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Abstract Concerning the solution theory for set games, the paper focuses on a
family of values, each of which allocates to any player some type of marginalistic
contribution with respect to any coalition containing the player. For any value
of the relevant family, an axiomatization is given by means of three properties,
namely one type of an efficiency property, the equal treatment property and
one type of a monotonicity property. We present one proof technique which is
based on the decomposition of any arbitrary set game into a union of simple
set games, the value of which are much easier to determine. A simple set game
is associated with an arbitrary, but fixed item of the universe.
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1 Introduction

Example 1.1 Let us consider a situation with a finite number of shareholders
as well as firms such that the “coalitional control” over firms is given. That
is, for each firm it is listed which groups of shareholders, called coalitions, do

H. Sun (B)
Department of Applied Mathematics, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, People’s Republic of China
e-mail: hsun@nwpu.edu.cn

T. Driessen
Faculty of Mathematical Science, University of Twente, P. O. Box 217,
7500 AE Enschede, The Netherlands

T. Driessen
e-mail: t.s.h.driessen@math.utwente.nl



242 H. Sun, T. Driessen

control the relevant firm. For instance, let a particular three-person situation
with three shareholders and three firms be described by the control of the first
firm through all the supersets of the first shareholder (i.e., all the coalitions
containing the first shareholder), while the control of the second firm (the third
firm respectively) happens by supersets of the two-person coalition containing
both the third shareholder and the second shareholder (the first shareholder
respectively). Generally speaking, given the “coalitional control” over firms,
we aim to solve the “allocation problem” of “individual control” over firms
by shareholders, specifying which of them controls which firms. According to
a certain solution rule in the mathematical setting of so-called set games, this
particular three-person situation is solved in that the first shareholder controls
the first and third firms; the second shareholder controls only the second firm;
and the third shareholder controls the second and third firms. We recall the
fundamental notions within the field of set game theory.

Let U , called the universe, denote an abstract set which is fixed throughout the
remainder. Following the introductory papers (Aarts 1994) (chapter 7), (Aarts
et al. 1997, 2000; Hoede 1992) a set game is a pair (N, v), where N is a nonempty,
finite set, called player set, and v : 2N → 2U is a characteristic mapping, defined
on the power set of N, satisfying v(∅) := ∅. Let G(U) denote the space of all set
games with an arbitrary player set, whereas GN(U) denotes the space of all set
games with reference to a player set N which is fixed beforehand. An element
of N (notation: i ∈ N) and a nonempty subset S of N (notation: S ⊆ N or S ∈ 2N

with S �= ∅) is called a player and coalition respectively, and the associated set
v(S) ⊆ U is called the worth of coalition S, to be interpreted as the (sub)set of
items from U that can be obtained (are needed, preferred, owned) by coalition
S if its members cooperate. We do not care about how players feel about what
they get, so we do not deal with the notion of an utility function per player with
the universe as its domain.

Example 1.2 continued (the shareholder set game). In order to model the share-
holder situation as a set game with player set N consisting of all the shareholders,
denote the finite set of firms by F = {F1, F2, . . . , Fm}. With each firm Fj is asso-
ciated a simple game through its collection Wj of winning coalitions. That is,
S ∈ Wj means that coalition S ⊆ N is of type j controlling firm Fj. Combinning
these simple games, we may define the set game (N, v, F) with universe F and
its characteristic mapping v : 2N → 2F through v(S) = {Fj ∈ F | S ∈ Wj} for
all S ⊆ N. In words, the worth v(S) of coalition S equals the subset of all firms
that are controlled by coalition S.

The particular three-person situation with player set N = {1, 2, 3} and uni-
verse F = {F1, F2, F3} corresponds with the collection of winning coalitions
W1 = {{1}, {1, 2}, {1, 3}, N}, W2 = {{2, 3}, N}, W3 = {{1, 3}, N}. Then the charac-
teristic mapping v of the corresponding set game is as follows:

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) ∅ {F1} ∅ ∅ {F1} {F1, F3} {F2} {F1, F2, F3}

Concerning the solution theory for set games, a solution f on GN(U) associates
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a so-called allocation f (N, v) = (fi(N, v))i∈N ∈ (2U )N with every set game
(N, v) ∈ GN(U). The so-called allocation fi(N, v) ⊆ U to player i in the set game
(N, v) represents the items that are given, according to the solution f , to player i
for participating in the game. Until further notice, no constrains are imposed
upon a solution f on GN(U). The difference of two sets A, B ⊆ U is denoted by
A \ B and defined to be A \ B := {x | x ∈ A and x �∈ B}.
Example 1.3 continued (semi-marginalistic solution of the shareholder set game).
Coalition S ∈ Wj is a minimal winning coalition of type j if no proper subset is
winning, i.e., S\{k} �∈ Wj for all k ∈ S. We call the expression v(S)\⋃

k∈S v(S\{k})
the semi-marginalistic contribution of coalition S and Fj ∈ v(S)\⋃

k∈S v(S\{k})
means that coalition S is a minimal winning coalition of type j. A semi-mar-
ginalistic solution rule, called OIM-value, is defined through OIMi(N, v) =⋃

S⊆N
S�i

[
v(S) \ ⋃

k∈S v(S \ {k})] for all i ∈ N and Fj ∈ OIMi(N, v) means that

there exists a minimal winning coalition of type j containing shareholder i.

Concerning the particular three-person situation with player set N = {1, 2, 3}
and universe F = {F1, F2, F3}, the minimal winning coalitions of type 1, 2, 3
respectively are given by MW1 = {{1}}, MW2 = {{2, 3}}, MW3 = {{1, 3}}.
Thus, the semi-marginalistic solution rule OIM yields OIM1(N, v) = {F1, F3},
OIM2(N, v) = {F2}, OIM3(N, v) = {F2, F3}. According to this rule, the first
shareholder controls the first and third firms; the second shareholder controls
only the second firm; and the third shareholder controls the second and third
firms. 1, while the two other firms inclusive of shareholder 3.

In section 2 we introduce a family of solutions called semi-marginalistic
values. According to a semi-marginalistic value, any player’s allocation in a
set game is the overall union of appropriately chosen marginalistic contribu-
tions of the player with respect to coalitions containing the player. Here the
player’s marginalistic contribution may be interpreted in various ways to allow
for a uniform treatment of semi-marginalistic values (see Definition 2.3). The
goal of the paper is to axiomatize semi-marginalistic values by means of three
basic axioms. The relevant properties, called global efficiency, equal treatment
and semi-marginalistic contribution monotonicity, are discussed in section 3.
Section 4 is devoted to the main axiomatization (see Theorem 4.1) and the
proof technique is based on the decomposition of any set game into a union of
so-called simple set games. Each simple set game is associated with an arbitrary,
but fixed item, and the worth of a coalition in a simple set game equals either the
empty set or the singleton consisting of the underlying item. In the concluding
section 5 we discuss the similarities between the two fields of set game theory
and cooperative game theory.

2 Semi-marginalistic values for set games

Let GN(U) denote the space of set games with finite player set N. A value f on
GN(U) is a mapping f : GN(U) → (2U )N , which associates with any set game
(N, v) ∈ GN(U) a single-set-valued vector f (N, v, U) = (fi(N, v, U))i∈N ∈ (2U )N ,
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or shortly f (N, v). We review five different values, studied throughout the solu-
tion theory for set games, before introducing a family of set game-theoretic
values containing one type of them. The purpose of the paper is to present a
uniform axiomatization of the new family of values under consideration.

Definition 2.1 As of the first category, we review two values for set games.

(i) The individually marginalistic IM-value, named marginalistic value by Aarts
et al. (1997), is given by

IMi(N, v) =
⋃

S⊆N
S�i

[v(S) \ v(S \ {i})] , for all (N, v) and all i ∈ N. (1)

(ii) The overall-coalitionally marginalistic OCM-value, as introduced by
Driessen and Sun (2001), is given by

OCMi(N, v) =
⋃

S⊆N
S�i



v(S) \
⋃

T⊆N\{i}
v(T)



 ,

for all (N, v) and all i ∈ N. (2)

Clearly, the inclusion IMi(N, v) ⊇ OCMi(N, v) holds for any player i. Given
a set game (N, v), we say that an item x ∈ U is attainable by player i through
a certain coalition S containing i whenever the item belongs to the coalition’s
worth, that is x ∈ v(S). Also a coalition T cannot block an item x whenever
the item does not belong to the coalition’s worth, that is x /∈ v(T). In this
terminology, the individually marginalistic IM-value allocates those items that
are attainable by player i, but cannot be blocked by the coalition consisting
of the remaining members (different from player i). The overall-coalitionally
marginalistic OCM-value allocates those items that are attainable by player i,
but cannot be blocked by any coalition not containing i. For two values defined
by (1) and (2), the underlying expressions v(S)\v(S\{i}) and v(S)\⋃

T⊆N\{i} v(T)

respectively, are called the marginalistic contribution of coalition S with refer-
ence to player i. In this context, the arginalistic contribution depends on both
the coalition and the player. A similar type of values, of which the marginalistic
contribution will not depend on the player, but only on the coalition, will be
studied in the remainder of the paper.

Definition 2.2 As of the second category, we review another three values for
set games.

(i) The individually co-marginalistic ICM-value, named co-marginalistic
contribution value by Sun et al. (2001), is given by

ICMi(N, v)=
⋃

S⊆N
S�i



v(S) \
⋂

j∈S

v(S \ {j})


 , for all (N, v) and all i ∈ N. (3)
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(ii) The overall-individually marginalistic OIM-value, as introduced by
Aarts et al. (1997), is given by

OIMi(N, v)=
⋃

S⊆N
S�i



v(S) \
⋃

j∈S

v(S \ {j})


 , for all (N, v) and all i ∈N. (4)

(iii) The sub-coalitionally marginalistic SCM-value, named coalitional power
value by Sun et al. (2003), is given by

SCMi(N, v) =
⋃

S⊆N
S�i



v(S) \
⋃

T�S

v(T)



 , for all (N, v) and all i ∈ N. (5)

Given a set game, among these five values, the ICM-value is the largest alloca-
tion in that the sequence of inclusions ICMi(N, v) ⊇ IMi(N, v) ⊇ OIMi(N, v) ⊇
SCMi(N, v) holds for any player i. The individually co-marginalistic ICM-value
allocates those items that are attainable by player i, but cannot be blocked by
at least one sub-coalition with one player less. The overall-individually mar-
ginalistic OIM-value allocates those items that are attainable by player i, but
cannot be blocked by any sub-coalition with one player less. The sub-coali-
tionally marginalistic SCM-value allocates those items that are attainable by
player i, but cannot be blocked by any proper sub-coalition. For these three val-
ues defined by (3), (4) and (5), the underlying expressions v(S) \ ⋂

j∈S v(S \ {j}),
v(S) \ ⋃

j∈S v(S \ {j}) and v(S) \ ⋃
T�S v(T) respectively, are called the margin-

alistic contribution of coalition S. Note that the marginalistic contribution only
depends on the coalition S itself and not anymore on a particular player. In the
sequel, we adopt the uniform notation SMCv

S to represent the semi-marginal-
istic contribution of coalition S in the set game (N, v) and it is supposed to be
of the form v(S) \ ∇v

S . Here ∇v
S is some (yet unspecified) expression which is

supposed to depend upon the worths of a certain collection of coalitions, some-
how determined by S (for instance, through the unions and/or intersections of
a number of (sub)coalitions). The ICM-, OIM-, and SCM-values respectively
arise by choosing ∇v

S = ⋂
j∈S v(S\{j}), ∇v

S = ⋃
j∈S v(S\{j}) and ∇v

S = ⋃
T�S v(T).

Definition 2.3 A semi-marginalistic value, or shortly SM-value on the set game
space GN(U) is a member of the family of set game-theoretic values of the
following form:

SMi(N, v)=
⋃

S⊆N
S�i

SMCv
S=

⋃

S⊆N
S�i

[
v(S) \ ∇v

S

]
, for all (N, v) and all i ∈ N. (6)

Here the semi-marginalistic contribution SMCv
S = v(S) \∇v

S of every coalition S
is determined by the set difference of the coalition’s worth v(S) and some (yet
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unspecified) expression ∇v
S satisfying the inclusion

∇v
S ⊆

⋃

T�S

v(T), for all S ⊆ N. (7)

Condition (7) requires that, for any coalition S, each item of the associated set
∇v

S is attainable through at least one proper sub-coalition of S. Obviously, (7)
is fulfilled in the context of the ICM-, OIM-, and SCM-values, which can be
regarded as three specific examples of a semi-marginalistic value. Notice that
∇v{i} = ∅ for all i ∈ N.

A set game (N, v) is monotonic if the inclusion v(S) ⊆ v(T) holds for all
S ⊆ T ⊆ N. For monotonic set games, OCMi(N, v) = v(N) \ v(N \ {i}) for
all i ∈ N, whereas the equalities IMi(N, v) = OIMi(N, v) = SCMi(N, v) hold
for all i ∈ N. The coincidence of the IM-value and the OIM-value on the
class of monotonic set games was shown by means of an inductive proof in
Aarts et al. (1997) (Theorem 2.2, pages 110–111). As a minor contribution,
we conclude this section with an alternative, but shorter proof of the latter
coincidence.

Lemma 2.4 (Aarts et al. 1997) IM(N, v) = OIM(N, v), for all monotonic set
games (N, v).

Proof Let (N, v) be a monotonic set game and i ∈ N. As noted earlier, the inclu-
sion IMi(N, v) ⊇ OIMi(N, v) is always valid, since v(S \ {i}) ⊆ ⋃

j∈S v(S \ {j})
for all S ⊆ N with S � i. In order to prove the reverse inclusion IMi(N, v) ⊆
OIMi(N, v), it suffices to show that x �∈ OIMi(N, v) implies x �∈ IMi
(N, v).

Suppose x �∈ OIMi(N, v). Let S ⊆ N with S � i. We will show that x �∈
v(S) \ v(S \ {i}). In case S = {i}, then x /∈ v({i}) because x �∈ OIMi(N, v). In the
remainder, let S �= {i}. We distinguish two cases.

Case 1 If x �∈ v(S), then x �∈ v(S) \ v(S \ {i}).
Case 2 Let x ∈ v(S). We show x ∈ v(S \ {i}). Since x �∈ OIMi(N, v) = ⋃

T⊆N
T�i[

v(T) \ ⋃
j∈T v(T \ {j})

]
, then x /∈ v(S) \ ⋃

j∈S v(S \ {j}) and, together with the

assumption x ∈ v(S), we arrive at x ∈ ⋃
j∈S v(S \ {j}). In summary, so far we

conclude, from x ∈ v(S) (where i ∈ S), that x ∈ v(S \ {j}) for some j ∈ S. By
repeating the same procedure, step by step, there exists some k ∈ S \ {j} such
that x ∈ v(S \ {j, k}) and so on. Recall that x /∈ v({i}) because x �∈ OIMi(N, v).
By repeatedly applying the same procedure, we derive the existence of a coa-
lition R ⊆ S not containing player i such that x ∈ v(R). Finally, from x ∈ v(R),
R ⊆ S \ {i} and the (tacitly assumed) monotonicity of the set game (N, v), we
deduce that x ∈ v(S \ {i}) as was to be shown. 	




Semi-marginalistic values for set games 247

3 Properties of values for set games

On the class of monotonic set games,
⋃

i∈N OCMi(N, v) = v(N)\⋂
i∈N v(N\{i}).

According to the next lemma, the OCM-value differs from other values in that
another type of efficiency applies.

Definition 3.1 A value f on the set game space GN(U) possesses the global
efficiency property if

⋃

i∈N

fi(N, v) =
⋃

S⊆N

v(S), for all (N, v). (8)

According to global efficiency, each attainable item is allocated to at least one
player.

Lemma 3.2 Any SM-value (satisfying (6) as well as (7)) is globally efficient.

Proof Clearly, by (6), for any SM-value, global efficiency is equivalent to the
following condition:

⋃

S⊆N

SMCv
S =

⋃

S⊆N

v(S), for all (N, v). (9)

We prove (9) by induction on the number of players. The case n = 1 is trivial
due to ∇v{i} = ∅ for one-person set games. Let (N, v) be a set game with n ≥ 2.
Then we obtain the following chain of equalities:

⋃

S⊆N

SMCv
S

= SMCv
N ∪




⋃

S�N

SMCv
S



 = SMCv
N ∪




⋃

k∈N




⋃

S⊆N\{k}
SMCv

S









= SMCv
N ∪




⋃

k∈N




⋃

S⊆N\{k}
v(S)









= [
v(N) \ ∇v

N

] ∪



⋃

S�N

v(S)



 (7)=
⋃

S⊆N

v(S),

where the third equality follows from the induction hypothesis and the last
equality holds because of (7). 	


In addition to global efficiency, we study the axiom of equal treatment, in
order to be able to provide, in the following, an axiomatization of any SM-value
satisfying appropriately chosen semi-marginalistic contributions. Let us recall
the substitution of a pair of players and the equal treatment property.
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Definition 3.3 (Substitutes in a set game and equal treatment property for a
value)

(i) Two players i ∈ N, j ∈ N, i �= j, are substitutes in the set game (N, v)

whenever v(S ∪ {i}) = v(S ∪ {j}) holds for all S ⊆ N \ {i, j}.
(ii) A value f on the set game space GN(U) possesses the equal treatment prop-

erty if fi(N, v) = fj(N, v) for any pair i ∈ N, j ∈ N, i �= j, of substitutes in
the set game (N, v). In words, two substitutes in a set game are allocated the
same items.

Lemma 3.4 Any SM-value possesses the equal treatment property whenever for
any pair i ∈ N, j ∈ N, i �= j, of substitutes in the set game (N, v)

SMCv
S∪{i} = SMCv

S∪{j} for all S ⊆ N \ {i, j}. (10)

Condition (10) expresses that the semi-marginalistic contribution concept inher-
its the role of substitutes. Further, it was shown in Sun (2003) that the ICM-,
OIM-, and SCM-values satisfy the equal treatment property.

Proof For any pair i ∈ N, j ∈ N, i �= j, of substitutes in the set game (N, v), we
obtain the following chain of equalities:

SMi(N, v) =
⋃

S⊆N
S�i

SMCv
S =






⋃

S⊆N
S⊇{i,j}

SMCv
S




 ∪






⋃

S⊆N
S�i,S��j

SMCv
S






=





⋃

S⊆N
S⊇{i,j}

SMCv
S




 ∪




⋃

S⊆N\{i,j}
SMCv

S∪{i}





=





⋃

S⊆N
S⊇{i,j}

SMCv
S




 ∪




⋃

S⊆N\{i,j}
SMCv

S∪{j}





=





⋃

S⊆N
S⊇{i,j}

SMCv
S




 ∪






⋃

S⊆N
S�j,S��i

SMCv
S






=
⋃

S⊆N
S�j

SMCv
S = SMj(N, v),

where the fourth equality follows from SMCv
S∪{i} = SMCv

S∪{j} for all S ⊆ N\{i, j}.
Hence, the SM-value possesses the equal treatment property whenever (10)
holds. 	
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Definition 3.5 A value f on the set game space GN(U) possesses the semi-mar-
ginalistic contribution monotonicity property with respect to the given semi-mar-
ginalistic contribution {SMC�

S }S⊆N if for any pair (N, v), (N, w) of set games
and all i ∈ N,

(SMCv
S ⊆ SMCw

S for all S ⊆ N with i ∈ S) implies fi(N, v) ⊆ fi(N, w) (11)

In words, semi-marginalistic contribution monotonicity expresses, with refer-
ence to two different set games, that the larger the player’s semi-marginalistic
contributions in the game, the more items are allocated to the player.

Corollary 3.6 Any SM-value (satisfying (6) and (7)) possesses global efficiency,
the equal treatment property, and the semi-marginalistic contribution monoto-
nicity.

Remark 3.7 In case ∇v
S = ∅ for all S ⊆ N, then the associated semi-marginalistic

contribution SMCv
S agrees with the coalition’s worth v(S) for every coalition S

and under these circumstances, (10) reduces to the definition of substitutes in
the set game (N, v). The associated maximal semi-marginalistic MSM-value is
given by MSMi(N, v) = ⋃

S⊆N,
S�i

v(S) for all i ∈ N and it is easy to verify that

this MSM-value satisfies global efficiency, the equal treatment property, and
semi-marginalistic contribution monotonicity with respect to SMCv

S = v(S) for
all S ⊆ N. For its additivity, see Remark 4.6.

4 An axiomatization of semi-marginalistic values for set games

The purpose of this section is to present an axiomatic characterization of any
semi-marginalistic value. To be exact, we show that such a value is fully deter-
mined by global efficiency, the (tacitly assumed) equal treatment property,
together with a type of monotonicity. The proof technique is based on the
decomposition of any set game into a union of simple set games, in which the
worth of any coalition equals either the empty set or a singleton consisting of
one arbitrary, but fixed item.

Theorem 4.1 Let the player set N of the set game space GN(U) be fixed. There
exists a unique value on GN(U) satisfying global efficiency, the equal treat-
ment property, and semi-marginalistic contribution monotonicity with respect
to a certain semi-marginalistic contribution. This unique value is the SM-value
associated with the relevant semi-marginalistic contribution.

The proof of Theorem 4.1 proceeds in three steps. The first preliminary result
provides another interpretation of any SM-value as the maximal value satisfying
global efficiency and semi-marginalistic contribution monotonicity.

Proposition 4.2 If a value f on GN(U) possesses global efficiency and semi-mar-
ginalistic contribution monotonicity, then fi(N, v) ⊆ SMi(N, v) for all (N, v) and
all i ∈ N.
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Proof Suppose a value f satisfies global efficiency and semi-marginalistic con-
tribution monotonicity. Let (N, v) be a set game and i ∈ N. In order to show
fi(N, v) ⊆ SMi(N, v), let x ∈ fi(N, v) but x �∈ SMi(N, v). Define a new set game
(N, w) as follows: for any S ⊆ N

w(S) :=
{

v(S) \ {x}, if x ∈ v(S),
v(S), otherwise.

Notice that, for all S ⊆ N, x �∈ w(S). From this observation, together with the
global efficiency of f applied to the set game (N, w), we derive the following
chain of inclusions:

fi(N, w) ⊆
⋃

j∈N

fj(N, w) =
⋃

S⊆N

w(S) ⊆ U \ {x}.

In particular, x /∈ fi(N, w). Let S ⊆ N with i ∈ S. Since the expression ∇w
S is

supposed to depend on worths of sub-coalitions in the game (N, w), the two
set ∇w

S and ∇v
S of items do not differ at all, except for the item x itself (to be

included or not). Because x /∈ SMi(N, v), then x /∈ v(S) \ ∇v
S , whereas x /∈ w(S).

From this we conclude that v(S) \ ∇v
S = w(S) \ ∇w

S . Hence, SMCv
S = SMCw

S for
all S ⊆ N with i ∈ S. Consequently, fi(N, v) = fi(N, w) by the semi-marginali-
stic contribution monotonicity of f , but this equality contradicts the facts that
x ∈ fi(N, v) and x �∈ fi(N, w). This contradiction completes the proof. 	


Further, this proof indicates that the global efficiency
⋃

i∈N fi(N, v)= ⋃
S⊆N v(S)

may weakened to the inclusion
⋃

i∈N fi(N, v) ⊆ ⋃
S⊆N v(S) for any set game

(N, v). In addition, the definition of the expression ∇w
S does not matter so

much.
The final part of the preliminary results deals with simple set games, which

will be treated as the components of a decomposition for any arbitrary set game.

Definition 4.3 With every set game (N, v) and every item x ∈ U is associated
the simple set game (N, vx) defined to be, for any S ⊆ N,

vx(S) :=
{

{x}, if x ∈ v(S),
∅, otherwise.

(12)

The coalition S is winning in the simple set game (N, vx) if {x} = vx(S) or,
equivalently, x ∈ v(S).
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Proposition 4.4 Decomposition results for set games (N, v) and semi-marginal-
istic values.

(i) v =
⋃

y∈U
vy that is, for all S ⊆ N, v(S) =

⋃

y∈U
vy(S). (13)

(ii) For all x ∈ U and S ⊆ N, it holds : SMCvx
S = {x} ⇔ x ∈ SMCv

S. (14)

(iii) SMi(N, v) =
⋃

y∈U
SMi(N, vy), for all i ∈ N and all SM − values. (15)

(iv) If a value f on GN(U) satisfies the semi-marginalistic contribution

monotonicity, then fi(N, v) ⊇ fi(N, vx), for all i ∈ N and all x ∈ U .

Proof The decomposition statement (13) of the set game (N, v) is trivial since
U = v(T) ∪ (U \ v(T)) for all T ⊆ N. The decomposition statement (15) of the
SM-value of the set game (N, v) is a direct consequence of the equivalence (14)
because, for all i ∈ N,

⋃

y∈U
SMi(N, vy) =

⋃

y∈U

⋃

S⊆N
S�i

SMC
vy
S =

⋃

S⊆N
S�i

⋃

y∈U
SMC

vy
S

=
⋃

S⊆N
S�i

SMCv
S = SMi(N, v).

The statement in part (iv) is a direct consequence of the equivalence (14) too,
due to the inclusion SMCvx

S ⊆ SMCv
S for all S ⊆ N with S � i, and all x ∈ U .

It remains to prove, for all x ∈ U and all S ⊆ N, the equivalence (14). For that
purpose, note that ∇vx

S ⊆ {x}, due to (7) and (12). Now we obtain the following
chain of equalities:

SMCvx
S = {x} ⇔ vx(S) \ ∇vx

S = {x}
⇔ vx(S) = {x} and ∇vx

S = ∅
⇔ x ∈ v(S) and x �∈ ∇vx

S

⇔ x ∈ v(S) and x �∈ ∇vy
S , for all y ∈ U

⇔ x ∈ v(S) and x �∈ ∇v
S

⇔ x ∈ v(S) \ ∇v
S

⇔ x ∈ SMCv
S

Concerning the fourth and fifth equivalence in the above chain, we make use

of the relationships ∇v
S = ∇

(⋃
y∈U vy

)

S = ⋃
y∈U ∇vy

S , while vy(T) ∩ vz(T) = ∅
whenever y �= z. 	

Proof of the uniqueness part of Theorem 4.1 Suppose a value f on GN(U) sat-
isfies global efficiency, the equal treatment property, and semi-marginalistic
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contribution monotonicity with the respect to the given semi-marginalistic con-
tribution {SMC�

S }S⊆N . Let (N, v) be a set game and i ∈ N. We show that
fi(N, v) = SMi(N, v) for all i ∈ N. By Propositions 4.2 and 4.4(iii)–(iv), the
following relationships hold:

SMi(N, v) =
⋃

y∈U
SMi(N, vy)

and

SMi(N, v) ⊇ fi(N, v) ⊇
⋃

y∈U
fi(N, vy).

Fix the set game (N, v), player i ∈ N and item x ∈ U . It suffices to show that

SMi(N, vx) = fi(N, vx), for every simple set game (N, vx). (16)

The proof of (16) proceeds by induction on the number of winning coali-
tions in the semi-marginalistic contribution set games (N, SMCvx), defined to
be SMCvx(S) = SMCvx

S = vx(S)\∇vx
S for all S ⊆ N. Coalition S is said to be win-

ning in the set game (N, SMCvx) if SMCvx(S) = {x} or, equivalently, x ∈ SMCv
S

(see (14)). We distinguish two cases depending upon whether or not there exists
a unique winning coalition. Case one There exists a unique winning coalition S1
in the set game (N, SMCvx), that is SMCvx(S1) = {x} and SMCvx(S) = ∅, for all
S �= S1. Our first claim is the following:

SMj(N, vx) = fj(N, vx) = ∅, for all j ∈ N \ S1. (17)

Indeed, for all j ∈ N \ S1, it follows from the definition of the set game, that
SMCvx

S = ∅ for all S ⊆ N with S � j. From this, together with Proposition
4.2 applied to the simple set game (N, vx), we deduce the following chain of
inclusions: for all j ∈ N \ S1

fj(N, vx) ⊆ SMj(N, vx) =
⋃

S⊆N
S�j

SMCvx
S = ∅,

and so, the first claim (17) holds.
Our second claim is the following: SMCvx

S = SMCSMCvx

S for all S ⊆ N. Indeed,

if S �= S1, then SMCvx(S) = ∅ and so SMCSMCvx

S = ∅. Further, SMCSMCvx

S1
=

SMCvx
S1

\ ∇SMCvx

S1
= SMCvx

S1
, since ∇SMCvx

S1
= ∅ due to SMCvx(T) = ∅, for all

T � S1 (see (7)).
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From SMCvx
S = SMCSMCvx

S , for all S ⊆ N, together with the semi-marginali-
stic contribution monotonicity for both f and SM, it follows that

fj(N, SMCvx) = fj(N, vx) and

SMj(N, SMCvx) = SMj(N, vx), for all j ∈ N. (18)

By (17) and (18), we obtain that fj(N, SMCvx) = SMj(N, SMCvx) = ∅, for
all j ∈ N \ S1. Global efficiency of both f and SM, applied to the set game
(N, SMCvx), yields

⋃

k∈N

fk(N, SMCvx) =
⋃

k∈N

SMk(N, SMCvx) = {x}, which reduces to

⋃

k∈S1

fk(N, SMCvx) =
⋃

k∈S1

SMk(N, SMCvx) = {x}.

Note that any pair of players in S1 are substitutes in the set game (N, SMCvx)

(since S1 is the unique winning coalition). From the equal treatment property
of both f and SM, applied to the game (N, SMCvx), we derive

fj(N, SMCvx) = fk(N, SMCvx), as well as SMj(N, SMCvx)

= SMk(N, SMCvx), for all j, k ∈ S1.

Consequently, the latter global efficiency simplifies to

fk(N, SMCvx) = SMk(N, SMCvx) = {x}, for all k ∈ S1.

From this, together with (17) and (18), we conclude that SMj(N, vx) = fj(N, vx)

for all j ∈ N. This completes the proof of (16).
Case two There are at least two winning coalitions in the set game (N, SMCvx),
say, among others, coalition S1. In particular, SMCvx(S1) = {x} or equivalently,
x ∈ SMCv

S1
. Define two new set games (N, v1) and (N, v2), arising from the

semi-marginalistic contribution set game (N, SMCv) such that v1 is almost the
semi-marginalistic contribution set game (N, SMCv) and v2 almost the empty
set game. To be exact,

v1(S) :=
{

SMCv
S, if S �= S1,

∅, if S = S1,
(19)

v2(S) :=
{

SMCv
S, if S = S1,

∅, if S �= S1.
(20)

From the descriptions (19), (20) of both set games, together with the equiv-
alence (14), we deduce that their associated simple set games (N, (v1)x) and
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(N, (v2)x) are given by

(v1)x(S) :=
{

SMCvx
S , if S �= S1,

∅, if S = S1,
(21)

(v2)x(S) :=
{

∅, if S �= S1,
SMCvx

S , if S = S1.
(22)

Note that the inclusions (v1)x(S) ⊆ vx(S) and (v2)x(S) ⊆ vx(S) hold for all
S ⊆ N. Concerning the semi-marginalistic contribution in both simple set games,
as given by (21), (22), we claim the following:

SMC(v1)x
S1

= ∅ and SMC(v1)x
S = SMCvx

S , for all S �= S1; (23)

SMC(v2)x
S1

= SMCvx
S1

and SMC(v2)x
S = ∅, for all S �= S1. (24)

In order to verify (23), for all S �= S1, the following chain of equalities holds:

SMC(v1)x
S = (v1)x(S) \ ∇(v1)x

S
(21)= SMCvx

S \ ∇(v1)x
S

= [
vx(S) \ ∇vx

S

] \ ∇(v1)x
S

= [
vx(S) \ ∇vx

S

] = SMCvx
S ,

where the second equality follows from the description (21) of the set game
(N, (v1)x) and the fourth from ∇(v1)x

S ⊆ ∇vx
S , because of T � S, (v1)x(T) ⊆ vx(T).

So, (23) holds. In order to verify (24), the following chain of equalities holds:

SMC(v2)x
S1

= (v2)x(S1) \ ∇(v2)x
S1

(22)= SMCvx
S1

\ ∇(v2)x
S1

= SMCvx
S1

,

due to the equality ∇(v2)x
S1

=∅, because of (v2)x(T)=∅, for all T � S1 (see (7)).
So, (24) holds too. Clearly, it concerns a disjoint union so that SMCvx

S =
SMC(v1)x

S ∪ SMC(v2)x
S for all S ⊆ N. From this, we deduce the following chain of

equalities:

SMi(N, vx)
(6)=

⋃

S⊆N
S�i

SMCvx
S =

⋃

S⊆N
S�i

[
SMC(v1)x

S ∪ SMC(v2)x
S

]

=





⋃

S⊆N
S�i

SMC(v1)x
S




 ∪






⋃

S⊆N
S�i

SMC(v2)x
S






(6)= SMi(N, (v1)x) ∪ SMi(N, (v2)x).
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By (24), the semi-marginalistic contribution set game (N, SMC(v2)x) has a unique
winning coalition S1, whereas, by (23), the collection of winning coalitions in the
semi-marginalistic contribution set game (N, SMC(v1)x) is identical to the ones
in the initial semi-marginalistic contribution set game (N, SMCvx), except for
coalition S1. The induction hypothesis (16) applied to both set games (N, (v1)x
and (N, (v2)x) yields

SMi(N, (v1)x) = fi(N, (v1)x) as well as SMi(N, (v2)x) = fi(N, (v2)x).

Further, from the inclusion SMC(v1)x
S ⊆ SMCvx

S for all S ⊆ N (see (23)), to-
gether with the semi-marginalistic contribution monotonicity for f , we derive
fi(N, (v1)x) ⊆ fi(N, vx) and, similarly, fi(N, (v2)x) ⊆ fi(N, vx). Finally, we con-
clude that the following chain of inclusion holds:

SMi(N, vx) = SMi(N, (v1)x) ∪ SMi(N, (v2)x)

= fi(N, (v1)x) ∪ fi(N, (v2)x) ⊆ fi(N, vx).

Hence SMi(N, vx) ⊆ fi(N, vx), whereas the reverse inclusion SMi(N, vx) ⊇
fi(N, vx) holds by Proposition 4.2. We arrive at the equality SMi(N, vx) =
fi(N, vx). This completes both the inductive proof of (16) and the full proof
of Theorem 4.1. 	

Remark 4.5 Throughout the above Theorem 4.1, for any set game (N, v) and
any coalition S ⊆ N, the associated expression ∇v

S is supposed to possess the
following minor property:

∇w
S ⊆ ∇v

S when w(T) ⊆ v(T), for all T � S. (25)

In the context of the empty set game, (25) is meant to be read as ∇w
S = ∅,

whenever w(T) = ∅, for all T � S.

Remark 4.6 We present the table with rows indexed by set game-theoretic val-
ues and columns indexed by properties indicating for each value which one of
the properties it satisfies. The abbreviations GEF, ETP, SMC-Mon, and ADD
stand for global efficiency, equal treatment property, semi-marginalistic contri-
bution monotonicity and additivity. A value f on the set game space GN(U)

possesses the additivity property if fi(N, v ∪ w) = fi(N, v) ∪ fi(N, w) for any pair
(N, v), (N, w) of disjoint set games and all i ∈ N. Here the set game (N, v ∪ w)

is defined by (v ∪ w)(S) = v(S) ∪ w(S) for all S ⊆ N. The two set games (N, v)

and (N, w) are called disjoint if v(S) ∩ w(S) = ∅ for all S ⊆ N. Generally speak-
ing, any SM- value (except for the MSM-value) does not satisfy the additivity,
although formula (15) states that any SM−value is additive with respect to
simple set games.

Remark 4.7 We discuss the independence of the three axioms in the main char-
acterization stated in Theorem 4.1. We present a value f on the set game
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Value GEF ETP SMC-Mon ADD Similar TU-value

IM Yes Yes Yes No Shapley value
(due to formula)

OCM No Yes Yes No Shapley value
(due to potential)

ICM Yes Yes Yes No Solidarity value
OIM Yes Yes Yes No
SCM Yes Yes Yes No
MSM Yes Yes Yes Yes

space G(U) that will satisfy global efficiency and semi-marginalistic contribution

monotonicity with respect to a given marginalistic contribution
{

SMC�
S

}

S⊆N
,

but violates the equal treatment property. The value f is defined by f (N, v) =
SM(N, v) for all set games (N, v) with |N| ≥ 3, and fi({i, j}, v) = v({i}), while
fj({i, j}, v) = v({j})∪[v({i, j})\∇v

{i,j}]. Notice that fj({i, j}, v) = SMj({i, j}, v). In the
framework of two-person set games, this value f satisfies the semi-marginalistic
contribution monotonicity because the inclusion fi({i, j}, v) ⊆ fi({i, j}, w) agrees
with the assumption SMCv{i} ⊆ SMCw{i} for two-person set games ({i, j}, v) and
({i, j}, w). Obviously, this value f does not possess the equal treatment property
for substitutes in two-person set games.

In case ∇v
N = ∅ and ∇v

S = v(S) for all S � N, then the associated semi-
marginalistic contribution SMCv

S agrees with the empty set for every coalition
S, whereas SMCv

N = v(N). The associated value f is given by fi(N, v) = v(N) for
all i ∈ N and it is easy to verify that this value f satisfies equal treatment property
and semi-marginalistic contribution monotonicity, but not global efficiency.

5 Concluding remarks

The axiomatization of semi-marginalistic values for set games, as stated in
Theorem 4.1, can be considered, more or less, as the counterpart of Young’s
axiomatization of the Shapley value for cooperative games. In order to eluci-
date these similarities between the two fields of set game theory and cooperative
game theory, let us briefly summarize the basic concepts from the latter field.

A cooperative game with transferable utility (TU) is a pair (N, v), where
N is a nonempty finite set and v : 2N → R is a characteristic function, de-
fined on the power set of N, satisfying v(∅) := 0. Let � denote the space
of all cooperative TU-games with an arbitrary player set. An element of N
(notation: i ∈ N) and a nonempty subset S of N (notation: S ⊆ N or S ∈ 2N

with S �= ∅) is called a player and coalition respectively, and the associated
real number v(S) is called the worth of coalition S, to be interpreted as the
earnings (in the utility of money) its members can obtain by mutual coop-
eration among themselves. Concerning the solution theory for cooperative
TU-games, a single-valued solution f on � associates with every cooperative
game (N, v) ∈ � a single payoff vector f (N, v) = (fi(N, v))i∈N ∈ RN . The payoff
fi(N, v) to player i in the cooperative game (N, v) represents an assessment by
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i of his gains for participating in the game. A single-valued solution f satisfies
the efficiency principle if

∑
i∈N fi(N, v) = v(N) for all (N, v) ∈ �. The equal

treatment property for f on � is fully in accordance with Definition 3.3. Fur-
ther, a single-valued solution f on � satisfies the strong monotonicity property
if fi(N, v) ≤ fi(N, w) for any pair (N, v), (N, w) of cooperative games and all
i ∈ N, satisfying v(S) − v(S \ {i}) ≤ w(S) − w(S \ {i}) for all S ⊆ N with i ∈ S.
In Young (1985), it is shown that there exists a unique solution on the coop-
erative game space �N (with reference to a fixed player set N) satisfying the
efficiency, and strong monotonicity, and it is given by the well-known Shapley
value Sh(N, v) = (Shi(N, v))i∈N ∈ RN as follows (cf. Shapley 1953):

Shi(N, v) =
∑

S⊆N
S�i

(|S| − 1)!(|N| − |S|)!
|N|!

[
v(S) − v(S \ {i})

]
for all i ∈ N,

where |S| denotes the size (cardinality) of coalition S. For a detailed introduction
about cooperative game theory, we refer to Driessen (1988). In summary, the
main Theorem 4.1 concerning semi-marginalistic values for set games has been
inspired by Young’s axiomatization for the Shapley value, although their proofs
differ very much. The counterpart of the Shapley value may be stated, at first
glance, to be the individually marginalistic IM-value, as given by (1), but from
the viewpoint of the potential approach to the solution theory, it is justified to be
the overall-coalitionally marginalistic OCM-value (cf. Driessen and Sun 2001).
In addition, the semi-marginalistic value f by choosing ∇v

S = ⋂
j∈S v(S \ {j})

(cf. Sun et al. 1997) may be interpreted as the counterpart of the solidarity
value for cooperative games (cf. Nowak and Radzik 1994).
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