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Accumulation of heavy particles in N-vortex flow on a disk
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The motion of heavy particles in potential vortex flows on the unit disk is investigated theoretically
and numerically. Configurations with one vortex and with two vortices are considered. In both cases,
each vortex follows a regular path on the disk. In the one-vortex case, it is shown that small, heavy
particles may accumulate in elliptic regions of the flow, counter-rotating with respect to the vortex.
When the particle Stokes number exceeds a threshold depending on the vortex configuration, all
particles are expelled from the circular domain. A stability criterion for particle accumulation is
derived analytically and verified by numerical results. In the two-vortex case, heavy particles are
shown to accumulate in elliptic islands of regular motion. Again, this result is explained by a
stability analysis. The results may be useful in the design of gas-particle separators containing a
helical vortex filament. © 2006 American Institute of Physics. �DOI: 10.1063/1.2212987�
I. INTRODUCTION

Gas-particle and gas-condensate separators are widely
used in industry.1,2 Their purpose is to separate small dust
particles or small liquid droplets from gas flows. In general
the separators consist of a cylindrical tube containing a re-
gion of high vorticity. In some applications the vorticity is
concentrated in a helical vortex filament. The goal of the
present research is to determine the influence of such a co-
herent structure of vorticity on the motion of heavy particles.
The configuration of a steady helical vortex filament in a
cylindrical tube is sketched in Fig. 1. The instantaneous
three-dimensional potential velocity field induced by a heli-
cal vortex filament in an unbounded space follows from the
Biot-Savart law and was studied in detail by Hardin.3 The
analysis was extended to a helical vortex filament in a cylin-
drical tube by Alekseenko et al.4 The calculation of this ve-
locity field is far from trivial due to the torsion of the helical
vortex filament.

If, however, the pitch of the helix is very large compared
to the tube radius R, the contribution due to the three-
dimensionality of the helical vortex filament vanishes.4 In
this limit, the velocity field reduces to a superposition of a
constant axial velocity U and a time-dependent two-
dimensional flow in the cross-sectional plane, moving with
U, as sketched in Fig. 1. The two-dimensional flow is char-
acterized by an eccentrically placed point vortex in a circular
domain. In the present paper, the case of two point vortices
in a circular domain is considered, too. This corresponds to
the motion of two entangled vortex filaments, again in the
limit of a very slender tube.

The motion of one point vortex on a disk has been con-
sidered already by Lamb.5 The solution makes use of an
image vortex placed outside the disk in order to satisfy the
boundary condition on the wall. Due to the velocity induced
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by the image vortex, the vortex describes a steady circular
motion. In a frame rotating with the vortex, the flow field is
steady and the motion of passive tracers follows from a time-
independent stream function. The self-induced motion of two
vortices on a disk is more complicated, but is still regular
and integrable. A fairly broad classification of possible orbits
has been given by Boffetta et al.6 The case of two point
vortices on a disk is special, since it can create a flow that
displays chaotic advection of passive tracers despite the
regularity of the vortex motion. In this sense, the case of two
point vortices on a disk is comparable to the situation of
three vortices on an infinite plane.7

The dynamics of heavy particles in dilute suspensions
has received much attention in the past two decades. Various
investigations �e.g., Refs. 8 and 9� have reported the behav-
ior of small heavy particles in flows around fixed vortices.
The general conclusion is that heavy particles are expelled
from regions of high vorticity and tend to accumulate in
regions of high strain. If the centrifugal motion from the
vortex centers is balanced by another force such as gravity, a
group of heavy particles may be attracted to a single trajec-
tory. This was shown to happen in a Burgers vortex10 and in
a plane mixing layer.11

The motion of heavy particles in rotating two-
dimensional flows has been investigated in the context of
planet formation in the solar nebula �e.g., Refs. 12 and 13�.
The solar nebula is a collection of gas particles situated on a
large disk, whose rotation is described by the laws of Kepler.
If it is assumed that the turbulent flow in the solar nebula is
approximately two-dimensional, large coherent vortex struc-
tures are likely to occur. Bracco et al.12 show that heavy
particles tend to accumulate in large anticyclonic vortices,
i.e., vortices with sign opposite to the major Keplerian rota-
tion. Chavanis14 derives an analytical estimate of the time it
takes to capture a heavy particle in an anticyclonic vortex, by
assuming the flow to be a superposition of a prescribed el-
liptic patch of uniform vorticity and a steadily rotating

Keplerian disk; both the particle inertia and the gravitational
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influence of the star in the center of the disk are taken into
account. An overview of the motion of heavy particles in
two-dimensional flow is provided by Provenzale,15 who pays
attention to flows generated by a large number of point vor-
tices on an infinite plane and to the case of a finite vorticity
distribution on a Keplerian disk.

In the present paper we investigate the motion of heavy
particles in a closed circular domain containing one or two
point vortices. The presence of the boundary gives rise natu-
rally to a rotation of the flow field.16 The focus in this paper
is on the accumulation of particles due to their inertia in
sufficiently dilute flows. In order to isolate the effect of the
particle inertia, the simulations are based on a one-way cou-
pling. Gravity is neglected, since it is typically a minor effect
in high-speed industrial gas-liquid separators. A stability cri-
terion for particle accumulation is derived and verified nu-
merically for the one-vortex case. Stability is proven for
small heavy particles in both the one-vortex and the two-
vortex case.

The paper is organized as follows. In Sec. II we present
the dynamical equations governing the motion of point vor-
tices on a unit disk, and the equation of motion of passive
tracers. In addition, the equations of motion for heavy par-
ticles are introduced. In Sec. III we present and discuss the
numerical results of motion of heavy particles in a circular
domain containing one vortex. The motion of heavy particles
in a circular domain containing two vortices is considered in
Sec. IV. Finally, a summary and conclusions are given in
Sec. V.

II. GOVERNING EQUATIONS

A. Flow field

Consider a closed circular domain with radius R, con-
taining a potential flow generated by N point vortices. In the
following, all variables are made dimensionless by choosing
R as the characteristic length and the strength of the first
vortex �1 as the characteristic circulation. The position of the
jth vortex is given by its radial position rj and angle � j, while
its strength is � j. For each vortex j, an image vortex with
strength −� j is placed on the position �rj

−1 ,� j� in order to
satisfy the boundary condition of zero normal velocity at
r=1. Since the velocity field is divergence-free �� ·u=0�, the
motion of passive tracers is governed by a stream function
which plays the role of a Hamiltonian.

The stream function � is conveniently described in polar
coordinates,

��r,�� � �
j=1

N

� j��V�r,�,rj,� j� − �I�r,�,rj,� j�� , �1�
with
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�V�r,�,rj,� j� � −
1

4�
ln�r2 + rj

2 − 2rrjcos�� − � j�� , �2�

and

�I�r,�,rj,� j� � �V�r,�,rj
−1,� j� . �3�

The function �V�r ,� ,rj ,� j� represents the partial stream
function corresponding to the jth vortex, whereas
�I�r ,� ,rj ,� j� represents the partial stream function corre-
sponding to the image of the jth vortex. The velocity field is
obtained by the canonical equations,

ur =
1

r

��

��
, u� = −

��

�r
. �4�

The motion of the point vortices itself is governed by Hamil-
tonian dynamics. The Hamiltonian H is chosen as

H = �
i=1

N

�
j=i+1

N

�i� j��V�ri,�i,rj,� j� − �I�ri,�i,rj,� j�

+
1

4�
ln rj

2� −
1

2�
i=1

N

�i
2��I�ri,�i,ri,�i� −

1

4�
ln ri

2� .

�5�

The velocities of the vortices are finally obtained from the
canonical equations,

�iṙi =
1

ri

�H

��i
, �iri�̇i = −

�H

�ri
, �6�

where the dots indicate differentiation with respect to time.
During the motion of N point vortices on a disk, two

quantities are conserved. The first conserved quantity is the
Hamiltonian H defined by Eq. �5�. The second conserved
quantity is the angular momentum L2, defined as

L2 � �
i=1

N

�iri
2. �7�

Its conservation follows from the rotational symmetry of the
disk.16

B. Flow field for N=1

As an example, we consider a single point vortex with
unit strength on the unit disk. The Hamiltonian, given by Eq.
�5�, reduces to

H =
1

4�
ln�1 − r1

2� . �8�

FIG. 1. Helical vortex filament in a gas-liquid separa-
tor. In the cross section indicated, the flow may be ap-
proximated by a point vortex on a disk.
The motion of the vortex is
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ṙ1 = 0, �̇1 =
1

2�

1

1 − r1
2 , �9�

which shows that the vortex moves on a circle with constant
angular velocity.

When we choose a reference frame that corotates with
the vortex, ���−�1, the stream function becomes

�̂�r,�� � ��r,� + �1� + 1
2r2�̇1, �10�

with corresponding velocity components

ur =
1

r

��̂

��
, u� = −

��̂

�r
. �11�

Comparison of the expression for �̂ with Ref. 4 shows that it
corresponds to the stream function obtained for the flow field
induced by a helical vortex filament in a tube, in the limit of
infinite pitch.

Contour lines of the stream function are plotted in Fig. 2
for L2=0.25 �see also Ref. 16, p. 135�. Three stagnation
points in the corotating frame can be distinguished: E is an
elliptic stagnation point, and H1 and H2 denote two hyper-
bolic stagnation points. The character of the stagnation
points is determined by the Hessian of the stream function
evaluated in the stagnation point, H0,

H0 � 0 Û saddle point �hyperbolic point� ,

�12�
H0 � 0 Û extremum �elliptic point� .

FIG. 2. Contour lines of stream function in a one-vortex system, plotted in
the frame rotating with vortex 1; L2=0.25. H1 and H2 are hyperbolic stag-
nation points, and E is an elliptic stagnation point.
The Hessian H is defined as
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H � 	 �2�̂

�	2 
	 �2�̂

�
2 
 − 	 �2�̂

�	 � 


2

, �r,�� � �r1,�1� ,

�13�

where 	�r cos � and 
�r sin �. With Eq. �10� and �2�
=0, it follows that

H � − 	 �2�

�x2 
2

− 	 �2�

�x � y

2

+ �̇1
2, �14�

where x=r cos � and y=r sin �. Thus, in a fixed frame,
H�0 everywhere, so that critical points can only be saddle
points.17 In a rotating frame, however, elliptic stagnation

points do exist, provided �̇1 is sufficiently large. The rotation
of the flow around an elliptic stagnation point is always op-
posite to the rotation of the frame; this is generally called
anticyclonic motion.12,15

C. Flow field for N=2

In configurations of two vortices on a disk, the vortex
motion is always regular and integrable �i.e., nonchaotic�.6

Actually, in the frame rotating with vortex 1, vortex 2 de-
scribes regular trajectories following iso-lines of the Hamil-
tonian. For a derivation of this, the reader is referred to the
Appendix . The period of the regular trajectory, which can be
denoted by Tv, depends on the initial vortex positions and the
vortex strengths.

The motion of passive tracers in configurations of two
vortices on a disk is governed by the following stream func-
tion:

��r,�� = �
j=1

2

� j��V�r,�,rj,� j� − �I�r,�,rj,� j�� , �15�

which depends on both the passive tracer position �r ,�� and
the vortex positions �r1 ,�1� and �r2 ,�2�. In the corotating
frame the vortices have one degree of freedom less than in
the fixed frame. Still, the remaining number of degrees of
freedom is too large and the stream function is not
integrable.16 Thus, the advection of passive tracers in a two-
vortex system on a disk is chaotic, except for a number of
special cases.6

Besides chaotically moving passive tracers, some
patches of regularly moving passive tracers can be found.
These patches are called islands of regular motion, which can
be either hyperbolic or elliptic. On the one hand, hyperbolic
islands are situated around the point vortex centers. They
persist even when the vortex motion itself is chaotic.18 On
the other hand, elliptic islands may arise in regions far away
from vortex cores. Since these islands do not contain a sin-
gular vortex core, the relative velocity of passive tracers
tends to zero in the center of the island; therefore, they are
called elliptic islands.7

D. Equations of motion of heavy particles

The heavy particles in relevant applications �such as tiny
iced droplets in gas-liquid separators� are small and approxi-

mately spherical. The mass loading is assumed to be suffi-
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ciently small, so that particles do not influence the gas flow.
Furthermore, effects of interparticle collisions are not taken
into account. Hence, the approach presented here is based on
a one-way coupling. The equation of motion for small
spherical particles has been established by Maxey and
Riley.19 It comprises effects of a pressure gradient, an added
mass term, the Stokes drag, the Basset history force, and
buoyancy. In most practical applications with small, heavy
particles, however, the Stokes drag and gravity are the domi-
nant forces.10,11 In order to isolate the phenomenon of heavy
particles influenced by coherent vortices, gravity is also ne-
glected, which is a reasonable approximation in view of sev-
eral industrial applications. As a result, the equations of mo-
tion reduce to

dxp

dt
= up,

�16�
dup

dt
=

1

St
�ug − up� ,

where xp and up are the position and the velocity of the
particle, respectively, and ug is the velocity of the gas. The
parameter St is the Stokes number, which is the ratio be-
tween the particle relaxation time, �p, and the characteristic
time scale of the flow, R2 /�1,

St =
�p�1

R2 . �17�

Particles with St=0 will react instantaneously to changes in
the flow and will thus act as passive tracers, whereas par-
ticles with St→� will be insensitive to the flow field.

We rewrite the equations of motion in a rotating refer-
ence frame,

d�p

dt
= �p, �18�

d�p

dt
=

1

St
��g − �p� − 2
 Ù �p + 
2�p − 
̇ Ù �p, �19�

where � and � denote the position and the velocity in the
rotating frame, respectively. The additional terms on the
right-hand side, which all depend on the rotation rate 
 and

its time derivative 
̇, denote the Coriolis force, the centrifu-
gal force, and an additional force due to the acceleration of
the reference frame, respectively. The specific choice of 

depends on the situation at hand.

We consider the trajectories of two nearby particles. The
differences in position and velocity are denoted by ��p and
��p, respectively. When the magnitude of the four-
dimensional separation vector R����p ,��p�T �Ref. 20� is
very small, the separation between the two trajectories can be
expressed in the following form:

d

dt
R�t� = MR�t� , �20�
with
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M =�
0 0 1 0

0 0 0 1

1

St

��g

�	
+ 
2 1

St

��g

�

+ 
̇ −

1

St
2


1

St

��g

�	
− 
̇

1

St

��g

�

+ 
2 − 2
 −

1

St

� .

�21�

When all eigenvalues of the matrix M have a real part
smaller than zero, we have 
R�t� 
 →0 for t→�. This means
that the two particles converge for sufficiently large times.

III. HEAVY PARTICLES IN BOUNDED ONE-VORTEX
FLOW

In this section we consider the motion of heavy particles
in a system with only one vortex. We conduct a numerical
simulation where each particle is traced individually by us-
ing a fourth-order Runge-Kutta method. The equations of
motion, Eq. �16�, are solved for a series of decreasing values
of the time step, where each next value is half of the previous
value. When the differences between two subsequent solu-
tions are below a certain preset level, the last obtained solu-
tion is considered sufficiently accurate. At the start of the
simulation, the particles have the same velocity as the local
gas flow. When a particle reaches the circular boundary, it is
absorbed by the wall.

In Fig. 3, two different particle trajectories in the frame
2

FIG. 3. Trajectories of two slipping particles in a one-vortex system;
L2=0.25; St=0.5. The initial positions of the two particles are �	 ,
�
t=0

= �0,0� and �	 ,
�
t=0= �0.25,−0.25�.
corotating with the vortex are plotted for L =0.25 �equiva-

IP license or copyright, see http://pof.aip.org/pof/copyright.jsp



063601-5 Accumulation of heavy particles in N-vortex flow Phys. Fluids 18, 063601 �2006�
lent to r1=0.5�. Two regimes of particle motion can be dis-
tinguished in Fig. 3: either a particle is quickly expelled from
the circular domain and is absorbed by the wall, or a particle
is attracted to a point within the circular domain. Since we
are observing the flow in a frame corotating with the vortex,
the attraction point corresponds to a circular trajectory peri-
odic with the vortex motion in a fixed frame.

FIG. 4. Positions of heavy particles in one-vortex system; L2=0.25, St=0.5:
in the background.
Downloaded 04 Oct 2006 to 130.89.92.9. Redistribution subject to A
In Fig. 4, the positions of a large number of particles are
plotted for four instants in �dimensionless� time: t=0, t=5,
t=25, and t=100. The 7495 particles, which all have the
same Stokes number, St=0.5, are uniformly distributed at the
start of the simulation �t=0�. For large times, particles are
trapped in a region around the attraction point.

The particle trapping efficiency P, defined as

=0; �b� t=5; �c� t=25; �d� t=100. Streamlines of passive tracers are plotted
P �
�number of particles with r � 1 for t → � �

�total number of initially uniformly distributed particles�
� 100 % , �22�
is plotted in Fig. 5, for three different configurations of
bounded one-vortex flow: L2=0.09, L2=0.25, and L2=0.49.
Figure 5 shows that the particle trapping phenomenon be-
comes more important for larger values of the angular mo-
�a� t
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mentum L2 and for smaller values of the Stokes number. For
sufficiently large values of the Stokes number P=0, i.e., ac-
cumulation is not present.

For particle accumulation to occur, two conditions must
be met:

�i� a fixed point must exist, and
�ii� the fixed point must be stable.

In the remainder of this section, these two conditions are
investigated.

A. Location of fixed points

Since the corotation is steady and equal to the angular

velocity of vortex 1, i.e., 
= �̇1 and 
̇=0, Eqs. �19� reduce
to

d�p

dt
= �p,

�23�
d�p

dt
=

1

St
��g − �p� − 2�̇1 Ù �p + �̇1

2�p.

The flow field �g is time independent in this corotating
frame. In a fixed point, say �*, we have �p��*�=0, and the
Stokes drag balances the centrifugal acceleration,

�g��*� + St �̇1
2�* = 0. �24�

Writing 	*=r*cos �* and 
*=r*sin �*, we have for the ve-
locity components in � and r directions, respectively,

u��r*,�*;r1� = 0, �25�

ur�r*,�*;r1� = − St �̇1
2r*. �26�

For given r1 and St, these two equations can be solved for r*

and �*. To facilitate the actual computation of �r* ,�*�, it is
*

FIG. 5. Percentage of accumulated particles in a one-vortex system as a
function of St, for three different one-vortex configurations: L2=0.09,
L2=0.25, and L2=0.49.
convenient to solve Eq. �25� for cos � ,
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cos �* =
− b ± �b2 − 4ac

2a
, �27�

where

a = − 8��̇1r1
2r*3, �28�

b = 4��̇1�r1r*4 + r1
3r*2 + r1r*2 + r1

3r*4� + r1
3 − r1 + r1

3r*2

− r1r*2, �29�

c = − 2��̇1�r*3 + r1
2r* + r1

2r*4 + r1
4r*3� + r* − r1

4r*. �30�

The results are presented in Fig. 6 for r1=0.5 and varying St,
together with data obtained from numerical simulations for
St=0.1, St=0.3, St=0.6, and St=0.9, showing excellent
agreement.

For small Stokes numbers, the distance of the fixed point
with respect to the stagnation point can be approximated in
closed form. From Eq. �24�, it follows that

lim
St↓0


�* − �0
 = 0, �31�

where �0 is a stagnation point of the flow. This must be the
elliptic stagnation point situated on the negative 	 axis �point
E in Fig. 2�, since the hyperbolic stagnation points �i.e.,
saddle points of the stream function� are essentially unstable,
which is shown in the next section. The 	 component of Eq.
�24� becomes

	� �2�̂

�
2 �
�0


�
* − 
0� + St �̇1
2	0 + O�St2� = 0, �32�

FIG. 6. Positions of trapped particles in a one-vortex system, obtained from
numerical simulations; �: St=0.1, �: St=0.3, �: St=0.6, �: St=0.9. The
dashed line depicts the exact locations of fixed points.
and it follows that

IP license or copyright, see http://pof.aip.org/pof/copyright.jsp



063601-7 Accumulation of heavy particles in N-vortex flow Phys. Fluids 18, 063601 �2006�
� � 
�* − �0
 = St �̇1
2
�0
	� �2�̂

�
2 �
�0


−1

+ O�St2� . �33�

The physical reason for this is that larger particles �larger
Stokes number� will slip more with respect to the carrier
flow than smaller particles �smaller Stokes number�. In order
to balance the larger centrifugal force with the drag force, the
fixed point needs to be situated further away from the elliptic
point, where the carrier flow velocity is larger.

We have compared the values of � obtained from the
approximation ��St �Eq. �33�� with the exact values based
on solution of Eqs. �25� and �26�. The deviation between the
two solutions is plotted in Fig. 7 as a function of St for three
different values of r1. Indeed, for small Stokes numbers the
error is relatively low in all three vortex configurations, so
the approximation presented in �33� is accurate. Moreover,
the error goes to zero as St↓0, confirming the consistency of
the approximation.

B. Stability of fixed points

In this section the stability of the fixed point �* is as-
sessed by means of a linear stability analysis. When the par-
ticle is sufficiently close to the attraction point, the equation
of motion can be approximated by

d

dt
R*�t� = M*R*�t� , �34�

where R* is a vector denoting the separation between the
particle and the fixed point �in R4�,

R* � ��p − �*,�p�T, �35�

and M* is the matrix M defined by Eq. �21�, evaluated in �*.
In the present case of one vortex, the matrix M* is indepen-
dent of time. When the real parts of all eigenvalues
�1 , . . . ,�4 of M* are negative, then 
R* 
 →0 for t→�, and
the fixed point �* is an attraction point. Hence, we define a

FIG. 7. Difference between the distance � obtained from the approximate
equation Eq. �33�, and the exact value, as a function of the Stokes number.
stable fixed point as a fixed point which satisfies
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max
k

Re��k� � 0. �36�

The eigenvalues �k are the roots of the characteristic poly-
nomial of M*,

St2 �4 + 2 St �3 + �2 St2 �̇1
2 + 1��2 + 2 St �̇1

2� + St2 �̇1
4

+ H* = 0, �37�

where H* is the Hessian defined in Eq. �13�, evaluated in the
fixed point �*. The solutions are

�1,2,3,4 =
− 1 ± �1 − 4�̇1

2 St2 ± 4i St�H*

2 St
. �38�

We start to analyze the eigenvalues in the limit of St↓0,
and expand Eq. �38�,

�1,2,3,4 =
− 1 ± 1

2 St
+ St�H* − �̇1

2� ± i�H* + O�St2� . �39�

In the previous section we found that 
�*−�0 
 =O�St�; hence,
H*=H0+O�St�, and

�1,2,3,4 =
− 1 ± 1

2 St
+ St�H0 − �̇1

2� ± i�H0 + iO�St�

+ O�St2� . �40�

We assume that the fixed point at hand belongs to a curve of
stable fixed points �*�St;r1� with �*�0;r1�=�0�r1�, i.e., when
St↓0 the fixed point tends to a stagnation point. If H0�0
then i�H0�R and the fixed point cannot be stable for St↓0.
Therefore, we require H0�0 as a necessary condition, i.e.,

FIG. 8. Critical Stokes number as a function of the vortex position r1

�=�L2�; the solid line with small triangles is the result of numerical experi-
ments; the dashed line is determined from Eq. �38�.
the stagnation point must be elliptic. Furthermore, from Eq.
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�14� we observe that �H*− �̇1
2��0, and therefore the condi-

tion H0�0 is also sufficient for the fixed point to be stable.
It is noted that the real parts of the eigenvalues, if all nega-
tive, describe the rate at which a particle moves towards the
fixed point, which is apparently linear in the Stokes number.
Therefore, the particle trapping time is inversely proportional
to the Stokes number.
restricted to the flow induced by a point vortex in a circular
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We continue by analyzing the eigenvalues for arbitrary
values of the Stokes number. Upon definition of the follow-
ing two variables:

A � 1 − 4�̇1
2 St2, B � 4 St�
H*
 , �41�

we observe that
max
k

Re��k� =�
− 1 +�1

2
A +

1

2
�A2 + B2

2 St
,

H* � 0,

−
1

2 St
, H* � 0 A + B � 0,

− 1 + �A + B

2 St
, H* � 0 A + B � 0.

�42�
From these observations we derive the following sufficient
stability conditions:

H* � 0 and A + B � 1 Þ max
k

Re��k� � 0, �43�

H* � 0 and A + �A2 + B2 � 2 Þ max
k

Re��k� � 0. �44�

Finally, we determine Stcr�r1�, the maximum value of
St for which a stable fixed point can be found. For given
r1 we identify the set ��r1� of points �r1 ,r*�, where
maxk Re��k�r1 ,r*���0, i.e., where fixed points are stable.
Then, we determine the maximum value of the Stokes num-
ber over the set ��r1�; this is Stcr�r1�. We note that for each
�r1 ,r*� one finds two values for cos �* by Eq. �27�. When-
ever both values lead to stable fixed points, we take into
account the value that results in the largest value of St. The
critical Stokes number can also be determined numerically
by repeating the simulation of particles for a wide range of
Stokes numbers at a given r1: the smallest value of the
Stokes number for which no accumulation takes place is
Stcr�r1�.

The numerically obtained data set for Stcr is compared to
the exact formulation in Fig. 8. From r1�0.6, the critical
Stokes number becomes infinite according to the exact for-
mulation. In the numerical simulations, however, the critical
Stokes number remains finite, although it increases very
quickly as r1�0.6. The reason for the deviation of the nu-
merical results is that, for a finite number of particles in
phase space �position and velocity�, there may be no par-
ticles close enough to the attraction point. Still, it is clear
from the exact curve for Stcr that small, heavy particles may
always accumulate inside the circular domain, and that this
phenomenon becomes more important as r1 increases.

The stability criterion derived in Eq. �38� is evidently not
domain. It can be applied to any incompressible flow, as long
as it is steady in some steadily rotating reference frame. Ex-
amples of this comprise the motion of vortices on a regular
polygon on an infinite plane or on a disk �whose origin co-
incides with the barycenter� or an approximation of the flow
field on a Keplerian disk as given by Chavanis.14 Chavanis
prescribes an anticyclonic vortex region a priori; in our case,
the elliptic island is formed naturally just by the presence of
a vortex inside a circular boundary.

IV. HEAVY PARTICLES IN BOUNDED TWO-VORTEX
FLOW

We consider the motion of heavy particles in a flow gen-
erated by two equal point vortices in a circular domain. In
order to visualize the results for heavy particles, four vortex
configurations are investigated in particular. The first con-
figuration, with L2=0.18, is the same as was treated by Bo-
ffetta et al.;6 the vortex positions are initially:

�r1,�1� = 	�2

10
,0
, on t = 0,

�r2,�2� = 	2

5
,�
, on t = 0.

The case with L2=0.37 corresponds to the following initial
vortex positions:

�r1,�1� = 	 1

10
,0
, on t = 0,

�r2,�2� = 	 6

10
,0
, on t = 0.

In the configuration with L2=0.72, the initial vortex positions

are chosen to be
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�r1,�1� = 	�2

5
,0
, on t = 0

�r2,�2� = 	4

5
,0
, on t = 0.

Finally, a configuration is treated with L2=0.82, where the
initial vortex positions are

�r1,�1� = 	 1

10
,0
, on t = 0

�r2,�2� = 	 9

10
,0
, on t = 0.

First, we consider the motion of passive tracers in the four
configurations. Poincaré sections of passive tracer positions
with interval Tv are plotted in Fig. 9; passive tracers are

FIG. 9. Positions of heavy particles �diamonds� in two-vortex system af
�d� L2=0.82. For comparison, Poincaré sections of O�10� different passive
represented by small dots. The passive tracers can be classi-
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fied into three groups: hyperbolic islands, elliptic islands,
and chaotic regions. In all configurations two hyperbolic is-
lands can be recognized on the 	 axis, around the point vor-
tex centers; the chaotic regions can be recognized from the
random distribution of passive tracers. In addition, some el-
liptic islands occur. In Fig. 9�a�, the two most important el-
liptic islands are situated around �	 ,
���−0.1, ±0.5�. Three
elliptic islands can be identified in Fig. 9�b�, on �	 ,
�
��0.1, ±0.5� and on �	 ,
���−0.6,0.0�. In Fig. 9�c�, only
one elliptic island is visible, on �	 ,
���−0.4,0�. Finally, in
Fig. 9�d�, an almost circular anticyclonic region of regular
motion is found between the two vortices. There is, however,
no point in this region where the relative velocity of passive
tracers goes to zero.

In Fig. 9, the positions of heavy particles are presented
too. The initially uniformly distributed particles, with St
=0.1, are plotted after t=nTv�100, n�N. Thus, the heavy

e t=nTv�100, n�N; St=0.1: �a� L2=0.18; �b� L2=0.37; �c� L2=0.72;
s �small dots� are plotted, too.
ter tim
particles are plotted on the moment that the two vortices
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have zero relative angle, i.e., the vortices have the same rela-
tive positions as on t=0. In the configuration with L2=0.18,
a large number of particles have accumulated in two single
points near the elliptic islands; all other particles have been
expelled from the domain. The case of L2=0.37 is similar,
since many particles have either accumulated close to the
small elliptic islands or in the big elliptic island in the left
half-plane. In the case L2=0.72, some particles are trapped
close to the elliptic island in the left half-plane; a few others
are still in the chaotic sea. In longer simulations it is ob-
served that the dispersed particles eventually reach the wall,
whereas the trapped particles accumulate in the elliptic is-
land. The trapped particles in all these examples are attracted
towards a regular trajectory which is in phase with the vortex
motion. In the two-vortex system, the attraction point is not a
fixed point like in the one-vortex system; it is better to speak
of a moving attraction point instead.

2

FIG. 10. Poincaré sections with period Tv of particles trapped in the moving
attraction points: �a� L2=0.18; �: St=0.03, �: St=0.09, �: St=0.15;
�b� L2=0.72; �: St=0.1, �: St=0.3, �: St=0.6, �: St=0.9.
In the case of L =0.82, no elliptic island exists to which
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the heavy particles can be attracted. The anticyclonic region
of regular passive tracer motion, however, does attract par-
ticles that are expelled from the regions around the vortices;
as t→� heavy particles can be found on a closed line �see
Fig. 9�d��.

A. Location of moving attraction point

For the particle accumulation to occur in the two-vortex
system, a force-balanced periodically moving attraction point
has to exist with respect to the vortex motion. First, this
requires the existence of a regular motion of the heavy par-
ticles with respect to the vortices. This regular motion is not
straightforward to find because of the unsteadiness of the
flow field. Still, it is known that in the limit of St↓0, the
motion of heavy particles corresponds to the motion of pas-
sive tracers. So, the moving attraction point of heavy par-
ticles should go to a point of regular motion of passive trac-
ers as their Stokes number vanishes. Hence, just like the case
of one vortex, the particle accumulation takes place around

FIG. 11. Distance between a trapped particle and the center of the elliptic
island �� as a function of the Stokes number, on the moment that the two
vortices have zero relative angle: �a� L2=0.18; �b� L2=0.72.
the centers of elliptic islands.

IP license or copyright, see http://pof.aip.org/pof/copyright.jsp



063601-11 Accumulation of heavy particles in N-vortex flow Phys. Fluids 18, 063601 �2006�
The shape of the elliptic islands is in phase with the
vortex motion. The same holds for the trajectory of trapped
heavy particles. Therefore, both a trapped particle and the
center of the elliptic island are on the same position after
every vortex period. Poincaré sections with time Tv can then
visualize the influence of the Stokes number on the position
of the moving attraction point. The results are presented in
Fig. 10, for the cases of L2=0.18 and L2=0.72. In both cases,
the center of the elliptic island is plotted too. Clearly, the
location of the moving attraction point is increasingly far
away from the center of the elliptic island for higher Stokes
numbers.

Some particles with higher Stokes numbers even have a
fixed point in a region outside of the elliptic islands, as can
be observed for three particles in Fig. 10�b�. This means that
these heavy particles describe a regular motion, in period

FIG. 12. Percentage P of accumulated heavy particles as a function of the
two-vortex configuration �r1 ,r2�; �a� St=0.1; �b� St=1.
with the vortex motion, although they are surrounded by cha-

such that
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otically moving passive tracers. This seems rather contradic-
tory but this phenomenon can be explained from the dissipa-
tive nature of the governing equations of motion �Eq. �16��:
whereas passive tracer motion is governed by a Hamiltonian
that conserves the phase-space volume, the phase-space vol-
ume of heavy particles goes to zero for t→�.21

In Fig. 11, the distance �� is shown as a function of the
Stokes number. Here, �� is defined as

�� � �
�p
*�t� − �0�t�
�t=nTv

, n � N , �45�

which is the distance between the moving attraction point
and the center of the elliptic island, on the moment that the
two vortices have zero relative angle. The distance �� grows
approximately linearly in the Stokes number, as long as the
Stokes number is small enough. These results are very simi-
lar to the results of the one-vortex case.

B. Stability of moving attraction point

The stability of the moving attraction point can be inves-
tigated by using the separation vector from Eq. �20�, where
the time-dependent matrix M is given by Eq. �21� and evalu-
ated at the moving attraction point. In Fig. 11 we found that
���St, indicating that the moving attraction point is located
close to the center of an elliptic island for small values of the
Stokes number. Therefore, it is convenient to take the refer-
ence frame corotating with the center of the elliptic island,
whose angular velocity is denoted by 
0 and its angular

acceleration by 
̇0. The eigenvalues of M then follow from
the �time-dependent� characteristic polynomial,

St2 �4 + 2 St �3 + �2 St2 
0
2 + 1��2 + �2 St 
0

2

+ 4 St2 
0
̇0�� + St2 
0
4 + St2 
̇0

2 + H* = 0. �46�

In the limit of small relative acceleration compared to the
inverse of the Stokes number, i.e.,

� 
̇0


0
��

1

St
, " t , �47�
the eigenvalues become
�1,2,3,4 �
− 1 ± �1 − 4
0

2 St2 ± 4 St�− H*�t� − 2 St 
0
̇0 − St2 
̇0
2

2 St
. �48�
In the two-vortex case, the Hessian H* is strictly positive
in the elliptic island for all time. Linearizing with respect to
St, and making use of Eq. �47� then gives

�1,2,3,4 �
− 1 ± 1

2 St
+ St�H* − 
0

2� ± i�H* + O�St2� . �49�

In Fig. 11 it was shown that approximately H*=H0+O�St�,
�1,2,3,4 �
− 1 ± 1

2 St
+ St�H0 − 
0

2� ± i�H0 + iO�St�

+ O�St2� . �50�

A completely similar reasoning as is conducted in Sec. III,
based on the observation that �H*−
0

2��0, leads to the con-

clusion that the condition H0�0 is both necessary and suf-
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ficient for the fixed point to be stable for small Stokes num-
bers. It is noted that the real parts of the eigenvalues are
approximately linear in the Stokes number, so that the par-
ticle trapping time is inversely proportional to the Stokes
number, just like in the one-vortex case.

The basin of attraction consists predominantly of heavy
particles which are released in the regular elliptic islands.
Also, from other regions of the flow, a large quantity of
particles may eventually be forced towards the moving at-
traction point.

In order to quantify the particle accumulation, numerical
simulations were done for a large variety of two-vortex con-
figurations. For a range of 40�80 initial vortex positions
�r1, r2�, the positions of heavy particles are calculated after
t=500, for two different Stokes numbers: St=0.1 and St=1.
After such a long time, generally only the accumulated par-

FIG. 13. Contour lines of Hamiltonian �Eq. �A4�� describing the motion of v
E denotes a stable �elliptic� equilibrium configuration of the vortices, H
configuration of two coinciding vortices: �a� L2=0.18; �b� L2=0.37; �c� L2=
ticles are present in the domain, whereas all other particles
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have reached the wall. On the basis of these simulations, the
parameter P, defined in Eq. �22�, can be determined; the
results are presented in Fig. 12 as a function of the vortex
configuration r1 and r2. Since r1 and r2 may be interchanged
without any consequence for the flow, the figures are sym-
metric around the lines r2= ±r1, which are drawn for conve-
nience.

Generally, the accumulation of heavy particles is
enhanced with higher angular momentum and lower Stokes
numbers. The low percentage of particle accumulation in
the left half-plane of Fig. 12�a� �especially around
�r1 ,r2�= �−0.7,0.4�, or �r1 ,r2�= �−0.4,0.7�� can be explained
by the fact that the motion of passive tracers is highly cha-
otic; no elliptic islands exist in these configurations. This
supports the hypothesis that heavy particle accumulation in
bounded two-vortex flows takes place in elliptic islands of

2 in the frame rotating with vortex 1. Both vortices have the same strength.
n unstable �hyperbolic� equilibrium configuration, and S is the singular
�d� L2=0.82.
ortex
is a

0.72;
regular passive tracer motion.

IP license or copyright, see http://pof.aip.org/pof/copyright.jsp



063601-13 Accumulation of heavy particles in N-vortex flow Phys. Fluids 18, 063601 �2006�
V. CONCLUSIONS

In this paper, the motion of heavy particles in a bounded
point vortex flow is investigated both theoretically and nu-
merically. The numerical simulations are based on a one-way
coupling. In order to isolate the effect of inertia, only the
Stokes drag is taken into account in the equations of motion.

The results reveal that heavy particles may accumulate
in regions where the centrifugal and the drag forces acting on
the particles balance each other, thus causing an equilibrium
trajectory. Two cases have been studied: the situation with
one vortex on a disk and the situation with two vortices on a
disk. These configurations correspond to a flow induced by
one or two slender vortex filaments in a pipe.

A linear stability analysis in the one-vortex case shows
that particles are always attracted to a fixed point in an anti-
cyclonic region, as long as the Stokes number is below a
critical value. This critical Stokes number depends on the
particular flow properties; in general, it is higher as the an-
gular momentum of the vortex increases. The fixed point is
situated further away from the center of the anticyclonic re-
gion as the Stokes number increases. The rate at which a
particle approaches towards an attraction point is approxi-
mately linear in the Stokes number.

In a bounded two-vortex flow, where the vortices display
a regular periodic motion, the results are similar: heavy par-
ticles with small but nonzero Stokes number accumulate on a
moving attraction point within the circular domain. The
moving attraction point is situated near the center of an el-
liptic island, i.e., a region of regular anticyclonic motion of
passive tracers. The distance between the attraction orbit and
the center of the elliptic island increases for larger Stokes
numbers. Again, the rate at which a particle approaches the
moving attraction point is approximately proportional to the
Stokes number.

The results from this paper may be useful in several
applications where a three-dimensional swirl flow can be ap-
proximated by a two-dimensional rotating flow, e.g., in in-
dustrial gas-liquid separators containing helical vortex fila-
ments. The results from the present research give a global
idea of the motion of heavy particles in such systems.

APPENDIX: VORTEX MOTION IN CASE N=2

The Hamiltonian formulation �Eq. �5�� in the case of two
vortices is

H = �1�2��V�r1,�1,r2,�2� − �I�r1,�1,r2,�2� +
1

4�
ln r2

2�
+

1

4�
�
i=1

2

�i
2 ln�1 − ri

2� . �A1�

Using the conservation of angular momentum, this four-
degree-of-freedom Hamiltonian can be reduced to a system
of two degrees of freedom. For this purpose, r1 is written in

2
terms of r2 using the invariant L ,
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r1 =�L2 − �2r2
2

�1
,

dr1

dr2
= −

�2r2

�1r1
. �A2�

Then, the Hamiltonian, Eq. �A1�, can be written as follows:6

H�r1,�1,r2,�2� = Ĥ�r2,�2� , �A3�

with

Ĥ�r2,�2� =
1

4�
�1

2ln�1 −
L2

�1
+

�2r2
2

�1
� +

1

4�
�2

2ln�1 − r2
2�

−
1

4�
�1�2 ln��1�2r2

2 + �2�L2 − �2r2
2�

− 2��1�2
2r2

2�L2 − �2r2
2�cos �2�

+
1

4�
�1�2 ln��1�2 + �2r2

2�L2 − �2r2
2�

− 2��1�2
2r2

2�L2 − �2r2
2�cos �2� . �A4�

The time development of r2 and �2 can be obtained from the
canonical equations,

�2ṙ2 =
1

r2

�Ĥ

��2
, �2r2�̇2 = −

�Ĥ

�r2
. �A5�

The radial position of the first vortex, r1, then follows di-
rectly from Eq. �A2�.

The contour lines of the Hamiltonian �Eq. �A4�� in the
case of two equally strong vortices are plotted in Fig. 13 for
L2=0.18, L2=0.37, L2=0.72, and L2=0.82. In all figures, the
contour lines correspond to trajectories of the second vortex
in the frame rotating with the first vortex, which is placed on
the positive 	 axis ��1�0�. More details on these figures can
be found in Boffetta et al.6
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