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PROBABILITY OF KNOTS IN A POLYMER RING
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We generateequilibrium configurationsof a ring polymer in an infinite space,or confmed to the interior of a sphere.
Using a newalgorithm, thea priori probability for theoccurrence ofa knot is determined numerically. The results are
compatible with power laws and scalinglawsof striking simplicity.

Oneof the outstandingunsolvedproblemsof the lattice.Anotherapproachwas followed by desCloizeaux
theoryof macromolecularsystemsconsistsof classify- andMehta [5] who representedthechainby agaussian
ing thetopologicallydifferent classesof configurations randomwalk in continuousspace.Strictly speaking,
of a singleclosedmacromolecule.Thisproblemwas bothapproaches[3,5] show a flaw in theway in which
first recognizedby DelbrUck [1] andhassubsequently the endpointsof thechainarejoined.This is accom-
beenstudiedby severalauthors[2—14].It is alsore- plishedby makingtheone.stepdistribution function
lated to theproblemof the mutualentanglementsbe- dependon the positionalongthebackboneof the
tweentwo macromolecules(links, cf. refs. [15—23]), macromoleculein sucha waythat theendpointsare
aswell as tocertaintopologicalproblemswhich play forcedto coincide.Thisviolatesthe independenceof
a role in the Aharonov—Bohmeffect [24—271.In the differentstepsin therandomwalk.This flaw was
view of the almostunsurmountabledifficulties in de- recognizedandobviatedby Chen [12] who made
velopingan analyticaltheory,thereis a needfor reli- rings by dimerizationof two freerandomwalks. One
ablenumericalstudies. of the aimsof our work is to useana priori closed

Numericalenumerationsshouldhavethe following ring modelwith repeatingunitsof equallengths.
desirableproperties:(a) Randomwalkshaveto be Apart from theearlywork of Crippen[2] all au-
generatedwith the correcta priori probabilities,and thorsusethe Alexanderpolynomial~(t) to character-
in sucha waythat theendsarejoined properly.(b) ize thetopologicalpropertiesof a knot.We follow
Given a macromolecularconfiguration,its topological this by now establishedtradition. Yet it shouldbe
propertiesshouldbe determinedin a mathematically stressedthat the fact thattwo knotshavethesame
uniqueway. (c) All numericalalgorithmsshouldbe Alexanderpolynomialdoesnotnecessarilyimply that
efficient enoughto achieveadequatestatisticalaccu- theyare topologicallyequivalent.
racy.This numericalapproachcanproperlybecalled All previousauthorsnote that fewknotsform in
numericalhammagraphy(from theGreekrd ‘dpp~, theshortchainsthat theywere ableto studynumeri-
meaningtheknot). cally. Wehave,therefore,madeaneffort to improve

In their pioneeringstudy(cf. appendixof ref. [3]) theefficiencyof the algorithmin sucha waythat
the Russiangroup generatedrandomwalkson a cubic longchainswitha highprobabilityof knot formation
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canstill be studiedin largenumbers. Table 1
Ring-shapedmacromoleculesare representedby Se- The fraction~ of unknottedrings asa functionof thechain

quences,eachconsistingofN masspointsat positions lengthNI andtheradiusof theconfiningsphere,R.The total
numberof configurationsstudied in eachcaseis denotedby

,rN. Betweenanypair (i, I + 1) of nearestneigh- t, of which b werefoundto beunknottedrings.

boursalongthe chain,we assumea harmonicforce __-~_~

arounda fixed distance1. R/l t b

F1~+i —k(Ir~+i—r~i—1 ~ ~ N=64 25500 21548 0.8454 17000 12247 0.720
Ir~÷1-—r~ 3 16500 8972 0.544

2.5 16500 6239 0.378
HereI = 1, ...,Nandi + 1 = 1 ifi N. On masspoint 2.1 19500 4207 0.216

i a randomforceacts,which modelstheheatmotion 1.9 14400 2014 0.140

of the surroundingsolvent.Moreover,a frictional force, N = 128 23500 15863 0.675
proportionalto thevelocity,actson eachmasspoint. 5 16500 6890 0.418

4 18100 4629 0.256
At timezerothe moleculeis assignedsomeinitial 3.5 14400 2213 0.154

configuration.Theequationsof motionfor theN mass
pointsaresolved numericallywith methodscommonly N = 192 38500 20789 0.540

8 21900~ 8782 0.401
usedin moleculardynamicalsimulations[28—30]. 6.3 18000 5099 0.283
Oncethermalequilibrium hasbeenestablished,the 5.5 16800 3443 0.205

successiveconfigurationsof thesystemon equally 5 14300 2166 0.151

spacedtimesare storedfor further analysis.In this N = 256 27420 15869 0.424
way, microscopicconfigurationsof the ring-shaped

N320 oo 44220 15156 0.343macromoleculearegeneratedwith the correcta priori -

probabilities.
The questionwe wishto answernow is which frac- saltsare presentedin table 1. Here,R is measuredin

tion of thestoredconfigurationsare knotsandwhich units1. Of the totalnumberof configurations(t) the
fractionare topologicallyequivalentto a circle. In numberof unknottedconfigurationsequalsb; obvi-
answeringthis question,one assumesthat therandom
walk is self-avoiding;hence,whenits shapeis deformed,
self-intersectionsareprohibited.The criterion for the 0

existenceof a knot is ~(— 1) ~ ±1. The numerical
algorithmconsistsof severalstages.First, theconfigu- 0. 8

rationis projectedontoa plane.Secondly,all trivial
loopsare removedin sucha way that the numberof
doublepointsdecreasesdrastically.It turns outthat 0. 5

this processreducesthe numberof doublepointscon-
siderable.Forexample,in a samplerunwithN = 320, N
this processremovedall doublepointsfor about85% <N -

of all thoseconfigurationsthat turnedout to be an- 0 . 4

knotted.Thirdly, for thoseconfigurationswhich can- I
notbe reducedany further,thevalueof i~(_1)is cal- N

culatedwith thestandardmethod[3].
The fraction (~N)of unknottedconfigurationsof a

closedmacromoleculeconsistingof N repeatingunits 1 0 200 300

hasbeencalculatedfor two geometries.In thefirst
Fig. 1. Semi-logarithmicplot of the fraction~Nof unknotted

geometry,themoleculecanmovefreely throughout rings asa functionof thenumberof repeatingunitsN. The
all space.In the secondgeometry,themoleculeis con- uncertaintyindicatedby theerrorbarscorrespondsto ±

20d

fined to the interior of a sphereof radiusR. The re- where Gd denotesthestandarddeviation [(1 — ~N)~NIt1”~2.
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ously SN = b/f. These results are also plotted in figs. 1 
and 2. 

where the uncertainty indicated is given by f twice 
the standard deviation. Assuming & = 0, we find 

Before we turn to a discussion of these results, the 
following remark is appropriate. Due to the finite 
strength of the harmonic force between two neigh- 
bouring mass points, their distance ri i+l is not exactly 
constant but fluctuates between narrow limits. For 
example, the probability that Iri i+l /Z - i ) > 0.02 
was smaller than 2%. 

WI 

When the results in fig. 1 and table 1 with R/Z = 00 
are represented by a power law of the form 

IA, = CpNNa , (2) 

the best fit is found to be 

/_I = 0.99646 f 0.00005 , Ial < 0.01 , W 

Thanks to the large number of configurations analyzed 
(44220 at N = 320 to be compared with 173 at N 
= 270 in the work of des Cloizeaux and Mehta [5]), 
we were able to determine the value of the “topologi- 
cal exponent” 01 with fair numerical accuracy. 

It is remarkable that (Y turns out to be so close to 
zero. The smallness of LY suggests that this topological 
exponent has no relation to critical exponents. This is 
in contrast with the exponents which characterize 
self-avoiding random walks, which are indeed known 
to be related to critical exponents [31-331. Hence, 
it may be conjectured that the topology of closed 
macromolecules is unrelated to the problem of count- 
ing self-avoiding random walks in a three-dimensional 
space. In this respect the two-dimensional case is dif- 
ferent, cf. ref. [34]. 
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Fig. 2. Semi-logarithmic plot of fhf as a function of Riff for 
three different values of N. Error bars as in fig. 1. Note that 
the wall of the sphere to the interior of which the macromol- 
ecule is confmed, is represented by a harmonic force which 
acts as soon as the distance to the center of the sphere is 
larger than R. Because of the finiteness of this force the ef- 
fective radius Reff of the sphere is slightly larger than R: in 
all cases but one we find Reff = R + 0.0151. For the case R/l 

= 1.9 we find Reff = R + 0.021. In this case the radius of the 
sphere is comparable to the length of a repeating unit. 

The results in fig. 2 and table 1 for various values 
of R/l and large N, can be represented by a scaling 
formula of the form 

{N(R)- exp’[-A(N@l/R)r] . 

The best fit is found to be 

(4) 

7’3, @=0.76. (5) 

The scaling formula (4) is reminiscent of similar for- 
mulae in polymer physics [35]. At the time of writing, 
we can offer no explanation for the occurrence of 
scaling laws in these topological problems. 
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