis and the lateral axis, simulating a con- 
stant lateral straggle. (b) Profile under an infinite steep mask edge with 
an implantation dose of 10'' ions/cm2. The shown levels are I O i 6 .  
IO", and 10" ions/cm'. 

2) only rotation symmetry is applied, 
3 )  only identical energy histories are used with M = 

4) both methods are used. 

For the fourth histogram it can be seen that the error is 
limited by the "systematical" fit error. If we ignore this 
and draw straight lines through the points we see an al- 
most parallel behavior of the curves. The horizontal shift 
from histogram 1 to histogram 3 and from histogram 2 to 
histogram 4 indicates that a value M = 10 indeed reduces 
the number of required ions with a factor of 10. In terms 
of CPU time this factor is about 4. The horizontal shift 
from histogram 1 to histogram 2 and from histogram 3 to 

10, 



VAN SCHlE AND MIDDLEHOEK PERFORMANCE OF MONTE CARLO SIMULATIONS 

histogram 4 indicates that the number of required ions re- 
duces with a factor of 20. In terms of CPU time this is also 
a factor 20. The conclusion is that the use of both methods 
reduces the CPU time with a factor of 80 to obtain a result 
with the same error level as a calculation where no meth- 
ods are applied. 

V. AN EXAMPLE 
To demonstrate the capabilities of the computer code a 

boron implant of 300 kev is simulated. The characteriza- 
tion of the simulation is N = 2000, M = 10, A 2  = A Y  
= 100 Angstrom, rotation symmetry is used. To smooth 
the obtained results the following algorithm is applied. 
The smoothing algorithm takes the logarithmic average of 
a block of 9 cells as in (16): 

This smoothing operation is repeated 4 times. To prevent 
cells with zero ions to disturb the edges of the histogram, 
the minimum value in the histogram is searched unequal 
to zero. If during the smoothing a cell with value zero is 
encountered, this minimum value is used instead. This 
kind of smoothing behaves very well as can be seen in 
Fig. 6. 

The results are shown in Fig. 7. In Fig. 7(a) the LSR 
is plotted (drawn line). In the same figure the LSR is 
shown which is the result of a reconstruction out of the 
projections on the vertical and horizontal axes as is done 
in [ 11, 191 (dotted line). In other words, it is assumed that 
the lateral straggling is not a function of the depth. For 
high energies it appears that this assumption is not valid, 
see also [2]. Only for the top of the profile the fit seems 
good enough. For lower energies the assumption becomes 
more valid, because the depth dependence of the lateral 
straggling is less in that case. 

In Fig. 7(b) the profile under an infinite steep mask edge 
is plotted. The shown contours are at the levels 10l6, 
lo1’, and 1OIx ions/cm3, the maximum of the profile is 5 
x 1 0 ’ ~  ions/cm3. 

111. CONCLUSION 
Monte Carlo techniques are extremely powerful to sim- 

ulate the transport of energetic ions in solids, although 
they suffer from the drawback of large CPU time require- 
ments. In this paper two methods have been demonstrated 
which substantially diminish this problem for the calcu- 
lation of the LSR in an amorphous monolayer. A CPU 
time reduction of a factor 80 is achieved compared to the 
conventional implementation to obtain results with a high 
resolution. 

~ 
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