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SHORT-PHASE ANOMALIES IN INTERMITTENT BAND SWITCHING
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The distribution of phase lengths ¢ for intermittent band switching is investigated for small ¢. Some typical deviations from
exponential behaviour are reported, in particular the occurrence of a minimal phase length with enhanced probability.

1. Introduction

At present a wide variety of intermittent phenom-
ena is known. One of the most interesting kinds of
intermittency occurs in various low-dimensional
maps when two chaotic bands merge [1-7].

Just after the merger of the two chaotic bands the
orbit of the twice iterated map is found to spend rel-
atively long periods in either of the former band re-
gions, but at irregular times it switches from one
region to the other. This phenomenon has been called
intermittent hopping or switching and an exponen-
tial (geometrical) distribution of the periods ¢ be-
tween subsequent switches has been observed.

However, in numerical investigations we find that
the phase length ¢ cannot be arbitrarily short. That
is, a minimal phase length ¢,;, exists, which in-
creases when we get nearer to the merging point.
Moreover, the probability distribution is strongly
peaked at ¢=t,;,. Typical distributions of phase
lengths will be shown later on in this Letter.

In this Letter we shall deal with the above short-
phase phenomena, using the map

J(x)=1—-a|x|? z>1, (1)

as an example. In section 2 we discuss the band
structure of this map. In section 3 we explain the ex-

istence of a minimal period ¢.;, and we derive an
expression for it in terms of the small parameter
e=a—a,, where a; denotes the value of 4 for which
the two chaos bands merge into one. Finally, in sec-
tion 4, we discuss the peak in the distribution and its
dependence on ¢ as well as on the order z of the
maximum.

2. Band structure

The map (1) exhibits a period doubling cascade
as one increases the parameter a from 0 to 4. (z). At
this value we have an orbit of period 2%, consisting
of points which together form a Cantor set. For a> a,,
the attractor is composed of a collection of chaos
bands, which undergoes a sequence of reverse bifur-
cations, or band mergings, at values ..., as, a,, a,. Here
a, denotes the value of a at which 2" chaos bands
merge into 27! bands, in a pairwise manner. This
is illustrated in fig. 1 for the typical case z=2.

For the sake of presentation we shall concentrate
on the last band merging at a=a,, although the phe-
nomena to be described occur in exactly the same
way at all the other band mergings. Just below a=a,
the orbit of the map alternates between the two sep-
arate bands and an orbit of the twice iterated map
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Fig. 1. The structure of the attractor for the map f(x)=1—ax?,
for 1.39<a < 1.56. We have indicated the threshold to chaos a,,
and the band merging values @i, @; and «,. (One has a,=
1.5436890 in this case.)

f2(x)=f(f(x)) remains forever in either one of the
bands. It is therefore convenient to consider f 2(x)
instead of the original map f(x).

In figs. 2 and 3 we show f2(x) just before the band
merging (a<a,) and just after it (a>a,). In both
figures the positive fixed point X of f(x) is used for
the construction of two square boxes. Each of these
boxes contains a (sub)map similar to the original
map f(x) but on a smaller scale. The boxes are
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Fig. 2. The map f 2(x) for z=2 at a=1.51, before the band merg-
ing at a=a,=1.5436890. The boundaries of the two bands are
indicated by X,. X, and X3, X,, respectively. Note that the two sub-
maps discussed in the text are completely contained within the
square boxes.
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Fig. 3. The map f 2(x) for z=2, at a=1.58, after the band merg-
ing. The boundaries of the band are %, =1 and ;=1 —a. The es-
cape interval I, g of the right region is mapped onto the interval
Iy, and then successively onto I,, I, and I;. Note that the interval
I, overlaps with the escape interval I, ; of the left region.

bounded by the fixed point X and its pre-images un-
der f2(x) at the left and the right of X:

Xo=-X, Xe=[(1+X)/a]'".

As long as the extrema of the two submaps lic inside
their boxes (as in fig. 2), any orbit of f 2(x) trapped
in one of them will remain there forever. The actual
chaos bands are given by the intervals [X,, X4] and
[Xs, X,], where X,,=f "(0) denotes the nth iterate of
the maximum %,=0, ie. X =1, X=1-a, =
1—a|l—al? and so on. At a=a, the extrema of the
submaps hit their boxes simultaneously, and at this
moment we have ¥;=X4;=X=a;—1, which means
that the band boundaries touch each other.

For a> a, we have the situation as shown in fig. 3,
after the band merging. The two extrema pierce
through the boxes and consequently an orbit can es-
cape from its box. For small values of e=a—a, the
escape regions, which are given by the intervals where
f*{x) exceeds the boxes, are quite small, and orbits
of £ 2(x) will in general remain for long times in one
of the former band regions.

3. Minimal phase length

Let us consider the region x> X in fig. 3. An orbit
of £ 2(x) in the right box will switch to the left region
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x < X after it gets into the escape interval I.,. . When
this happens the orbit is transferred on the next it-
eration into the interval Iy= [ Xy, 1]. The interval I,
is mapped by £ 2(x) to I, =[%;, X], then to =%,
X}, then to I,=[X,, X]. In fig. 3 the interval I, over-
laps with the escape interval of the left box and thus
the orbit has a possibility to switch back to the right
region on the second next iteration (since the escape
interval is first transferred to the interval [%,, X ] at
the left). So we observe that in this case the orbit
must spend at least four iterations of f ?(x) in the
left region. We define the minimal phase length in
the left region f,;,; as the minimal number of it-
erations spent in that region. In general 7, 1 will de-
pend on the value of e=a—a, as well as on the order
z of the maximum. In the above example we have
4 min, L= 4.

To establish an accurate lower bound for ¢,;,, as a
function of ¢ we determine the minimal number 7 of
iterations of f 2(x) needed to map ¥; into the escape
region I, (or to the left of it). For small values of
€ the region I, is quite narrow, with X; close to the
unstable fixed point X, and the number of iterations
can be found from

Zrsa=X=[" (D) " (% -X) . (2)

The escape interval lies in a small neighbourhood
of the minimum at %,=0 and as soon as X, , ,, reaches
this point the orbit has a possibility to escape after
one extra iteration. Hence from (2) we can estimate
the minimal number of iterations n of f2(x) to get
from X%; to the escape region:

Im[(X=5)/(X=%)]
e AT T )

Since a non-integer number of iterations has no
meaning, it is understood that # should be lifted to
the next integer, i.e. n—[n+1].

The minimal phase length for an orbit of f2(x) in
the left region t,,;,, is then [#+ 3], since one iter-
ation is needed to get into the interval I, and another
one is needed to escape to the interval [X,, X, ] be-
fore switching to the right region. For the right re-
gion the same arguments can be applied. However,
the length of phases of £ 2(x) in the right region is
always 1 iteration shorter than the length of the cor-
responding phases in the left region. This stems from
the fact that the switching of an orbit of f2(x)
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amounts to an anomaly of the type LL in the alter-
nating sequence ..LRLRLR... of an orbit of f(x),
where we write L when an orbit point belongs to the
left region and R when it belongs to the right region.
Anomalies of the types RR and LLL do not occur.
So the minimal phase lengths in the left and the right
region are related by i1 =tmin g+ 1. Consequently
the minimal phase length ¢.;, is equal t0 (=
[n+2].

The minimal phase length can be calculated from
eq. (3), using the expressions

z2—a)) zal-2(z+1)a, +2

X=X3= a(a;—-1) (z—1)a,—2z+1

+0(e?), (4)
X—%,=a,-14+0(¢), (5)
rrn=-22=100). (6)

For the case z=2 this yields
tmin=1[2-0.9651n(3.43¢)] . (7)

Applying eq. (7) we find the values ¢,,,,=5,7, 9,
11, 14 for e=10-2,10-3, 10~%, 103, 10—, respec-
tively. These values are in perfect agreement with the
numerical values obtained by iteration of the inter-
val I, = [%5, X].

Some of the considerations given above are rem-
iniscent of an estimate by Grebogi et al. [8] of the
phase length of the transient chaotic phase in the case
of intermittent bursting. The interpretation however
is quite different and the laminar phase in intermit-
tent bursting does not show a minimal phase length
effect. Further, in ref. [2] some plots of distribu-
tions of phase lengths were shown, but the minimal
phase length phenomenon was not mentioned.

4. The peak

The peak in the distribution P(¢) of phase lengths
t at or just above f.,;, can be explained as follows.
Since the escape regions for small ¢ are quite narrow,
we may assume that the points where the orbit enters
the escape region I, g are uniformly distributed, that
1S, Pesc.r{X) is constant. The escape interval I, g is
mapped under f2(x) on the interval o= [Xg, 1].
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The (normalized) distribution po(x) of points
mapped on this interval is obtained by applying the
Frobenius—Perron operator to the (constant) distn-
bution p... r(X), that is,

po(0)= | pecn 012 )) dx

lesc.R
=27 (1—Xg) M7 (1—x)~1*172,
xEIQ. (8)

This distribution has a cusp-type singularity at x=1
for z> 1. In the limit z} 1 it straightens out to a uni-
form distribution. On the next iteration I, is mapped
to I,, with a distribution p, (x) having a cusp-type
singularity at X,, i.e. at the left boundary of the in-
terval I,. Starting from p, (x) we find after » more
iterations of f2(x) a distribution p,,, , (x) with a cusp-
type singularity at the left boundary X, ,, of the in-
terval I, ;:

Prs i (X) =N (X=F342,) 7115, €))

A being the normalizing factor z =1 (X —X;4,,) "'/~

We now consider the situation that I, , is the first
interval overlapping with the escape region I, ;. We
may anticipate that the height of the peak will os-
cillate as a function of ¢, depending on the values of
Pn+1(Xx) In the escape region. More specifically, when
e=a—a,(z) is such that the left bound of I,,.,.,, X342,
falls inside the left escape region I, we expect the
probability Py (tyinr) for a phase of length ¢, in
the left region to be most pronounced, yielding a
maximal value for the height of the peak.

The probability P, (¢) for a phase of length 7 in the
left region equals the probability Pg (¢+ 1) for a phase
of length ¢+ 1 in the right region, so we have

P(tmin)=2LPL(tmin+1)- (10)

We shall now calculate the maximal height of the
peak at ;. It should be attained for values of ¢ for
which the left boundaries of I, and 1, ; coincide. In
that case the normalized distribution on I, can be
expressed as

Prain(X) =2 H(X+IL)~VH(x+IL) 71 FVE (11)

So the maximal probability for the minimal phase
length ¢, to occur equals
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Pmax(tmin) = %Pmax,L(tmin'l' 1 )

L2

=4 j 2N (XH4L) (e 4L) 7 dx
—L/2
1/ L \" .

=E(m> ~gl7, (12)

In the last step we have used that L~¢!/, On the
other hand, a minimal probability P,in (Zmin) fOT tmin
is expected in a situation where the left boundary of
the interval I, is just right of the escape region. From
this it can be shown that P, {(fmin)~&'% i.e.
Poin (tmin ) follows the same power law as the inverse
of the average phase length [1]; the maximal peak
height in eq. (12), however, goes to zero with a
smaller power of &.

In fig. 4 we have given the numerical measure-
ments of phase length distributions for z=1.1, z=2
and z=23, for values of ¢ where a maximal value of
P(tmin) occurs for ¢, =6, 7 and 9, respectively. From
fig. 4 it is seen that the maximal height of the peak
as compared to the inverse of the average phase
length grows with increasing z, in agreement with the
smaller power of &. For actual systems such a feature
may be used to gain information on the z value of
the underlying map. In table 1 the measured
P .. (tmin) is compared to the theoretical value ac-
cording to eq. (12) and it can be concluded that the
agreement is quite good.

A special situation occurs when the left boundary
of I, in fig. 3 falls exactly in the middie of the left
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Fig. 4. Numerically obtained phase length distributions for (a)
z=1.1 and a=1.4377955, (b) z==2 and a=1.54424004, (c¢) z=3
and a=1.61804789.
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Comparison between prediction and measurement of P, (#min ) for some values of z and ¢ (see text and fig. 4).

z a € tmean tmin Pmax ( Imin )

pred. meas.
1.1 1.43779550 6.08 %103 91 6 0.0169 0.0172
2 1.54424004 551x10-* 68 7 0.101 0.097
3 1.61804789 1.49%10-? 82 9 0.170 0.148

escape region. Then we have X;,,,=%, 50 at this
value of ¢ we have a superstable cycle of period 2n+ 3,
and consequently P(fyin) =P(tmin+1)=14, with
tmin=n+1, P(t) being zero for all other values of .
Such a cycle occurs for every value of n, inside a nar-
row window of ¢ values. For ¢ values corresponding
to the interior part of a window one has only the two
periods tm;, and t,,+ 1 occurring both with proba-
bility 4. For & values very close to the opening and
the closing of a window one may except intermit-
tency of the Pomeau-Manneville type [9] and in-
termittent bursting [8,10], respectively. For ¢ values
sufficiently far away from a window only the inter-
mittent switching behaviour is left. The estimate of
the minimal phase length which we have given is
valid independently of the details of the windows. In
the narrow subregime of intermittent bursting an
analogy with earlier considerations in ref. [8] ap-
pears, because our minimal phase length in that case
can be regarded as the (minimal) transient time of

the bursts between the remnants of the attractor at
the boundaries of the window. The interplay of the
various types of intermittency will be subject of fu-
ture investigation.
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