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Four-Qubit Device with Mixed Couplings
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We present the first experimental results on a device with more than two superconducting qubits. The
circuit consists of four three-junction flux qubits, with simultaneous ferro- and antiferromagnetic coupling
implemented using shared Josephson junctions. Its response, which is dominated by the ground state, is
characterized using low-frequency impedance measurement with a superconducting tank circuit coupled
to the qubits. The results are found to be in excellent agreement with the quantum-mechanical predictions.
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The implementation of one- and two-qubit gates in
superconducting qubit prototypes [1] has confirmed their
utility for quantum computation. Such qubits are readily
fabricated, and highly scalable in principle. A prominent
subcategory consists of superconducting loops interrupted
by three Josephson junctions, so-called 3JJ flux qubits [2].
If threaded by a near-degenerate magnetic bias flux �x �
1
2 �0 (�0 is the flux quantum), such devices have quantum
states which are superpositions of clockwise (j#i) and
counterclockwise (j"i) circulating supercurrent Ip. The
small area of 3JJ qubits reduces their coupling to environ-
mental magnetic noise, making comparatively long co-
herence times possible [3], but also limits the strength
of their inductive coupling [2,4]. This can be overcome
using direct galvanic coupling through a shared Josephson
junction [5]. When reporting its experimental realiza-
tion [6], we mentioned that direct coupling can have ad-
ditional advantages. First, the coupling strength can be
varied independently of the sample geometry by chang-
ing the shared junction’s critical current. Second, while
direct coupling normally has the antiferromagnetic (AFM)
sign just as in the inductive case, a ‘‘twisted’’ design [join-
ing two qubit loops in a ‘‘1’’ shape with crossing leads in
the center; see Fig. 1(b)] features ferromagnetic (FM)
coupling [7].

In this Letter, we pursue this by studying a four-qubit
circuit in which the two types of coupling coexist. This is
very promising from the perspectives of realizing nontri-
vial Ising-spin systems [8] and scalable adiabatic quantum
computing (AQC) [9,10]. However, while our circuit be-
haves in full agreement with quantum mechanics and
features excellent multiqubit bias control, the measure-
ments presented are essentially equilibrium. The system’s
effective low-energy (pseudospin) Hamiltonian is
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where �i is the bias on qubit i (implemented through a
flux bias �x � 1

2 �0), �i is its tunneling amplitude, Jij
is the coupling energy between qubits i and j, and �z, �x
are Pauli matrices in the span of j#i (�z � �1) and j"i
(�z � 1). Equation (1) adequately describes a system of
flux qubits [2,4,11], although possible limitations [12]
remain to be investigated.

Our approach follows earlier work using the impedance
measurement technique (IMT) [13]. This method measures
impedance shifts in a high-quality superconducting LC
(tank) circuit inductively coupled to the system. For one
qubit [14], the average loop current I � �jbj2 � jaj2�Ip in
an eigenstate aj#i � bj"i changes direction at the anticross-
ing point �x � 1

2 �0 (where jaj � jbj, i.e., the pseudospin
ground state flips from j#i to j"i and vice versa for the
excited state). This causes a peak in the qubit susceptibility
� � dI=d�x; since dI=d�x / d2E=d��x�2, whereE is the
average energy and d�x is adiabatic (note 15 in Ref. [14]),
this also follows from the large energy-band curvature at
the anticrossing. Note that the very presence of such peaks
is already a quantum effect, since the classical ���x�
curves feature hysteretic loops [10] in the absence of flux
tunneling. Because of the qubit-tank coupling, � affects the
tank’s eigenfrequency !T and hence, under resonant driv-
ing, its current-voltage phase angle � / �. Thus, the width
and height of such an IMT peak in � provide information
about the anticrossing, i.e., about � and Ip.

For multiple qubits, a more general analysis yields [15]
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FIG. 1 (color online). (a) Electron micrograph of the sample.
The central junctions A1-A3 couple the Al qubits q1-q4. The
surrounding Nb coil is part of the LC tank circuit, used for both
measurement and global flux biasing. The Nb lines Ib1-b4 allow
asymmetric bias tuning. (b) Schematic diagram. The driving
current Idr�t� is much smaller than the oscillations in IT and
only needs to compensate for the latter’s losses.

-21 -20 -19 -18 -17 -16 -15 -14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

q
2

q
4

q
1
 & q

3

q
4

q
3

q
2

q
1

(b)

−  
ta

n 
Θ

I
bT

 (µA)

(a)

FIG. 2 (color online). (a) � tan��IbT� at Ib1 � 700 �A, Ib2 �
10 �A, and Ib4 � 250 �A (Ib3 � 0 throughout). The four qubit
peaks do not overlap. (b) The same graph (vertically shifted for
clarity) but at Ib1 � 268 �A, where the peaks corresponding to
q1 and q3 overlap. The height increase compared to the sum of
the two nonoverlapping peaks is a signature of FM coupling.
Dashed lines are theoretical fits. The fit for q2 is poor because the
relatively large tank amplitude washes out the experimental
peak [13]; a better fit has been obtained for smaller amplitudes
(not shown).
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where LT and QT are the tank’s inductance and quality
factor, respectively, �� � e�E�=T=

P
�e
�E�=T is the

Boltzmann factor of the eigenstate j�i of H in (1), and
with the matrix element
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X4
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�i are tank-qubit coupling coefficients in Hint �

Irf
P
i�i�

�i�
z , and Irf is the oscillating component of the

tank current IT � IbT � Irf�t�. The term i � j produces
the IMT peak corresponding to qubit i. Cross terms i� j,
on the other hand, appear only if j�i or j�i has nonzero
entanglement between qubits i and j due to their interac-
tion. For two weakly coupled qubits [4], the effect of
interaction can be understood as a correction. The cross
terms in R�� then change the shape of overlapping peaks at
codegeneracies [i.e., when the �i in (1) are chosen such that
both qubits flip simultaneously], which turn out to be
04700
smaller (larger) than the sum of the two individual peaks
for AFM (FM) coupling [16].

Here, the analysis needs to be extended both beyond two
qubits and to stronger coupling (particularly J >�), which
qualitatively changes the locus of the IMT peaks, as can
already be understood classically: neglecting the �i in (1),
the degeneracy points of the classical multiqubit flux states
are seen to depend on the Jij [6]. One then proceeds by
fitting the coefficients of H in (1); see below.

Figure 1(a) shows the sample with four Al qubit loops
inside a Nb pancake coil. The areas of the Al loops are
10
 7:5 �m2. Two junctions in each qubit are typically
650
 150 nm2, while the third is �25% smaller [2]. The
Nb coil has LT � 105 nH, and together with an external
capacitance CT � 470 pF forms a parallel tank circuit with
!T=2� � 22:703 MHz and QT � !TRTCT � 400, where
RT is the effective resistance. The Al loops were fabricated
by e-beam lithography and conventional shadow evapora-
tion, and the Nb coil by e-beam lithography and CF4

reactive-ion etching.
The qubits are coupled to each other both magnetically

and via a shared junction, consisting of parallel junctions
A1–A3 (Fig. 1). For a coupling junction with large critical
current Ic, and assuming identical qubits, J�@I2

p=2eIc [6].
For our system, Ip � 250 nA. Because of the relative twist
[6] between the qubit loops [Fig. 1(b)], the couplings
q1-q3 and q2-q4 are FM (Jij < 0), while the others are
AFM (Jij > 0). The biases �i can be varied by adjusting the
currents Ib1-b4 through the Nb wires, as well as the dc
current IbT through the tank coil. The qubit-coil mutual
6-2



FIG. 3 (color). (a) � tan��IbT; Ib1� at Ib2 � 10 �A and Ib4 �
250 �A. The repulsion between the traces (q1; q2), (q2; q3), and
(q1; q4) shows AFM coupling between the qubits in those pairs,
while the merging of traces (q1; q3) demonstrates FM coupling.
The line widths are proportional to the tunneling amplitudes of
the individual qubits. Since the qubits’ sensitivity to Ib1 de-
creases in the order q1, q2, q3, q4 [cf. Figure 1(a)], the various
slopes allow one to identify the trace belonging to each qubit.
(b) Theoretical graph for the same parameters.

FIG. 4 (color). Same as in Fig. 3, but as a function of IbT and
Ib2, at Ib1 � �400 �A and Ib4 � �50 �A. The skipped cross-
ing at the center corresponds to four-qubit codegeneracy.
Because of their FM coupling, the q1 and q3 traces merge
over an extended region. The qubits’ sensitivity to Ib2 decreases
in the order q2, q4, q1;3.

PRL 96, 047006 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 FEBRUARY 2006
inductances follow from the flux periodicity as Mq1;T�

Mq3;T�38:2 pH, Mq2;T � 38:6 pH, and Mq4;T � 38:9 pH.
The sample was thermally anchored to the mixing cham-

ber of a dilution refrigerator at a temperature Tmix �
10 mK. In general the effective T is affected by noise on
external leads and so is larger than Tmix. Often, Tmix alone
is given, since T is difficult to determine. One of the
advantages of IMT is that it allows one to determine
effective temperatures [6,14]. From the best theoretical fit
we estimate T � 70 mK, well within the expected range.

Figure 2 shows peaks in � tan� as the overall flux is
scanned by changing IbT. For most biases, four peaks can
be distinguished [Fig. 2(a)], each corresponding to degen-
04700
eracy in one of the qubits while the others provide a
semiclassical static background field. The narrow peak
for q2 indicates a small �2 (�12 mK), and incidentally
confirms that the width of the other traces is not resolution
limited. When q1 and q3 are codegenerate [Fig. 2(b)], the
resulting peak exceeds the sum of their individual peaks,
indicating strong FM coupling as mentioned above (this is
also true for q2 and q4).

Figure 3(a) plots � tan��IbT; Ib1�. The four traces are
IMT peaks, each corresponding to a single-qubit anticross-
ing. Since IbT biases all qubits almost equally, the trace
with the greatest sensitivity to Ib1 can be ascribed to q1 etc.
Combining several such cross-sections of the total IMT
response, one reconstructs the biasing coefficients in �x

i �

Mqi;TIbT �
P
jM
0
qi;bjIbj. The centers of the traces mark the

boundaries of the classical stability diagram. Each region
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between the traces corresponds to a different (minimum-
potential) flux state of the qubits [17]. The shifts of the
traces after each (skipped) crossing depend on the Jij. The
peak shapes, on the other hand, carry information about
the �i. As expected, the traces corresponding to two qubits
with AFM (FM) coupling repel (attract) each other, and in
the FM case merge over a certain distance. Fitting the data
to Eq. (1) yields �1 � 147, �2 � 12, �3 � 163,
�4 � 165, and J12 � J34 � 163, J14 � J23 � 155,
J13 � J24 � �62 (all in mK), and

M0 �

247 71 � 68
143 309 � 84
70 87 � 182
50 195 � 355

0
BBB@

1
CCCA fH; (4)

where the missing entries correspond to Ib3 which was
never used. The theory [Fig. 3(b)] accurately describes
the system’s behavior over the whole parameter space,
especially at the codegeneracies.

Figure 4(a) shows � tan��IbT; Ib2� for a case when all
four qubits become degenerate simultaneously in the fig-
ure’s center, where they produce two repelling peaks. From
H in (1) one infers that, between those peaks, the two
lowest eigenstates are close to superpositions of j"#"#i
and j#"#"i, for which all the coupling energies are negative;
at codegeneracy, the superpositions become (anti)symmet-
ric [18]. From the viewpoint of AQC, it is encouraging that
the ground state of H thus is globally entangled [19]; for a
quantification, see Ref. [20]. With all parameters already
determined from Fig. 3 and a few other cross-sections like
it, the theoretical comparison in Fig. 4(b) (and many other
nontrivial cross-sections) can be regarded as having no free
parameters, making the agreement remarkable.

Complete agreement between experiment and
theory was also obtained for a second sample, with
�1 � �2 � 60, �3 � 130, �4 � 110, J12 � J23 � 300,
J14 � J34 � 330, and J13 � J24 � �90 (all in mK).
However, the lowest effective temperature attained was
only �300 mK.

In conclusion, ferromagnetic and antiferromagnetic cou-
plings between four 3JJ flux qubits have been realized
simultaneously with shared Josephson junctions, with a
coupling strength significantly exceeding the inductive
one. (Incidentally, the results also show that direct galvanic
coupling can be used for more general circuits than the
linear arrays considered in Ref. [21].) The data fully agree
with a quantum-mechanical description to the experimen-
tal accuracy. Currently, quasiequilibrium impedance mea-
surement already provides valuable information comple-
mentary to state readout, notably the determination of the
Hamiltonian. With a faster and possibly qubit-selective
detection method, the circuit used looks very promising
for studying adiabatic bias manipulations.
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