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PROBABILITY OF KNOTS IN A POLYMER RING
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We generate equilibrium configurations of a ring polymer in an infinite space, or confined to the interior of a sphere.
Using a new algorithm, the a priori probability for the occurrence of a knot is determined numerically. The results are
compatible with power laws and scaling laws of striking simplicity.

One of the outstanding unsolved problems of the
theory of macromolecular systems consists of classify-
ing the topologically different classes of configurations
of a single closed macromolecule. This problem was
first recognized by Delbriick [1] and has subsequently
been studied by several authors [2—14]. It is also re-
lated to the problem of the mutual entanglements be-
tween two macromolecules (links, cf. refs. {15-23}),
as well as to certain topological problems which play
a role in the Aharonov—Bohm effect [24—27]. In
view of the almost unsurmountable difficulties in de-
veloping an analytical theory, there is a need for reli-
able numerical studies.

Numerical enumerations should have the following
desirable properties: (a) Random walks have to be
generated with the correct a priori probabilities, and
in such a way that the ends are joined properly. (b)
Given a macromolecular configuration, its topological
properties should be determined in a mathematically
unique way. (c) All numerical algorithms should be
efficient enough to achieve adequate statistical accu-
racy. This numerical approach can properly be called
numerical hammagraphy (from the Greek 76 ‘dupa,
meaning the knot).

In their pioneering study (cf. appendix of ref. [3])
the Russian group generated random walks on a cubic
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lattice. Another approach was followed by des Cloizeaux

and Mehta [5] who represented the chain by a gaussian
random walk in continuous space. Strictly speaking,
both approaches [3,5] show a flaw in the way in which
the end points of the chain are joined. This is accom-
plished by making the one-step distribution function
depend on the position along the backbone of the
macromolecule in such a way that the end points are
forced to coincide. This violates the independence of
the different steps in the random walk. This flaw was
recognized and obviated by Chen [12] who made
rings by dimerization of two free random walks. One
of the aims of our work is to use an a priori closed
ring model with repeating units of equal lengths.

Apart from the early work of Crippen [2] all au-
thors use the Alexander polynomial A(¢) to character-
ize the topological properties of a knot. We follow
this by now established tradition. Yet it should be
stressed that the fact that two knots have the same
Alexander polynomial does not necessarily imply that
they are topologically equivalent.

All previous authors note that few knots form in
the short chains that they were able to study numeri-
cally. We have, therefore, made an effort to improve
the efficiency of the algorithm in such a way that
long chains with a high probability of knot formation
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can still be studied in large numbers.

Ring-shaped macromolecules are represented by se-
quences, each consisting of V masspoints at positions
r1 ., Iyy- Between any pair (i, i + 1) of nearest neigh-
bours along the chain, we assume a harmonic force
around a fixed distance /.

Fisp =7

F, AL
IPieq =1l

ji+1 = —Kk(ry —rl =1

1

Herei=1,...,Nandi+1=1ifi=N. On mass point
i a random force acts, which models the heat motion
of the surrounding solvent. Moreover, a frictional force,
proportional to the velocity, acts on each mass point.

At time zero the molecule is assigned some initial
configuration. The equations of motion for the NV mass
points are solved numerically with methods commonly
used in molecular dynamical simulations [28—30].
Once thermal equilibrium has been established, the
successive configurations of the system on equally
spaced times are stored for further analysis. In this
way, microscopic configurations of the ring-shaped
macromolecule are generated with the correct a priori
probabilities.

The question we wish to answer now is which frac-
tion of the stored configurations are knots and which
fraction are topologically equivalent to a circle. In
answering this question, one assumes that the random
walk is self-avoiding; hence, when its shape is deformed,
self-intersections are prohibited. The criterion for the
existence of a knot is A(—1) # *1. The numerical
algorithm consists of several stages. First, the configu-
ration is projected onto a plane. Secondly, all trivial
loops are removed in such a way that the number of
double points decreases drastically. It turns out that
this process reduces the number of double points con-
siderable. For example, in a sample run with N = 320,
this process removed all double points for about 85%
of all those configurations that turned out to be un-
knotted. Thirdly, for those configurations which can-
not be reduced any further, the value of A(—1) is cal-
culated with the standard method [3].

The fraction ({) of unknotted configurations of a
closed macromolecule consisting of /V repeating units
has been calculated for two geometries. In the first
geometry, the molecule can move freely throughout
all space. In the second geometry, the molecule is con-
fined to the interior of a sphere of radius R. The re-
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Table 1

The fraction ¢ of unknotted rings as a function of the chain
length NI and the radius of the confining sphere, R. The total
number of configurations studied in each case is denoted by
t, of which b were found to be unknotted rings.

R/l t b ¢
N=64 o0 25500 21548 0.845
4 17000 12247 0.720
3 16500 8972 0.544
2.5 16500 6239 0.378
2.1 19500 4207 0.216
1.9 14400 2014 0.140
N=128 o0 23500 15863 0.675
5 16500 6890 0.418
4 18100 4629 0.256
3.5 14400 2213 0.154
N=192 o 38500 20789 0.540
8 21900, 8782 0.401
6.3 18000 5099 0.283
5.5 16800 3443 0.205
5 14300 2166 0.151
N =256 oo 27420 15869 0.424
N =320 o0 15156 0.343

44220

sults are presented in table 1. Here, R is measured in
units /. Of the total number of configurations () the
number of unknotted configurations equals b; obvi-
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Fig. 1. Semi-logarithmic plot of the fraction ¢ of unknotted
rings as a function of the number of repeating units N. The
uncertainty indicated by the error bars corresponds to 204
where o4 denotes the standard deviation [(1 — s /t] 12
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ously { = b/t. These results are also plotted in figs. 1
and 2.

Before we turn to a discussion of these results, the
folowing remark is appropriate. Due to the finite
strength of the harmonic force between two neigh-
bouring mass points, their distance Ti i+1 is not exactly
constant but fluctuates between narrow limits. For
example, the probability that |r; ;. /1 — 1] >0.02
was smaller than 2%.

When the results in fig. 1 and table 1 with R/l = oo
are represented by a power law of the form

Sy = CuVNe @
the best fit is found to be

1 =0.99646 £ 0.00005, |a|<0.01, (3a)
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Fig. 2. Semi-logarithmic plot of {; as a function of R;?f for
three different values of V. Error bars as in fig. 1. Note that
the wall of the spliere to the interior of which the macromol-
ecule is confined, is represented by a harmonic force which
acts as soon as the distance to the center of the sphere is
larger than R. Because of the finiteness of this force the ef-
fective radius Refr of the sphere is slightly larger than R: in
all cases but one we find Refr = R + 0.015/. For the case R/l
= 1.9 we find Reff = R + 0.021. In this case the radius of the
sphere is comparable to the length of a repeating unit.
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where the uncertainty indicated is given by * twice
the standard deviation. Assuming & = 0, we find

C=1.060.01. (3b)

Thanks to the large number of configurations analyzed
(44220 at N = 320 to be compared with 173 at N
=270 in the work of des Cloizeaux and Mehta [5]),
we were able to determine the value of the “topologi-
cal exponent” a with fair numerical accuracy.

It is remarkable that & turns out to be so close to
zero. The smallness of a suggests that this topological
exponent has no relation to critical exponents. This is
in contrast with the exponents which characterize
self-avoiding random walks, which are indeed known
to be related to critical exponents [31—33]. Hence,
it may be conjectured that the topology of closed
macromolecules is unrelated to the problem of count-
ing self-avoiding random walks in a three-dimensional
space. In this respect the two-dimensional case is dif-
ferent, cf. ref. [34].

The results in fig. 2 and table 1 for various values
of R/l and large /V, can be represented by a scaling
formula of the form

$v(R)~ exp[-AWVEBIRY] . @
The best fit is found to be
vy=3, B8=0.76. )

The scaling formula (4) is reminiscent of similar for-
mulae in polymer physics [35]. At the time of writing,
we can offer no explanation for the occurrence of
scaling laws in these topological problems.
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