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We study the problem of scheduling a chain-reentrant shop, in which each job goes for its processing first to a machine called the
primary machine, then to a number of other machines in a fixed sequence, and finally back to the primary machine for its last
operation. The problem is to schedule the jobs so as to minimize the makespan. This problem is unary NP-hard for a general number
of machines. We focus in particular on the two-machine case that is also at least binary NP-hard. We prove some properties that
identify a specific class of optimal schedules, and then use these properties in designing an approximation algorithm and a
branch-and-bound type optimization algorithm. The approximation algorithm, of which we present three versions, has a worst-case
performance guarantee of 3/2 along with an excellent empirical performance. The optimization algorithm solves large instances
quickly. Finally, we identify a few well solvable special cases and present a pseudo-polynomial algorithm for the case in which the first
and the last operations of any job (on the primary machine) are identical.

Ever since Johnson’s (1954) seminal work for solving
the problem of scheduling the two-machine flowshop
to minimize makespan, the flowshop scheduling problem
has become an important paradigm in the literature. Al-
though larger, more complicated flowshop scheduling
problems have turned out to be intractable, Johnson’s ele-
gant scheduling rule continues to be a useful component in
many heuristics for solving them.

Recently, a new type of manufacturing shop, the reentrant
shop, has come into prominence. The basic characteristic of a
reentrant shop is that jobs visit a certain machine or a set of
machines more than once. Such a shop reflects modern elec-
tronic processing and certain manufacturing environments. A
typical example is signal processing (Gupta 1993), in which
signal pulses have to go to a computer for preprocessing, and
then through the sensing and command system for transmis-
sion and retrieval, and finally back to the computer for post-
processing. More complicated examples are assembly of printed
circuit boards (Noble 1989) and wafer fabrication (Elliot 1989).

A promising way to address the reentrant shop is to view
it as a flowshop with an additional complication. While this
complication renders even a simple two-machine reentrant
shop scheduling problem intractable, there appears to be
the possibility of once again invoking Johnson’s rule by
exploiting the inherent flowshop structure, and solving the
problem approximately and efficiently.

The purpose of this paper, therefore, is to concentrate
on problems of scheduling jobs in reentrant shops that,
other than being reentrant, have all the flowshop features
and for which efficient, if not optimal, algorithms can be
developed. In particular, we first extend the model of the
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signal processing to cover a special class of reentrant
shops, which we shall label as chain-reentrant shops. In a
generic chain-reentrant shop, the technological constraints
demand that each job is first processed on the primary
machine M,, then on (m — 1) secondary machines in the
order M,, M;,..., M,,, and finally again on M, for a
finishing operation. We then focus on the two-stage ver-
sion of the problem, for which we are able to provide a
partial characterization of a set of optimal solutions.

As in Johnson (1954), we select the objective of minimiz-
ing makespan. This allows us to apply Johnson’s algorithm
in the development of an efficient algorithm to solve the
two-machine chain-reentrant shop problem approximately.
Our approach, partitioning jobs into groups and applying
Johnson’s rule to each group, is an extension of the classical
work of Johnson, and this study may serve as a stepping stone
to further analysis of larger, more complicated reentrant
shop scheduling problems. We also note that in high-tech
manufacturing as in the examples given above, production
is usually capacity-driven rather than order-driven; in this
sense, minimizing makespan is a natural objective.

Before describing the plan of the paper at the end of
this section, let us briefly review the related literature. A
closely related problem is analyzed by Lev and Adiri
(1984), whose objective is to minimize the makespan of a
V-shop in which jobs go through m machines following the
route M, M,, ..., M,,_  M,, M, ., ..., M,, M;. They
prove the problem to be binary NP-hard (Garey and
Johnson 1979) and propose polynomial-time algorithms
for several special cases. Recently, a combinatorial analysis
of the problem of scheduling reentrant shops is made by
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Kubiak et al. (1996), who consider a class of reentrant
shops in which jobs follow the route M;, M,, My, M5, ...,
M,, M,,, M,. Their objective is to minimize the mean flow
time. They show that the shortest-processing-time (SPT)
rule is optimal provided that certain restrictive conditions
hold.

There is another line of research involving reentrant
flows which, while not directly related to the scheduling
problems under consideration, is worth mentioning. It con-
cerns optimal flow rate control policies and their long-run
stabilities in dynamic, and sometimes stochastic, manufac-
turing systems. Bai and Gershwin (1990), Yan et al
(1992), and Sethi and Zhou (1994) have studied the prob-
lem of production planning in stochastic manufacturing
systems with reentrant flows by formulating them as opti-
mal flow rate control problems. Kumar and Seidman
(1990), on the other hand, demonstrate the possibility of a
destabilizing positive feedback effect in such systems. Lu
and Kumar (1991) and Bramcon (1993) provide further
examples of what are termed reentrant lines that are unsta-
ble under certain dispatching policies; see Kumar (1993)
for a survey of this work.

The paper is organized as follows. We first draw a par-
allel between chain-reentrant shops and flowshops. The
similarity of the two is not merely apparent, but also sub-
stantial. Indeed, in the context of minimizing makespan,
we prove in Section 2 that the well-known permutation
dominance property for flowshops holds also for the chain-
reentrant shops. We also show that the problem of mini-
mizing makespan for the chain-reentrant shop is unary
NP-hard for more than two machines and at least binary
NP-hard for exactly two machines.

In the remainder of the paper we focus on the two-
machine case. Our main results are developed in Section 3,
where we derive a strong dominance property for two-
machine chain-reentrant shops. This property reduces our
problem effectively to a partitioning problem. More specif-
ically, we show in Theorem 3 that there is an optimal
schedule o that can be considered to comprise three parts:
0 = 070,03 In oy, the jobs are sequenced according to
Johnson’s rule applied to their first and second operations;
in o, the jobs are arbitrarily sequenced; and in o3, the jobs
are sequenced according to Johnson’s rule applied to their
second and third operations. Based on this characteriza-
tion of a class of optimal solutions, we present a branch-
and-bound optimization algorithm in Section 4, and we
develop approximation algorithms with worst-case perfor-
mance guarantee of 3/2 in Section 5. In Section 6, we
report on our computational experiments that evaluate the
performance of the approximation algorithms against the
minimal makespan. The results show that the approxima-
tion algorithms find optimal solutions quickly for most of
the instances that we have generated. In Section 7, we
point out a few well solvable special cases, and also present
a pseudo-polynomial dynamic programming algorithm for
the case in which both operations of a job on the primary
machine are identical. Section 8 concludes the paper.
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Table 1
Notations

M, k=1,2,...,m The kth machine. M, is also called
the primary machine.

J.j=12,...,n Job j.

$ ={J,J,...,J,} The set of jobs to be processed.

O The kth operation of J;, also referred
to as the k-operation of J,, k = 1,
2,...,m + 1. It is nonpreemptive.

Dk The nonnegative processing time of

O,;; we assume without loss of
generality that all processing times
are integral.

The start and finish time of O, in a
given schedule o. We often write
them simply as S, and C,, when
there is no confusion; note that C,
= 1k + pjk'

The minimum completion time of the
last k-operation in a schedule for
the ordered job set .

Sjk(a)’ C]k(o')

Cu(s9)

1. PROBLEM DEFINITION AND NOTATION

Refer to Table I for the notations used in this paper. In a
chain-reentrant shop, each machine handles no more than
one job at a time, and each machine is continuously avail-
able from time zero onward. Each job J, starts on M, then
goes to M, M5, ..., M,, in that order before it returns to
M; to undergo its final operation. For any job J,, O, .4
cannot start before O, finishes. An unlimited buffer is
available for each machine’s output. A feasible schedule
satisfies these conditions and specifies a start time S and
a completion time C,, for each operation Oj. The problem
is to find a schedule that minimizes the maximum comple-
tion time known as the makespan and defined as

C%ax = min C () = min max Cim+1(0).
o o Isysn

For ease of exposition, we shall use x <y, x <y, x >y,
and x > y to mean, respectively, x precedes y, x immedi-
ately precedes y, x follows y, and x immediately follows y.

Before proceeding to the next section, let us note that
we shall follow the nomenclature for scheduling problems
proposed by Graham et al. (1979). Accordingly, the prob-
lem of minimizing makespan in an m-machine chain-
reentrant shop is identified by the three-tuple Fm|chain-
reentrant|C,,,,.

2, THE COMPLEXITY AND A DOMINANCE
PROPERTY

In this section we first show that the problem Fm|chain-
reentrant|C,,,, is NP-hard. We then prove two dominance
properties that facilitate the characterization of a set of
optimal schedules in the next section.

Theorem 1. The problem Fm|chain-reentrant|C,,,, is at
least binary NP-hard for m = 2. Moreover, it is unary
NP-hard for m = 3.
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Figure 1. Gantt Chart illustrating the proof of Lemma 1.

Proof. For m = 2, see Lev and Adiri (1984). For m = 3, it
is sufficient to prove for m = 3. This can be done by a
reduction from the decision variant of the three-machine
flowshop problem, which is unary NP-complete (Garey et
al. 1976), as follows.

Given any instance of F3|/C,,,, with job set $ and {a,, b,
¢,} as the processing times, we construct an instance of
F3|chain-reentrant|C,,,, by assigning p, = a, p, = b,
p;3 = ¢, and p,, = 0 for every J, € $. It follows immedi-
ately that the instance of F3|chain-reentrant|C,,,, is solved
if and only if the corresponding instance of F3||C., is
solved. []

Remark 1. For m = 2, the chain-reentrant problem is
equivalent to the V-shop problem introduced by Lev and
Adiri (1984). They claim that V2|C,, ., is binary NP-hard
but provide no proof. The claim is yet to be proved.

In chain-reentrant shops, difficulties arise when jobs re-
turn to M. Not only do the first entries of jobs have to be
scheduled, but also all their second entries to M;. A feasi-
ble schedule allows both entries to compete for M,. Also
difficult is the situation in which one job follows another
job at one machine and then passes it at some other ma-
chine. Such schedules increase the search space for opti-
mal solutions and, at the same time, make it cumbersome
to keep track of jobs on the shop floor. Even though they
may offer a shorter makespan, they are usually not consid-
ered desirable schedules. Hence, it is important to know the
conditions under which such schedules can be avoided
without incurring a longer makespan.

In what follows, we shall say that an entry is compact if
all the operations of that entry are scheduled contiguously.
For example, the first entry is compact if all the operations
O,.,j = 1,..., n, are scheduled together and there is no
idle time between O,; and O,;, whenever O,; < O,;. If all
the entries to M, are compact, we say that the schedule is
compact on M,. Moreover, a schedule is compact if it is
compact on every machine. Also, we say a schedule is
no-passing if no job passes another in the schedule.

We use the following compactness property to establish
a dominance property similar to the one that exists for
flowshops.

Lemma 1. To minimize makespan, it is sufficient to con-
sider schedules that are compact on M.

Proof. Consider any feasible schedule o. We show that o
can be converted into a schedule that is compact on M,
without increasing the makespan. Refer to the Gantt
Chart of Figure 1(a). Suppose there is a pair O, ,,,.; < O,;.
Then interchanging their positions is feasible and does not
increase the makespan. When all the 1-operations are
scheduled before any (m + 1)-operation, then assume with-
out loss of generality that the 1-operations are scheduled in
the order Oy, Oy, ..., 0. For j = 1,...,n — 1, if there is
an idle time between O,; < O, ;, we can eliminate it by
moving O,_ | ; to the left (i.e., scheduling it earlier in time,
Figure 1(b)). Clearly such a move does not destroy the
feasibility and has no impact on the makespan. Now rein-
dex the jobs in order of the sequence for the (m + 1)-
operations, that is, assume that the (m + 1)-operations are
scheduled in the order Oy 41, Oz pn41s -+ s Opm+1- For
J=n—1,..., 1, if there is an idle time between O,
=< O,.1,m+1, We can eliminate it by moving O, ,,,; to the
right (i.e., scheduling it later in time). Again, such a move
is feasible and does not affect the makespan. []

The following dominance property can now be estab-
lished.

Theorem 2. To minimize makespan, it is sufficient to con-
sider schedules that are compact on M, and in which jobs
do not pass each other from M, to M, and from M,, to M.

Proof. In view of Lemma 1, consider any optimal schedule
o that is compact on M, but in which jobs pass each other
from M, to M, and from M,,_, to M. Let J, and J, be the
first pair in o such that 0,; < O, and O, > O, ie., J,
passes job J; on M,; see Figure 2(a). Clearly interchanging
O,, and O, is feasible, preserves the compactness on M|,
and leaves the makespan unchanged, since no job comple-
tion time is affected in doing so.

Now let J, and J, be the last pair such that O, ,,,; <
O, n+1 and O, > O,,; refer to Figure 2(b). Interchanging
O, m+1 and O, is feasible and preserves compactness
on M, as well as the makespan. []

The dominance property stipulated by Theorem 2 is
weaker than that for flowshop problems: the property may
not hold for regular measures other than makespan. For
example, in the case of minimizing mean flow time,
Lemma 1 does not hold in general, and so the first and the

My Oi,m+1l 0;,m+1

(a)

(b)

Figure 2. The Gantt Chart illustrating the proof of Theorem 2.
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Figure 3. An example of a compact no-passing schedule.

last operations may not be separated as in a compact
schedule. Without this separation, Theorem 2 cannot be
established.

Since the problem is unary NP-hard for m = 3, we shall
from now on concentrate on the two-machine case, for
which we are able to derive a stronger dominance property
that reduces the F2|chain-reentrant|C,,,, problem to es-
sentially a partitioning problem. First, we have the follow-
ing corollary of Theorem 2.

Corollary 1. For the F2|chain-reentrant|C,,,,, problem, it
suffices to consider only compact no-passing schedules.

Proof. Suppose o is an optimal schedule. According to
Theorem 2, we may assume o to be a no-passing schedule
that is compact on M,. It remains to show that operations
on M, can also be compactified. Let the last 1-operation
be O;+, and the first 3-operation be O,.;. Then there must
be a 2-operation, say, O,., that is either started in the time
interval [C,+;, S;+3] or is processed throughout the interval.
It is evident that moving all the 2-operations scheduled
before O,, to the right in order to eliminate any idle time,
and moving all the 2-operations scheduled after Oy, to the
left in order to eliminate any idle time retains feasibility
and does not increase the makespan. [}

Figure 3 gives an example of a compact no-passing
schedule with five jobs.

3. THE F2|CHAIN-REENTRANT|Cyax PROBLEM

In the rest of the paper, we denote a, = p;;, b, = pp, ¢, =
pyandleta =3 a,B=2%"b,and y =3, c,.

We begin this section with a few observations about a
compact no-passing schedule, based on Corollary 1.

Refer to Figure 3. A compact no-passing schedule for a
two-machine shop is composed of three blocks of opera-
tions: a 1-block consisting of only 1-operations, a 2-block
consisting of only 2-operations, and a 3-block consisting of
only 3-operations. The operations are scheduled contigu-
ously in each block in the same job order. Thus, a compact
no-passing schedule is definitely specified by a permutation
of ¢ except when C,, = a + ¥, in which case there may
be some slack in the schedule such that the 2-block can be
moved to the left or the right without affecting the makes-
pan. In order to avoid this indefiniteness, we stipulate that
in a compact schedule, no block can start processing ear-
lier than required. In other words, we observe the follow-
ing characteristics of a compact no-passing schedule that
are easily verified.

In a compact no-passing schedule,

1. there is a job J, € $ such that §,; + a, = §

' and

2. if Cp > a + v, then there is aJ, € $ such that S, +

b, = S;.

With this stipulation, our problem becomes a sequenc-
ing problem, and we shall therefore use the terms se-
quence and schedule interchangeably.

Next we establish a critical dominance property that re-
duces an instance of F2|chain-reentrant|C,,,, essentially to
a partitioning problem.

For any compact no-passing schedule o, there exists a
job OJ«, such that

* = arg mjin{S(,(,;,z +bopy2 > al.

In other words, O,., is the first 2-operation that finishes
later than «; see Figure 4. Thus, § is partitioned into three
subsets with respect to o2 $, = {J|J < i}, and §, =
{lejj > J.}. Hereafter, job J,,. will be called the partition
job. In Figure 3, e.g., J, is the partition job with $, = {J,,
Jy, I3} and $, = {Js}. A schedule can therefore be repre-
sented by an ordered $, followed by J. and then by an
ordered $,. We define a partition {$,, Jo«, $,} to be
admissible if, and only if, it satisfies

1.1 U S, Ullist = &,
2.Cy($1) < a, and
3. Cz(g]) +bk*> «.

We observe that the makespan of ¢ can be thought of as
a sum of two parts: the first part is from time zero to the
completion time of Oy.,, and the second part is from the
completion time of Oy, to Cp,,. Ignoring the operations
on M, between Oy, and Oy, We can view ¢ as a two-
machine flowshop schedule followed by another two-
machine flowshop schedule. Recall that Johnson’s rule
determines an optimal job sequence for the two-machine
flowshop problem. Let the triple ($, p, g) denote an in-
stance of F2|C,,.. With processing time vectors p for the
1-operations and ¢ for the 2-operations, and let
JOHNSON($, p, g) denote the minimum makespan.
Johnson’s rule can then be stated as follows:

Johnson’s rule

1. For any instance ($, p, q), let U = {Jp, < g} and W =
PU.

2. Sort U in nondecreasing order of p, and W in nonin-
creasing order of g,.

My aq(1) r

E:L—za"(‘) l [
M2 { 1 o ]

Figure 4. The position of the partition job Ji..
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Figure 5. The Gantt Chart illustrating the proof of Theorem 3.

3. Output the ordered U followed by W as the optimal
sequence.

If the jobs in a schedule are sequenced according to John-
son’s rule, then we call it a Johnsonian schedule. We now
state the following important property for any instance of
the F2|chain-reentrant|C,,,, problem.

Theorem 3. There exists an optimal schedule consisting of
an admissible partition {$,, Jy«, $,} of $ such that the
jobs in $, are sequenced according to Johnson’s rule for
($1, a, b) and the jobs in $, are sequenced according to
Johnson’s rule for ($., b, c). Moreover, the schedule is
compact and no-passing.

Before we prove the theorem, let us describe an algorithm
that constructs such a schedule with the property specified
in the theorem for any given admissible partition {$;, Jx«.

Fa}-

Algorithm 1

STEP 1. Apply Johnson’s rule to ($, a, b) and (¢, b,
¢), and let the resulting Johnsonian sequences be o, and
0’2-

STEP 2. Let sequence o be o followed by J;, and then
by o,. Produce a compact schedule with o.
We are now ready to prove the theorem.

Proof of Theorem 3. It suffices to show that the applica-
tion of Algorithm 1 to an admissible partition given by an
optimal solution will not increase the makespan. Without
loss of generality, suppose o is an optimal compact no-
passing schedule. Then we express o in terms of three
partial schedules along with an admissible partition {$,
Jiex, $2} as follows:

The first partial schedule, oy, consists only of the 1-
operations and the 2-operations of the jobs in $,. The
second partial schedule, o, consists only of the 2-
operations and the 3-operations of the jobs in §,. The
third partial schedule, o3, consists of the 1-operations of
the jobs in $,, the 3-operations of the jobs in $,, and the
operations of /.. Let F, be the makespan of 0,,i = 1, 2, 3;
see Figure 5.

Now apply Algorithm 1 to the partition {$;, Jix, 2}
obtained above. Let the resulting Johnsonian schedules be
01, 03, and let o3 = 5. Let F} be the makespan of o}, i = 1, 2,
3. We distinguish five cases (See Figure 5 for illustration):

() Chax=a +v.

(b) Coax > @ + ¥ Spx 2 > Siwy + Qx, A0d Sy 5 + by <
S+ 3. In this case, F{ = F,, F5 = F,. Note that o
would not be optimal if F{ < F; or F5 < F, or both.
Thus Cp.(0') = Cpa(0) = Fy + by + F,.

(©) Crax > @+ % Spiz = Sinq + @pnr and Spx 2 + bin
S« 3. In this case, F] < Fy, F) = F,, and C,,,(0")
Conaxl0) = Zjeg, @) + s + by + F,.

(d) Chrax > @+ ¥ Sixz > Spxr + @pxs a0d Spap + bpse =
Six,3. In this case, F} = F,, F5 < F,, and C,,,(0")
Croax(0) = Fy + bpse + Cpx + Sy, €.

(€) Chrax > @ + ¥ Spxp = Sgxq + g, and Spap + bys
Sk 3. In this case, F] < F;, F; < F,, and C,,,(0")
Crnax(0) = Zjeg, @ + @px + bpw + Cox + ey, €

In each case we have F; < F, and F, < F, because of

Johnson’s rule. Also in each case F; is not affected. There-

fore, Algorithm 1 preserves the makespan. Moreover, Al-

gorithm 1 produces a compact no-passing schedule.

<

I

i

Il

I

Remark 2. Note that the partition job is not necessarily
unique. By the same token, we can also define the parti-
tion job as the last job in o that starts on M, before the

Cr—————Copynight ©2601 All Rights Reserved:



3-block, ie., Jox for €* such that S, = max
{80 2Satnz < Soqy,s}. With this partition job, we have
an alternative partition of §, {$s, Jox, $4}. In fact, we can
define any job between Jy« and J,« to be the partition job,
and Theorem 3 will still hold. The following corollary is a

direct result of this observation.

Corollary 2. There is an optimal schedule o that can be
specified by a partition of $,

{(9-51,-]1(*, 5)55']{’*’ }4};

for some sets $1, $s, $4 and jobs Jix and J o+, such that the
jobs in $, are sequenced according to Johnson’s rule for 1-
and 2-operations, the jobs in $, are sequenced according to
Johnson’s rule for 2- and 3-operations, and the jobs in $5
are sequenced arbitrarily.

In designing algorithms, this result may further reduce
the solution space, especially in cases where Cp . = a + .

We commented earlier on some similarity between flow-
shops and chain-reentrant shops. The relationship is much
deeper between permutation schedules for the three-
machine flowshop and compact no-passing schedules for
the two-machine chain-reentrant shop. We offer a brief
discussion here. For further detail, the reader is referred
to Wang (1994).

Comparing the two problems, we can see that if we con-
sider only compact schedules, the F2|chain-reentrant|C,q,
problem is equivalent to the F3||Cp,,, problem with the addi-
tional constraint that no 3-operation can start before all the
1-operations are completed. For a given instance, if Cpox > @
+ v, then any feasible solution to the F3||C,,., problem can
be easily converted to a schedule that has the same makes-
pan and satisfies the additional constraint. Let CE..* de-
note the makespan of an optimal solution to an instance of
F3||C,,..x- Then the above discussion implies that

Chax = maX{ CEx* 2 (a, + c,)}
=1

= max{CL*, a + y}.

In other words, the F2|chain-reentrant|C,,,, problem is
reduced to the F3|C,,., problem. If C5 . * > a + v, then
Cc* .. = CE_* and vice versa. If C5,.* < a + v, then Cju
= a + vy and vice versa.

4. THE BRANCH-AND-BOUND ALGORITHM

Using Theorem 3, we develop a branch-and-bound algo-
rithm that (implicitly) generates all n2" ! partitions of $
and finds one with the minimum makespan.

The branch-and-bound tree is built up as follows. First,
we order and reindex the jobs according to Johnson’s rule
for the first two operations. At the first level of the tree we
designate the partition job; accordingly, there are n nodes
at this level, since no job can be ruled out. The tree is
binary beyond this level: at each of the lower levels, we
decide for the corresponding job whether it will be sched-
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uled before or after the partition job. A node at level €
(€ = 2, ..., n) corresponds then to a partial partition of §,
say, (4, Jix, B). We employ a depth-first strategy to ex-
plore the search tree.

A node can be discarded if it cannot induce an admissi-
ble partition. A sufficient condition for discarding a node is
therefore C,(s4) > a; note that C,(s4) is readily computed
because of the way the jobs have been reindexed. Also, if
max{C,(s{) + aps, Co(A)} + byx > «, then the only
admissible partition that the current node can induce is
{A, Jix, $\A}; after evaluating the corresponding sched-
ule, we can discard the node.

In the root node of the tree we compute the following
four bounds to verify whether the incumbent upper bound
equals the optimal solution value:

1. bV = a + v,
2. Ib? = Johnson($, a, b) + min; <, ¢,
3. Ib® = Johnson($, b, ¢) + min, . <, @

4. lb(4) = B + minlg],ksn,]?tk(a] + Ck).

In the other nodes of the tree, we use two simple but
effective lower bounds that are computed in constant time
after some preprocessing. The earliest completion time of
M, in any complete schedule induced by the partial parti-
tion {HA, J+, B} is at least Cy(sd) + E,]E}M b,. Accord-
ingly, a lower bound on Cj,, is

Cy(sl)+ X b, + min c,.

1, ERA JENA
The second lower bound that we use is

Ci(A) + > c.
e

5. APPROXIMATION ALGORITHMS

The dominance property in Theorem 3 suggests the devel-
opment of the following three heuristic procedures—H;,
H,, and Hy—that are shown in our computational experi-
ments to be highly effective. In fact, these procedures find
optimal solutions for most instances. They also offer a
worst-case performance guarantee of 3/2.

For any instance I of F2|chain-reentrant|C,,,,, let
C (D) denote the minimum makespan, and H,(/) be the
makespan determined by heuristic H,, j = 1, 2, 3. Further-
more, let the ratio

= S‘}p{ CH,,LY()I)}

denote the performance guarantee or the worst-case ratio of
heuristic H, j = 1, 2, 3.

Heuristic H,;

1. Schedule the jobs by applying Johnson’s rule to ($, a,
b) to obtain sequence o;.

2. Schedule the jobs by applying Johnson’s rule to ($, b,
¢) to obtain sequence o.

3. Let HI(I) = min{cmax((rl)’ Cmax(a-Z)}~
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Table 11
Experiment I

Distribution: [0, 150], [0, 200], [0, 100]

n optgdn,) To ry(opt;) ry(opt,) r3(opt;) Ry, Ry, B,y 1,
10 192 (156) 0.0001 0.0130 (141) 0.0013 (177) 0.0007 (190) 8, 8, 8, 595
20 196 (187) 0.0000 0.0066 (170) 0.0001 (192) 0.0000 (192) 4, 3, 4, 230
30 198 (191) 0.0000 0.0027 (178) 0.0000 (197) 0.0000 (197) 21,1, 104
50 199 (200) 0.0000 0.0020 (189) 0.0000 (198) 0.0000 (198) 111,126
100 200 (200) 0.0000 0.0001 (199) 0.0000 (199) 0.0000 (200) 0,0,0, -

1t is a naive heuristic, since it does not take advantage of
the partition property. Nonetheless, its performance guar-
antee is 3/2.

Theorem 4. For any instance I = ($, a, b, c¢) of F2|chain-
reentrant|C,,,,, we have that p, < 3/2. []

The proof is quite straightforward; see Wang (1994). It
is based on the lower bound max{« + v, JOHNSON(Y, 4, b),
JOHNSON($, b, c)} and the upper bound min{JOHNSON($,
a, b) + vy, JOHNSON(, b, ¢) + a} on H,(I).

The worst-case performance guarantee does not seem to
be tight. For the worst instance we managed to find, a
randomly generated instance, Heuristic H; provides a
makespan just 20% greater than the optimal one.

We can take advantage of the partition property and,
with a little more effort, improve the empirical perfor-
mance of the naive heuristic H,.

Heuristic H,

1. Apply Johnson’s rule to (¢, a, b) to find a sequence
a; as in Heuristic H;. Compute C,,(5¢). if C (o)) =
a + v, stop.

2. Identify the partition job J.. and hence the partition
{315 Jexr $2}-

3. Apply Johnson’s rule to (J;» U $5, b, ¢), while pre-
serving the sequence of the jobs in §,. Store the new
sequence as o.

4. Schedule the jobs given o and compute the makespan

Cmax(g)'

Note from Remark 2 in Section 3 that the partition {$,,
Jex, $4} can be thought of as a mirror image of the parti-
tion {$,, Jus, $,}. Hence, we have the following mirror
image of the Heuristic H,.

Heuristic Hy

1. Apply Johnson’s rule to (¥, b, ¢) to find a sequence
a,. Compute C,,,. (o). If Cp,(0,) = a + 4, stop.

2. Identify partition {$3, Je«, $4} as in H,.

3. Apply Johnson’s rule to (Jex U $3, a, b) to get the
final sequence o as in H,.

4. Schedule the jobs given o and compute the makespan

Crnax(9)-

6. COMPUTATIONAL EXPERIMENTS

The purpose of this section is to evaluate the empirical
performance of the heuristics discussed in the previous
section, especially H, and H,, against optimal solutions.
The processing times of the instances follow a uniform
distribution, and are randomly generated with six input
parameters that define the three intervals: [€,, u,], [€,, u,],
[€., u.]. For each set of parameters, 200 instances are
generated for a given number of jobs, n. For each instance
1, we compute the lower bound LB(J) = max,,<,b" as
discussed in Section 4, and heuristics H,, H,, and H; are
applied to compute the first upper bound. Let UB(J) be
the best upper bound obtained by any of the algorithms. If
UB(!) > LB(I), then the branch-and-bound algorithm is
invoked. We impose an upper limit on the number of
nodes that the branch-and-bound algorithm has to search.
If the limit is reached, the algorithm is stopped, and a
“hard” instance is identified. We compare solution values
of the heuristics against C},,.(I), or against LB(I) if an
optimal solution is not obtained.

The results are summarized in Tables II-V. The tables are
divided into seven columns. The headers of the columns are:

n = number of jobs;
opty = number of instances for which UB({) = C},.(]);
opt, = number of instances for which H(I) = C},,..(I);
n, = number of instances for which Cj,,(7) = a + ¥;
ro = upper bound on the average relative gap
between UB(I) and C,.(D);
r, = upper bound on the average relative gap
between H(I) and Cj,,, ().

Table 11T
Experiment 11

Distribution: [0, 100], [0, 200}, [0, 100]

n opty(n,) To r,{opt,) ry(opt,) r3(opts) Npy Ny Ny, B,
20 188 (100) 0.0000 0.0331 (61) 0.0010 (158) 0.0006 (163) 12, 9, 12, 18919
50 183 (99) 0.0000 0.0321 (49) 0.0002 (160) 0.0001 (162) 17, 14, 14, 468
200 194 (98) 0.0000 0.0366 (16) 0.0000 (179) 0.0000 (180) 6, 6, 6, 207
500 200 (84) 0.0000 0.0410 (4) 0.0000 (192) 0.0000 (198) 0,00 -
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Table IV
Experiment III

Distribution: [0, 100], [0, 300], [0, 150]

n Opty(n,) 7o r,(opt,) r2(opt,) r;(opt;) Ry, By Ny, N,
20 173 (26) 0.0000 0.0343 (10) 0.0010 (141) 0.0011 (128) 27, 21, 27, 48860
50 181 (5) 0.0000 0.0355 (2) 0.0002 (145) 0.0002 (131) 19, 15, 15, 122
200 191 (0) 0.0000 0.0282 (0) 0.0000 (151) 0.0000 (166) 9,8, 8, 419
500 199 (0) 0.0000 0.0269 (0) 0.0000 (187) 0.0000 (187) 1,1, 1, 156

The branch-and-bound algorithm is evaluated with a four-
tuple (np, n,, n,, n,), where

n, = number of instances for which the algorithm is
invoked;

n; = number of instances for which the algorithm
improves UB(J);
n, = number of instances for which the algorithm finds

Cnax(D);
n, = average number of nodes for those instances for
which C%,..(I) is found.

The difference n,, — n, records the number of instances for
which the algorithm is terminated when the node limit is
reached.

On a DEC 5000 workstation, the times spent by the
heuristics are negligible; the results are obtained almost
instantaneously. Since the real time spent by any algorithm
depends on the model of the computer and its implemen-
tation, we believe that n, is a better measure of the effi-
ciency of the branch-and-bound algorithm. If the number
of nodes searched is below 10,000, the result is almost
instantaneous. Therefore, unless a “hard” instance is en-
countered, the time spent by the branch-and-bound algo-
rithm is also negligible.

Table II gives an average picture of the cases where the
expected values E(B8) = 100n < (75 + 50)n = E(a + ).
It is seen that these instances are “easy” in general. For
example, when there are 10 jobs to schedule, the heuristics
found optimal solutions for 192 out of 200 instances. Even
the naive heuristic H, found optimal solutions in 141 in-
stances. The relative errors are also very low, ranging from
0.007 for H; to 0.0130 for H,. The branch-and-bound algo-
rithm was invoked in only 8 out of the 200 instances, and it
found optimal solutions for all of them after searching an
average of 595 nodes. The lower bound LB(J) is essentially
equal to the optimal value with a relative difference r, =
0.0001. As the number of jobs n increases, r, decreases,
and the instances become even easier.

Comparing the results in Table II with those in Table V,
where E(B) > E(a + y), we see that the instances in
Table V are harder. Nonetheless, the heuristics still pro-
vided optimal solutions for most of them, and the differ-
ences between the heuristic solutions and the lower
bounds are once again negligible. An interesting observa-
tion, however, is that the corresponding three-machine
flowshop problems become easier in the sense that our
algorithms solved all except two of them to optimality.

A pattern seems to emerge. As the expected value of 8
becomes greater than that of the sum of « and v, the
chance that the branch-and-bound algorithm quickly lo-
cates the optimal solution decreases. However, the chance
that our algorithms solve the corresponding three-machine
flowshop problems increases. As the number of jobs in-
creases, the performance of the heuristics H, and H, be-
comes even better, while that of H, worsens. This pattern
further confirms the discussion at the end of Section 3
about the relationship between permutation schedules for
the three-machine flowshop and compact no-passing
schedules for the two-machine chain-reentrant shop, and
strengthens the importance and applicability of the domi-
nance property of Theorem 3.

7. SPECIAL CASES OF F2|CHAIN-
REENTRANT|Cpax

In this section we identify some special cases that are solv-
able in polynomial time; we call them well solvable. We
also develop a pseudo-polynomial algorithm for the case
where for any job the processing times of the two opera-
tions on the primary machine are equal.

7.1. Well-solvable Cases

A well-solvable case of F3||C,,,, induces a well-solvable
case of F2|chain-reentrant|C,,,; see the discussion at the
end of Section 3. The Cases 1-3 listed below are therefore
well solvable. These special cases are solved by applying

Table V
Experiment IV

Distribution: [0, 100], [0, 400], [0, 150]

n Opty(n,) o r(opt,) ra(opt,) ry(opts) Np, Ny Ny, R,

20 174 2) 0.0001 0.0292 (2) 0.0006 (152) 0.0005 (133) 26, 16, 26, 10624

50 186 (0) 0.0000 0.0206 (0) 0.0001 (149) 0.0001 (151) 14, 13, 14, 804
200 195 (0) 0.0000 0.0160 (0) 0.0000 (173) 0.0000 (171) 5,4, 5, 15521
500 200 (0) 0.0000 0.0152 (0) 0.0000 (189) 0.0000 (198) 0,0, 0, -
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4] t1 o - [a(6) - t1] @
F k] 1 {
L T T
My Ga(1) Cg(2) Gg(3) 2a(n—2)| @a(n—~1) | %a(n)
Mo ba(1) ba(2) bs(3) bo(n-2) | bon—1) | Bo(n)
- 1 - Il l
T T 1 T
0 s 84t s+ 3 — [B(6) — t2] s+

Figure 6. An illustration of the case a, = ¢, with six jobs already scheduled.

Johnson’s rule to the pseudo F2||C,., problem formed by
letting a; = a; + b, and b; = b, + ;. The reader is referred
to Baker (1995) for a summary of these cases, and to
Burns and Rooker (1976, 1978) and Szwarc (1977) for
further details.

Case 1. One machine dominates another in terms of
processing times, i.e., one of the following conditions
holds:

1. min{a,} = max{b}.
2. min{c,} = max{b,}.
3. min{b,} = max{a}.
4. min{b;} = max{c,}.

Case 2. Regressive second stage: b, < min{a,, ¢,} for all
J-

Case 3. Constant second stage: b, = b = constant.

7.2. A Special Case:a = ¢

Another natural special case is the one in which operation
0,, is identical to operation O,; for all J;, and hence a; = ¢,
for all J,. This is a good approximation of some real-world
situations. For instance, chemical processing on the photo-
lithography station in wafer production takes about the
same time for every entry. This special case is still binary
NP-hard. In this section we prove that the case a, = ¢, for
all J, is solvable in pseudo-polynomial time. Specifically, we
present a dynamic programming algorithm that runs in
O(n*a?B) time and O(na?) space. Throughout this section
we assume that the jobs have been reindexed according to
Johnson’s rule for (a, b), i.e., for the first two operations.
Also, we let a(j) = 2i_; a, and B(j) = 2, b,.

If a = ¢, then according to Theorem 3, there is an
optimal compact no-passing schedule in which the order-
ing of the left-jobs, i.e., the jobs before the partition job, are in
Johnson’s order for (a, b), and the right-jobs, i.e. the jobs
after the partition job, are in Johnson’s order for (b, a).

A compact no-passing schedule o specifies a unique
time point s, at which the 2-block starts. Therefore, given a
partition job J, (k = 1, ..., n), we can make a guess at the
value of 5, 0 < 5 < «, and enumerate all feasible schedules
(there might be none) for the jobsJ,, . .. JG=1,...,n,
j # k) with their 1-operations scheduled in the interval [0,
a] and their 2-operations in the interval {5, s + B]. Since
we cannot predetermine the time at which the 3-block
starts, we temporarily put all the 3-operations in the inter-
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val [« + B, 2a + B]. When a feasible schedule is found,
the 3-block will be moved to the left to compute the
makespan. To preserve the feasibility, J; can be moved to
the left at most 8 = min(B, S;3 — Cp;) units of time, and
the 3-block can only be moved to the left A = min,;<, §,
units of time. For any feasible schedule o for the given s
and J,, we thus define A as the slack of o the makespan of
o is then actually 2o + 8 — A. The optimal schedule given
s and J,, is then the one that maximizes A.

For any partition job J, (k = 1,..., n) and a given
integers,0 <s < g, andforj=1,...,k - 1,k+1,...,
n, let F]""(tl, t,) denote the maximum slack for scheduling
jobs Jy, ..., J, such that the 1-operations and the 2-
operations of the left-jobs among them fill up the intervals
[0, t;] and [s, s + £,], respectively. The state variables t,, £,
and s contain all the information we need: it follows that
the 1-operations of the right-jobs are scheduled in the
interval [@ — a(j) + t;, a] on M;, the 2-operations of the
right-jobs in the interval [s + B — B(j) + t2, s + Bl on M,
the 3-operations of the left-jobs in the interval a + B, a +
B + ;] on M, and the 3-operations of the right-jobs in the
interval [2a + B — a(j) + 3, 2a + B] on M. See Figure
6 for an example of a partial schedule in which six jobs,
J1, ..., Js, are already scheduled. Note that we only show
the 1- and 2-blocks since the 3-block follows.

If we now add J, # J, to a partial schedule associated
with F}‘fl(tl, t,), t, < a — s, we must consider the follow-
ing cases:

e Scheduling J, as a left-job: this is feasible only if
1. s + t, = t; + a;; then the operations of J, do not
overlap in their execution.
2.s + t, + b, < a; otherwise, J, would be the
partition job.
The slack for J; is then equal to §; = min{B, §;3 —
Cot =min{B,a+ B+t —5s -1~ b}.
e Scheduling J, as a right-job: this is feasible only if S, =
s + B — B(j) + t, > a. The slack for J, is then equal to
8§ = min{B, 2a — a(j) + B — 1) -5+ -t

We are now ready to set up the recursion. For nota-
tional convenience we define
min{B, a + B+t —s —t; — b},
ift1 +a, $s+t2$a—bl,
—o0, otherwise,

8F(s, t1, t3) Z{

and




ajR(s’ ty, t2)

-, ifs+ B— B+t =aq,
= [min{B, 2a —a(j) + B -V —s+1t; — 12},
otherwise,
The initialization of the recursion is

B, ift;=0,t,=0,and0<s=<aq,

Fk,s — {
0°(t1, 12) —o, otherwise,

and the recursion for k = 1,...,n,s = 0,..., a,] =
1,...,nj#k 0=t < a()),0 <t < min{a ~ s, B()},
is then given by

Fo(ty, t2)
FRiy(ty, ), i, =Ug,
= min{F]k'_SI(tl '_d],tz—bj), R
max 6,"(5, ty —a;, t; — b))
mln{ijf l(tl’ tl)a 8JR(S’ 1, tl)}
i£7, # I

Finally, we schedule the partition job J,. Let G**(t,, t,)
denote the maximum slack if we add J, to a schedule
associated with F¥*(¢,, t,). The only way to schedule J, in
any such schedule is to put its 1-operation in the time slot
[t1, t; + a;] on M, its 2-operation in [s + 1,, 5 + ¢, + by]
on M,, and its 3-operationin [ + B+ t;, a + B + £ +
a;] on M,. Accordingly, we have

Gk,s(tls t2)

min{Fﬁ,s(tls tZ)’ a+ B + ty —s— t2 - bk}s
= ifs+t2>t1+ak,
~—co otherwise.

The overall maximum slack A* can be found as

* k,s
= ity ¢
A 1$k$n,0$s$a,0$¥lsaxa,u—s—ak$t2$a—s G ( 1 2)’
and the optimal sequence o* is determined by backtracing.
The minimal makespan of ¢* is equal to 2a + B — A*.
This dynamic programming algorithm requires O(n?a*B)
time and can be implemented to run in O(na?) space.

8. CONCLUDING REMARKS

In this paper we have studied a class of reentrant shops
called chain-reentrant shops. The problem of minimizing
makespan is shown to be binary NP-hard even for the
two-machine case. We have proved that when m = 2,
there is an optimal schedule that can be partitioned into
three segments with the first and the third being scheduled
according to Johnson’s rule and the second scheduled ar-
bitrarily. Based on this result, a branch-and-bound optimi-
zation algorithm and three approximation aigorithms with
worst-case performance guarantee 3/2 are developed. We
have tested the approximation algorithms and shown their
performance to be excellent. We have also identified a
special case that can be solved in pseudo-polynomial time
and some other cases that are well solvable.
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Two immediate questions remain to be settled for the
two-machine problem. First, does there exist a pseudo-
polynomial algorithm for its solution? This question
concerns the complexity of the problem; in other words,
is the problem unary NP-hard? Second, is the worst-case
performance guarantee of our approximation algorithms
tight?

To conclude, the approach we have adopted isolates the
effect of the reentrant flow successfully and reduces the
problem to a partitioning problem, with each partition rep-
resenting a simple two-machine flowshop scheduling prob-
lem. Our algorithms can be used also to solve effectively
three-machine flowshop problems, especially those with
makespan greater than the sum of processing times for the
1- and 3-operations. The insight we have gained here is that
some jobs are more critical than others; once the positions of
these jobs are determined, scheduling of other jobs becomes
easier. To extend the idea, we speculate that jobs in a more
complicated manufacturing environment can be grouped
such that in each group the jobs are scheduled around one
or more critical jobs, or on one or two bottleneck machines.
Thus our approach suggests an interesting avenue for future
research, that is, the possibility of developing new decom-
position techniques to be applied to reentrant shops as
well as to flowshops with more than two machines.
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