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ABSTRACT : A two-person pursuit-evasion stochastic differential game with state and measure- 

ment,y corrupted by noises is considered. In an earlier paper the problem was reformulated and 

solved in an infinite-dimensional-state space, and the existence of saddle-point solutions under 

certain conditions was proved. 7he present paper provides a numerical solution for the resulting 

continuous-time integro-partial d@erential equations. This solution scheme is based on the 

utilization of the second guessing technique, and, in spite of the fact that a complicated set of 

integro-partial differential equations have to be solved, the numerical results seem plausible and 

promising. 

I. Introduction 

We consider a two-person pursuit-evasion stochastic differential game in which 
the system state and the measurements are affected by (possibly independent) noises. 
The feature that the players have access to different noisy measurements makes this 
problem considerably harder than the traditional one where the players have access 
to complete, identical information. Wilman (l), in a seminal work, solved the 
discrete version of the problem and used complicated limiting operations to obtain 
the result for the continuous-time case. Direct attempts to solve this problem have 
recently attracted attention (2,3). 

The present paper is a continuation of the results obtained in (2). In that paper, the 
existence of saddle-point solutions has been established under certain sufficient 
conditions for linear system dynamics and quadratic pay-off. An infinite- 
dimensional state space was introduced in which the problem was reformulated and 
solved. The optimal (linear) strategies were characterized by a set of 34 coupled 
integro-partial differential equations. 

The present paper reports on a numerical solution of these integro-partial 
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differential equations. Some numerical results were discussed in (1) for discrete-time 
game problems. We present numerical solutions here for the continuous-time 
equations. 

The outline of the paper is as follows. In Section II, the mathematical problem 
statement is given. A method of solution is presented in Section III based on the idea 
of second-guessing technique. The numerical results presented here are, however, 
based upon the solution method given originally in (2) and explained briefly in 
Section IV. The results in (2) are slightly extended to include the case of a non-zero 
initial condition. In Section V, a numerical scheme for solving the problem is 
presented and actual numerical results for a scalar example are given in Section VI. 

II. Problem Statement 

We consider a direct two-player extension of the standard linear-quadratic 
Gaussian control problem as discussed in standard textbooks, (4). The differential 
equation describing the evolution of the system in state space is given by 

i(t;o) = A(t)x(t;o)+ B,(t)u,(t;o)+ B,(t)u,(t;o)+F(t)n(t;w); O<t<T, (1) 

x(O;w) = xg 

where x(t ; co) is an n-vector denoting the state; u&t; w) is an r,-vector denoting the 
strategy of one player-the pursuer; u,(t ; co) is an r,-vector denoting the strategy of 
the other player-the evader; n(*; co) is a q-vector representing white noise with unit 
intensity and zero mean; and T is the prescribed final time. 

The matrices A(t), B,(t), B,(t) and F(t) have appropriate dimensions. The initial 
condition x0 is assumed to be normally distributed with mean X, and covariance 
matrix PO. We use the &-theory of white noise developed by Balakrishnan (S), as 
opposed to the conventional Wiener process approach. For linear strategies, both 
the approaches lead to identical results, but the &-theory is much easier to work 
with in our present context as explained in (2). 

The observations available to the players are 

y&t ; co) = C,(t)x(t ; co) + G,(t)n(t ; o), pursuer, (2) 

y,(t ; co) = C,(t)x(t ; co) + G,(t)n(t ; co), evader, (3) 

where y, and ye are mp- and m,-dimensional vectors, respectively. The matrices C,, 
C,, G,, G, have appropriate dimensions. 

The criterion that the pursuer wants to minimize and the evader wants to 
maximize is given by EJ where 

J = 3 
{ 

(x(T;o),Qfx(T;w))+ 
s 

o’ C(x(t ;m)> Q(Mt;o)) 

+ <u,(t;4>R,W,(t; w)> -(u,(t;o),R,(t)u,(t;o))l dt (4) 
1 

and E denotes “expectation”. The admissible strategies u&t; co) and u,(t; w) are 
respectively functionals of the observations y, and ye up to time t. 
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Finally, we assume that both the players know and have perfect recall to the 
system characteristics C 

C A {A, B,, Be, C,, C,, F, G,, G,, Po, 20, Qf, Q, R,, RJ 

and it is assumed that x0 is independent of both the system and observation noises. 

III. Solution Method Involving Increasing Dimension 

In this and the following section, we propose two different techniques for solving 
the problem formulated above. The essential difficulty of this problem is that the 
pursuer does not know the observation of the evader and vice versa. The pursuer will 
have some knowledge about the evader’s observation y, through imperfect 
knowledge of the system state and he will try to use that knowledge to estimate y,. 
The same holds for the evader. 

The solution method of this section may be termed the method of alternate 
substitutions. First assume that u, = 0. This is assumed to be known to the pursuer. 
The pursuer then faces a stochastic control problem which he can solve. The 
solution is denoted by u,“. Then u: is kept fixed, assumed to be known to the evader 
who then tries to maximize EJ w.r.t. u,. This yields a solution u,“. Then again this 
solution is kept fixed, assumed known to the pursuer, who then solves his optimal 
control problem leading to u;, etc. If the sequence u:, ub,. . and the sequence 
uz, ui,. converge, the limits will be called the solution to the problem. In 
mathematical terms, we get the following : 

Step 1 
Suppose U, = 0. The pursuer faces the problem 

i = Ax+B,u,+Fn, 

y, = C,x + G,n, 

min.E (x(T),Qfx(T))+ T [(x,Qx>+(u,,&@I dt 
UP s 0 

which is a standard problem whose solution is 

z&t) = Iqt)i,o(t) 

where K:(t) is the control gain, satisfying a Riccati equation and 

i;(t) = E[x(t) 1 y&s), 0 < s < t; u, = 01. 

The estimate i:(t) can be obtained by the standard Kalman filter technique; it 
satisfies a linear differential equation with y,(e) as the forcing term. 

Step 2 
Keep u:(t) fixed and solve the maximization problem for the evader. Since the 

evader does not know ii(t), the differential equation for ii(t) is added to the original 
state equation and the new state zz’ b (x’, 5:‘) becomes a state of dimension 2n. The 
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solution to the maximization problem can be written as 

t&t) = @(t)i,o(t), 

i:(t) A E[z:(t) 1 y,(s), 0 < s d t; u,o(-)]. 

The estimate i:(t) again satisfies a linear differential equation of Kalman filtering. 

Step 3 
Keep u:(t) fixed and solve the minimization problem for the pursuer. The state 

now becomes 3n dimensional : 

1’ A 
ZP 

=(x’, 2,“‘) 

and the solution can be written as 

u;(t) = Ki(t)ik(t), 

i;(t) L E[z;(t) 1 y,(s), 0 d s < t; u,o(-)]. 

Step 4 
Keep u;(t) fixed and solve the maximization problem for the evader. The state now 

becomes 4n dimensional 

z; ’ : (x’, ii) 

and the solution can be written as 

u,l(t) = K,‘(t)i,‘(t), 

i:(t) i EC&) I y,(s), 0 d s d t ; u;(a)]. 

We can carry on like this to get a sequence of strategies {uf”(t)} and {u:‘@(t)}. The 
dimension increases with m. To the knowledge of the authors, this approach has not 
been explicitly carried out. In the next section we present an alternate approach for 
solving the problem. 

IV. Solution Method using Infinite Dimensional State Space 

We assume that the strategies u,(t ;w) and u,(t ;a) are linear functionals of the 
observations y,( *) and y,( -), respectively, and also on X, so that 

up(r) = 
s 

L 

Np(r, r)yp(r) dr + Z,(t)-%,, (5) 
0 

s 

f 

u,(t) = N&t> ~)Y,(~) dz + Z,(tFo (6) 
0 

where the kernels N,(t,z) and N,(t,s) are differentiable with respect to T and the 
partial derivatives w.r.t. z are square integrable on the triangle 0 < r < t < T and 
where Z,(t) and Z,(t) are square integrable on [0, T]. We have to determine Np,Jt, z) 
and Z,,,(t) for the optimum strategies u,,,(t). 

To determine the optimum N,,, and Zp.e, we have to define new state variables in 
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an infinite dimensional Hilbert space. This has been done in detail in (2) (where it has 

been assumed that X0 = 0 and therefore, Z,,, have not been determined). The idea is 
that if (2) is substituted into (5) and if the resulting equation is subsequently 
substituted into (1) and (4) with N, and Z, assumed fixed, we obtain a control 
problem for the evader. The resulting control problem is, however, nonstandard and 
can be put into the standard form if a suitable new state is defined from the original 
one which is infinite dimensional. After the introduction of appropriate infinite 
dimensional state variables, we have a standard optimal control problem for the 
evader, and the optimal U, turns out to have exactly the form (6). This gives us N, and 
Z, in terms of the given functions N, and Z,. Reversing the roles of the players, we 
can write N, and Z, in terms of N, and Z,. These give us four equations in four 
unknowns : N,,, and Z,,,. They are given by 

N&z) = -R,l(t)B,(t)‘jh,(?.)+j~Th,.(s)ds} 0 <z < t 6 T, 

N&z) = -R;l(t)B&)‘{h,(T)+rh.(s) ds} 0 d z d t d T, 

Z,(t) = -R,l(t)B,(t)~{g~(T)+~~Tu,(s) ds} 0 < t < T, 

Z,(t) = -R;l(t)~.(t)~{g.(T)+~Tg~(s) ds} 0 < t 6 T 

(7) 

where 

h,(s) = i 
[S 

T Kpli(t, s, “)Spi(t, 7, c) do 
i=l 0 

+ kpl i(t, s)Spi(t, z,O) + 51 At> s)Spi(t, z, 7’) 
1 

2 (8) 

+k~li(t,s)~p~i(t~O~O)+~p~i(t~s)~pli(t~O~T) 
1 

(9) 

and similar expressions hold for h,(s) and g,(s). The functions KPli, Keli, SPi, Sei, kpli, 
kPli, &ii, keli, i = 1,2, are described by a set of 34 coupled integro-partial differential 
equations with mixed boundary conditions. These equations have been explicitly 
given in (2) and will be used in the numerical procedure to be described in the next 
section. The equations for cDPli, i = 1,2, are given in (6) and are repeated in the 
Appendix for easy reference. The equations for Deli, i = 1,2, can be obtained by 
interchanging the indices p and e. Note that Eq. (7) gives N,,, and Z,,, implicitly. If 
we write 

/J = (R; i, R, I), (10) 

it has been shown in (2) that (7) has a unique solution for il,~ll sufficiently small. 
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V. Numerical Scheme 

We assume in what follows that X0 = 0 and therefore, we do not need to calculate 
Z,,,(t). We write Eq. (7) in a form more convenient for developing the numerical 
procedure to be described below. We rewrite Eq. (7) as 

a = J@> P) (11) 

where p is defined in (10) and where 

z’ = (z1,z2,z3,4 = 
[ 

Rp~N,(t,r).R,~N~(t,r),Np(t,O),N,(t,O) 
1 

. 

This is explained in detail in (2). It is further shown in (2) that for 11~11 sufficiently 

small, the sequence (z(i,> defined by 

Zti+ 1) = X(Z(i), /iL), i = 0, 1,2,. . ; Z(O) = 0 (12) 

converges and that the limit yields the desired solution to the differential game. We 
use a slightly different numerical scheme from the one described in (12). At each 
iteration, we use new values of the components of the vector z already updated. 
More explicitly, suppose that we know zci) = (z,(+ zZti), zjciJ, z&. These values are 
substituted in (12) to calculate zici+ i) and zJti+ i) (which, in turn, determines the new 

NJ. Next, we use zlci+ i), z,(~), z~(~+~), z,(~) in (12) to calculate zZci+ i) and z,(~+ i) to 
obtain the updated zci+ iI. 

Each complete iteration, say, from zci) to zci+ i) requires the solution of a set of 34 
coupled integro-partial differential equations. Because of the size and complexity of 
these equations, a simple discretization scheme is used for their solution. We 
illustrate the scheme by means of one example. Consider the equation for &ii, 
which can be written as 

aKpli(t, s, O) 
at 

=f(t, s, g), Kpl,(T, s, c.r) = 0, 0 d s, o < T (13) 

where the explicit expression for f may be found in (2). If At = T/N where N is the 
number of discretization steps, we write tj = sj = gj = j. At, j = 0, 1,. . . , N. We 
discretize Eq. (13) as 

Kp,i(tj- 12 sl, cm) = Kpli(tj, SJ, ~m)-At’f(tj, sly grn), 

Kpli(tN,sl, c,) = 0; 1,m = 0, 1,. . . , N. 

In order to compute the integrals appearing in the expression forf, the integrals are 
replaced by stepfunctions with step size At. After each update, we calculate 

v = : f: {IINp(tj,~~)(i+~)-Np(tj,~~)(i)l12+ lIN,(tj,Z3(i+l,-Ne(tj,Zl)(i)I12} 
j=O l=O 

where zr = 1. At and use I/ < E (a pre-assigned small quantity) as the stopping 
criterion. 
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VI. Numerical Results 

For numerical simulation, we consider the following scalar example : 

i(t) = u,(t)+u,(t)+Fn(t); 0 < t < 1, 

x(0) = xg ; xg - N(0, 0 - I), 

y,(t) = x(t) + G,n(t), 

y,(t) = x(t) + GAG, 

[x’(t)+u;(t)-%,2(t)] dt . 

A number of simulation runs were made with different values of the parameters 
given in Table I. 

Examples I and 2 differ only in the terminal condition. Examples 2, 3 and 4 have 
increasing values of G,, while Examples 2, 5 and 6 have increasing values of G,. 
Examples 1 and 7 have different F. Another example with F = 4 with remaining 
parameters as in Example 7 showed divergence of our iteration scheme. The number 
of iterations to achieve the desired degree of accuracy was 3 in all cases except 
in Example 7 where the number of iterations needed was 5 (in spite of a larger value 
of E). 

In Table II, numerical values obtained for the function N, are given, while in 
Table III, those for the function N, are given. In all the examples we see that 
IN,,Jt, z)l, for fixed t, are increasing functions of z implying that recent observations 
are given greater weight than those obtained earlier, a very plausible fact. In 
Examples 2-6, we take the parameter a to be zero. Due to our simple discretization 
scheme, this leads to N&T, z) = N,(T, r) = 0 for 0 < z < T = 1. 

Comparing the various examples, we can draw a number of conclusions. In 
Examples 2, 3 and 4, we see that with increasing G,, IN,(t,r)l becomes smaller, 
indicating that if the measurement noise for the evader increases, he is going to rely 
less and less on his own observations. In Example 4, noise dominates observation so 
much that the evader hardly uses this information and thus his control resembles the 
open loop solution (u,(t) f 0) m which there are no measurements at all. We observe 
the same phenomenon for the pursuer in comparing Examples 2, 5 and 6. In 

Example 

1 
2 
3 
4 
5 
6 
I 

TABLEI 

F 6 G, 

0.4 0.4 0.4 
0.4 0.4 0.4 

0.4 0.4 1 
0.4 0.4 4 
0.4 1 0.4 
0.4 4 0.4 
1 0.4 0.4 
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At E 

0.2 10-4 
0.2 10m4 
0.2 1om4 
0.2 10-4 
0.2 10-4 
0.2 10-4 
0.2 10-z 
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-~0~~0~~N~w~0~~000000 
w~~m~~3~~~oi~~rnoggggg 
000000000000000 
000000000000000 8 00000 
ddddddddddddddddddddd 
II III1 /III III II 

~~-~N~~~~~~~~0~000000 
~~~~~0~~ww1-Nb~000000 

-000000000000000 
ddddddddddddddddddddd 
II I II I III1 II II I 

-dmr--c-4Mwmm- comclr-wooooo~ 
Mm-aY*m~w~~mw0mc40000 
mmwim~0-~600~~P40000 80 
ddddddddddddddddddddd 
/I III I IIll III II 

~id~~N~00~~m~00000~~~ 
0wmm~~~~cammwowm00 
cQmw-m~o-cl6oo~~r4oo 8 000 
ddddddddddddddddddddd 
II Ill I III III III 
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Example 7, system noise has been increased (w.r.t. that in Example l), which leads to 
a slower convergence of the iteration scheme. Tables II and III also show that with 
an increasing F, the functions IN&t, z)l and jN,(t, z)l also increase in value, as is to be 
expected. The execution time on a DEC- 10 computer for each of the examples was in 
the order of 2 s. A reduction in step size (At = 0.1) leads to the same conclusions. 

VII. Conclusion 

A zero-sum linear quadratic Gaussian differential game has been considered in 
which the two players have possibly different noisy measurements. These different 
measurements lead to questions of the kind : “does the opponent know that I know 
that he . . . ?” Two approaches to obtain the saddle-point solution have been 
discussed. The second approach has been worked out in detail by the authors in an 
earlier paper and the numerical results using that approach are presented here. In 
spite of the fact that the solution is given by a complicated set of integro-partial 
differential equations, the numerical results look plausible and promising. Use of 
more refined numerical scheme will undoubtedly lead to solutions closer to the 
theoretical ones. 
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Appendix 

In this appendix, we give the integro-partial differential equation describing QPl 1, OPlz (see 

Eq. (9)). The operator I,,, is given by 

Is,* = 
i 

0 for s < t 

I for s 2 t. 

a@,,,,(t,O,s) 

at 
= I,,, 

[ 

t 

A$,,,(t,O,T)+f4 
is 

N,(t, o)C,(~)@,,~ 10, &a) do + 

Z,@,,, 1(t, 0,O) + N,(L t)@,, I(& 0, T) - N,(L VpZl(t, 0, 0) 

-~~(~M.(i.~))g,,,(i.O.p) +]+.;l -(A I(t> W; + I,.,=;) (G,G;)- ‘C,@,,I I(t> 0, T), 

~pl,(o,o,s) = I, 0 <s d T, 

aqd, 0,s) 
at 

= -(Pzl(tr s)Cb+I,,G,Gb)(G,Gb)- lC,@,ll(t,O, T), 

@D,,,(o,o,s) = 0, 0 < s < T. 
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