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Abstract

For two given graphs F and H , the Ramsey number R(F, H) is the smallest positive integer p such that for every graph G on p

vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we
study the Ramsey numbers R(Pn, Fm), where Pn is a path on n vertices and Fm is the graph obtained from m disjoint triangles by
identifying precisely one vertex of every triangle (Fm is the join of K1 and mK2). We determine the exact values of R(Pn, Fm) for
the following values of n and m: 1�n�5 and m�2; n�6 and 2�m�(n+1)/2; 6�n�7 and m�n−1; n�8 and n−1�m�n or
((q ·n−2q+1)/2�m�(q ·n−q+2)/2 with 3�q �n−5) or m�(n−3)2/2; odd n�9 and ((q ·n−3q+1)/2�m�(q ·n−2q)/2
with 3�q �(n − 3)/2) or ((q · n − q − n + 4)/2�m�(q · n − 2q)/2 with (n − 1)/2�q �n − 5). Moreover, we give nontrivial
lower bounds and upper bounds for R(Pn, Fm) for the other values of m and n.
© 2005 Published by Elsevier B.V.
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1. Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a graph. We write V (G) or V for the vertex
set of G and E(G) or E for the edge set of G. The graph G is the complement of G, i.e., the graph obtained from the
complete graph on |V (G)| vertices by deleting the edges of G. The graph H = (V ′, E′) is a subgraph of G = (V , E)

if V ′ ⊆ V and E′ ⊆ E (implying that the edges of H have all their end vertices in V ′).
If e = {u, v} ∈ E (in short, e = uv), then u is called adjacent to v, and u and v are called neighbors. For x ∈ V ,

define N(x) = {y ∈ V | xy ∈ E} and N [x] = N(x) ∪ {x}. If S ⊂ V (G), S �= V (G), then G − S denotes the subgraph
of G induced by V (G)\S. If |S| = 1, then we also use G − z for S = {z} instead of G − {z}. If e ∈ E(G), then
G − e = (V (G), E(G)\{e}).

We denote by Pn, Cn and Kn the path, the cycle and the complete graph on n vertices, respectively. A fan Fm is a
graph on 2m+ 1 vertices obtained from m disjoint triangles (K3s) by identifying precisely one vertex of every triangle
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Fig. 1. The fan F5.

(Fm is the join of K1 and mK2). The vertex corresponding to K1 is called the hub of the fan. For illustration, consider
F5 in Fig. 1.

Given two graphs F and H, the Ramsey number R(F, H) is defined as the smallest positive integer p such that
every graph G on p vertices satisfies the following condition: G contains F as a subgraph or G contains H as a
subgraph.

In 1967, Geréncser and Gyárfás [4] determined all Ramsey numbers for paths versus paths. After that, Ramsey
numbers R(Pn, H) for paths versus other graphs H have been investigated in several papers, for example: Parsons [6]
when H is a complete graph; Faudree et al. [2] when H is a cycle; Parsons [7] when H is a star; Häggkvist [5] when H
is a complete bipartite graph; Faudree et al. [3] when H is a tree; Surahmat and Baskoro [9], Chen et al. [1] and Salman
and Broersma [8] when H is a wheel. We study Ramsey numbers for paths versus fans.

2. Main results

In this paper we determine the Ramsey numbers R(Pn, Fm) for the following values of n and m: 1�n�5 and m�2;
n�6 and 2�m�(n+1)/2; 6�n�7 and m�n−1; n�8 and n−1�m�n or ((q ·n−2q+1)/2�m�(q ·n−q+2)/2
with 3�q �n − 5) or m�(n − 3)2/2; odd n�9 and ((q · n − 3q + 1)/2�m�(q · n − 2q)/2 with 3�q �(n − 3)/2)
or ((q · n − q − n + 4)/2�m�(q · n − 2q)/2 with (n − 1)/2�q �n − 5). We will present the Ramsey numbers for
‘small’ paths versus fans in Proposition 1, the Ramsey numbers for paths versus ‘small’ fans in Theorem 3, and the
Ramsey numbers for paths versus ‘large’ fans in the corollaries based on Lemmas 4 and 6. Moreover, we give nontrivial
lower bounds and upper bounds for R(Pn, Fm) for (odd n�11 and (q · n − q + 4)/2�m�(q · n − 3q + n − 3)/2
with 2�q �(n − 7)/2) or (even n�8 and (q · n − q + 3)/2�m�(q · n − 2q + n − 2)/2 with 2�q �n − 5) or (n�6
and (n + 2)/2�m�n − 2) in Corollaries 8, 9 and Theorem 10.

Proposition 1. Let m�2. Then

R(Pn, Fm) =
{

1 for n = 1,

2m + 1 for n = 2 or 3.

Proof. The cases for which n = 1 or 2 are (almost) trivial and left to the reader. We only give the proof in case n = 3:
the graph consisting of m disjoint copies of K2 shows that R(P3, Fm) > 2m. Now suppose G is a graph on 2m + 1
vertices, and assume G contains no P3. We will show that G contains an Fm. Since |V (G)| is odd and G contains no
P3, there is a vertex z ∈ V (G) with |N(z)| = 0. Since G − z contains no P3, the vertices of V (G)\{z} have degree
at least 2m − 2 in G − z. This implies there exists a cycle C2m in G − z. Hence G contains an Fm (even a wheel on
2m + 1 vertices). �

The next lemma plays a key role in the proofs for the remaining cases.

Lemma 2. Let n�3 and G be a graph on at least n vertices containing no Pn. Let the paths P 1, P 2, . . . , P k in G be
chosen in the following way:

⋃k
j=1 V (P j ) = V (G), P 1 is a longest path in G, and, if k > 1, P i+1 is a longest path in

G − ⋃i
j=1 V (P j ) for 1� i�k − 1. Denote by �j the numbers of vertices on the path P j . Let z be an end vertex of P k .
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Then:

(i) �1 ��2 � · · · ��k;
(ii) If �k ��n/2�, then N(z) ⊂ V (P k);

(iii) If �k < �n/2�, then |N(z)|��n/2� − 1.

Proof. (i) Obviously follows from the choice of the paths. From this choice we can also deduce that for any integer x
with 1�x < k, the number of neighbors of z in V (P x) is

{
�

⌊
�x + 1 − 2�k

2

⌋
if �x �2�k + 1,

0 if �x < 2�k + 1.

(1)

This can be checked easily: first order the neighbors of z on P x according to the order of their appearance on P x in a
fixed orientation. Then observe that between any two successive neighbors of z on P x , there is at least one nonneighbor
of z, while before the first and after the last neighbor of z on P x , there are at least �k nonneighbors of z.

(ii) Assume �k ��n/2�. Then 2�k + 1�n > �1. So by the above observation, we conclude that there is no neighbor
of z in V (G)\V (P k).

(iii) Now assume �k < �n/2�. If z has no neighbors in V (G)\V (P k), we are done. If z has some neighbors in
V (G)\V (P k), similar counting arguments as above yield the desired result: denote by h1, . . . , ht the numbers of
vertices on the paths P 1, . . . , P k that contain a neighbor of z, chosen in such a way that ht � · · · �h1, and denote by
d1, . . . , dt the numbers of neighbors of z on the corresponding paths. Then, arguing as above, we obtain h1 =�k �d1 +1
and h2 �2h1 + 2d2 − 1. Similarly, observing that z connects any two of the considered paths, and using the same
elementary counting techniques, we get (if t �3) hj �2((hj−1 − 1)/2 + 2) + 2dj − 1 = hj−1 + 2dj + 2 for 3�j � t .
This implies (for t �2) that ht �2(d1 +· · ·+dt )+2(t −2)+1�2|N(z)|+1. Since ht �n−1 and |N(z)| are integers,
this yields the desired result. �

Theorem 3. Let n�4 and 2�m�(n + 1)/2. Then R(Pn, Fm) = 2n − 1.

Proof. The graph 2Kn−1 shows that R(Pn, Fm) > 2n − 2. Let G be a graph on 2n − 1 vertices and assume G contains
no Pn. We are going to show that G contains an Fm. Choose the paths P 1, . . . , P k and the vertex z as in Lemma
2. Since |V (G)| = 2n − 1 and G does not contain a Pn, k�3 and �k �(2n − 1)/3. If �k < �n/2� then by Lemma
2(iii) we obtain |N(z)|��n/2� − 1�(2n − 1)/3 − 1. If �n/2���k �(2n − 1)/3 then by Lemma 2(ii) we obtain
|N(z)|��k − 1�(2n − 1)/3 − 1. Hence, |N [z]|�(2n − 1)/3. We are going to show that there is an Fm in G with z
as a hub. We distinguish the following two cases.

Case 1: |N(z)|��n/2� − 1.
Then |V (G)\N [z]|�(2n − 1) − �n/2��n + m − 1. We can apply the result from [2] that R(Pn, C2m) = n + m − 1

for 2�m��(n + 1)/2�. This implies that G − N [z] contains a C2m. So, there is an Fm in G with z as a hub (there is
even a wheel on 2m + 1 vertices).

Case 2: |N(z)|��n/2�.
By Lemma 2(ii), we find N(z) ⊂ V (P k). Hence, �k ��n/2� + 1. Since |V (G)| = 2n − 1, k = 3. Take the first

m vertices of P 1 (in some fixed orientation) and name them u1, . . . , um, starting at an end vertex. Also take the
first m vertices of P 2 (in some fixed orientation) and name them v1, . . . , vm, starting at an end vertex. Since P 1

is chosen as a longest path in G, it is obvious that uivi /∈ E(G) (i = 1, . . . , m). So there is an Fm in G with z
as a hub. �

The following lemma provides upper bounds that yield several exact Ramsey numbers in the sequel.

Lemma 4. If n�4 and m�n − 1, then

R(Pn, Fm)�
{

2m + n − 1 for 2m = 1 mod(n − 1),

2m + n − 2 for other values of m.
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Proof. Let G be a graph that contains no Pn and has order

|V (G)| =
{

2m + n − 1 for 2m = 1 mod(n − 1),

2m + n − 2 for other values of m.
(2)

Choose the paths P 1, . . . , P k and the vertex z in G as in Lemma 2. Because of (2), not all P i can have n − 1
vertices, so �k �n − 2. By similar arguments as in the proof of Theorem 3, this implies |N(z)|�n − 3. We will use
the following result that has been proved in [2]: R(Pt , Cs) = s + �t/2� − 1 for s��(3t + 1)/2�. We distinguish the
following cases.

Case 1: |N(z)|��n/2� − 2 or n is odd and |N(z)| = �n/2� − 1.
Since |V (G)\N [z]|�2m + �n/2� − 1, we find that G − N [z] contains a C2m. So, there is an Fm in G with z as a

hub.
Case 2: n is even and |N(z)| = n/2 − 1.
Since |V (G)\N [z]|�(2m + n − 2) − n/2 = 2m + n/2 − 2, we find that G − N [z] contains a C2m−1; denote its

vertices by v1, v2, v3, . . . , v2m−1 in the order of appearance on the cycle with a fixed orientation. There are n/2 − 1
vertices in U =V (G)\(V (C2m−1)∪N [z]), say u1, u2, . . . , un/2−1. If some vertex vi (i=1, . . . , 2m−1) is no neighbor
of some vertex uj (j = 1, . . . , n/2 − 1), w.l.o.g. assume v2m−1u1 /∈ E(G). Then G contains an Fm with z as a hub and
additional edges v1v2, v3v4, . . . , v2m−3v2m−2, v2m−1u1. Now let us assume each of the vi is adjacent to all uj in G.
For every choice of a subset of n/2 vertices from V (C2m−1), there is a path on n − 1 vertices in G alternating between
the vertices of this subset and the vertices of U, starting and terminating in two arbitrary vertices from the subset. Since
G contains no Pn, there are no edges vivj ∈ E(G) (i, j ∈ {1, . . . , 2m− 1}). This implies that V (C2m−1)∪ {z} induces
a K2m in G. Since G contains no Pn, no vi is adjacent to a vertex of N(z). This implies that G contains a K2m+1 − zw

for any vertex w ∈ N(z), and hence G contains an Fm with one of the vi as a hub.
Case 3: Suppose that there is no choice for P k and z such that one of the former cases applies. Then |N(w)|��n/2�

for any end vertex w of a path on �k vertices in G − ⋃k−1
j=1 V (P j ). This implies all neighbors of such w are in

V (P k) and �k ��n/2� + 1. So for the two end vertices z1 and z2 of P k we have that |N(zi) ∩ V (P k)|��n/2���k/2.
Let P k : z1 = v1v2 . . . v�k

= z2. Then by standard arguments in Hamiltonian graph theory, we can find an index
i ∈ {2, . . . , �k − 1} such that z1vi+1 and z2vi are edges of G. It is clear that we can find a cycle on �k vertices in G.
This implies that any vertex of V (P k) could serve as w. By the assumption of this last case, we conclude that there are
no edges in G between V (P k) and the other vertices. This also implies that all vertices of P k have degree at least 2m

in G.
We now turn to P k−1 and consider one of its end vertices w. Since �k−1 ��k ��n/2� + 1, similar arguments as

in the proof of Lemma 2 show that all neighbors of w are on P k−1. If |N(w)| < �n/2�, we get an Fm in G as in
Case 1 or Case 2. So we may assume |N(wi) ∩ V (P k−1)|��n/2���k−1/2 for both end vertices w1 and w2 of P k−1.
By similar arguments as before we obtain a cycle on �k−1 vertices in G. This implies that any vertex of V (P k−1) could
serve as w. By the assumption of this last case, we conclude that there are no edges in G between V (P k−1) and the
other vertices. This also implies that all vertices of P k−1 have degree at least 2m − 1 in G. (Note that P k−1 can have
n − 1 vertices, whereas �k �n − 2.)

Repeating the above arguments for P k−2, . . . , P 1 we eventually conclude that all vertices of G have degree at least
2m − 1 in G. Now let H = G − V (P k). Then all vertices in V (H) have degree at least 2m − 1 − �k �m + (n − 1) −
1 − �k � 1

2 (2m + 2n − 4 − �k − (n − 2)) = 1
2 (2m + n − 2 − �k)� 1

2 (|V (H)| − 1). This implies there exists a Hamilton
path in H. Since |V (H)|�2m and z is a neighbor of all vertices in H, it is clear that G contains an Fm with z as a hub.
This completes the proof of Lemma 4. �

Corollary 5. If (4�n�7 and m�n − 1) or (n�8 and n − 1�m�n or ((q · n − 2q + 1)/2�m�(q · n − q + 2)/2
for 3�q �n − 5) or m�(n − 3)2/2), then

R(Pn, Fm) =
{

2m + n − 1 for 2m = 1 mod(n − 1),

2m + n − 2 for other values of m.

Proof. Let r denote the remainder of 2m divided by n − 1, so 2m = p(n − 1) + r for some 0�r �n − 2. Then for
(4�n�7 and m�n − 1) or (n�8 and n − 1�m�n or ((q · n − 2q + 1)/2�m�(q · n − q + 2)/2 for 3�q �n − 5)
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or m�(n − 3)2/2), the graphs

{
(p − 1)Kn−1 ∪ 2Kn−2 for r = 0,

(p + 1)Kn−1 for r = 1 or 2,

(p + r + 1 − n)Kn−1 ∪ (n + 1 − r)Kn−2 for other values of r

show that

R(Pn, Fm) >

{
2m + n − 2 for 2m = 1 mod(n − 1),

2m + n − 3 for other values of m.

Lemma 4 completes the proof. �

Lemma 6. If n is odd, n�9 and (q · n − q + 3)/2�m�(q · n − 2q + n − 2)/2 with 2�q �2�n/2� − 5, then
R(Pn, Fm)�2m + n − 3.

Proof. The proof is modelled along the lines of the proof of Lemma 4. Let G be a graph on 2m + n − 3 vertices, and
assume G contains no Pn. We will show that G contains an Fm. Choose the paths P 1, . . . , P k and the vertex z in G
as in Lemma 2. Since |V (G)| = 2m + n − 3 with n�9 and (q · n − q + 3)/2�m�(q · n − 2q + n − 2)/2 with
2�q �2�n/2� − 5, k�q + 2, and therefore not all P i can have more than n − 3 vertices. So �k �n − 3. By similar
arguments as in the proof of Theorem 3, this implies |N(z)|�n − 4. We will use the following result that has been
proved in [2]: R(Pt , Cs) = s + �t/2� − 1 for s��(3t + 1)/2�. We distinguish the following cases.

Case 1: |N(z)|��n/2� − 2.
Since |V (G)\N [z]|�2m + �n/2� − 1, we find that G − N [z] contains a C2m. So, there is an Fm in G with z as a

hub.
Case 2: |N(z)| = �n/2� − 1.

Since |V (G)\N [z]|= (2m+n− 3)−�n/2�= 2m+�n/2�− 2, we find that G − N [z] contains a C2m−1; denote its
vertices by v1, v2, v3, . . . , v2m−1 in the order of appearance on the cycle with a fixed orientation. There are �n/2� − 1
vertices in U = V (G)\(V (C2m−1) ∪ N [z]), say u1, u2, . . . , u�n/2�−1. If some vertex vi (i = 1, . . . , 2m − 1) is no
neighbor of some vertex uj (j =1, . . . , �n/2�−1), w.l.o.g. assume v2m−1u1 /∈ E(G). Then G contains an Fm with z as
a hub and additional edges v1v2, v3v4, . . . , v2m−3v2m−2, v2m−1u1. Now let us assume each of the vi is adjacent to all
uj in G. For every choice of a subset of �n/2� vertices from V (C2m−1), there is a path on n−2 vertices in G alternating
between the vertices of this subset and the vertices of U, starting and terminating in two arbitrary vertices from the
subset. Let z1 ∈ N(z). Since G contains no Pn, there are no edges viz ∈ E(G) and viz1 ∈ E(G) (i ∈ {1, . . . , 2m− 1})
and there is only (at most) one edge vivj ∈ E(G) (for some i, j ∈ {1, . . . , 2m − 1}). Suppose v1v2 ∈ E(G).
This implies G contains an Fm with hub v2m−1 and additional edges v1z, v2z1, v3v4, . . . , v2m−5v2m−4, v2m−3v2m−2.
The other cases are similar.

Case 3: Suppose that there is no choice for P k and z such that one of the former cases applies. Then |N(w)|��n/2�
for any end vertex w of a path on �k vertices in G − ⋃k−1

j=1 V (P j ). This implies all neighbors of such w are in V (P k)

and �k ��n/2� + 1. So for the two end vertices z1 and z2 of P k we have that |N(zi) ∩ V (P k)|��n/2���k/2. By
similar arguments as in the proof of Case 3 of Lemma 4 we obtain a cycle on �k vertices in G. This implies that any
vertex of V (P k) could serve as w. By the assumption of this last case, we conclude that there are no edges in G between
V (P k) and the other vertices. This also implies that all vertices of P k have degree at least 2m in G.

We now turn to P k−1 and consider one of its end vertices w. Since �k−1 ��k ��n/2� + 1, similar arguments as in
the proof of Lemma 2 show that all neighbors of w are on P k−1. If |N(w)| < �n/2�, we get an Fm in G as in Case
1 or Case 2. So we may assume |N(wi) ∩ V (P k−1)|��n/2���k−1/2 for both end vertices w1 and w2 of P k−1. By
similar arguments as before we obtain a cycle on �k−1 vertices in G. This implies that any vertex of V (P k−1) could
serve as w. By the assumption of this last case, we conclude that there are no edges in G between V (P k−1) and the
other vertices. This also implies that all vertices of P k−1 have degree at least 2m − 2 in G. (Note that P k−1 can have
n − 1 vertices, whereas �k �n − 3.)

Repeating the above arguments for P k−2, . . . , P 1 we eventually conclude that all vertices of G have degree at least
2m − 2 in G. Now let H = G − V (P k). Then all vertices in V (H) have degree at least 2m − 2 − �k �m + (n + 1) −
2 − �k � 1

2 (2m + 2n − 2 − �k − (n − 3)) = 1
2 (2m + n + 1 − �k) = 1

2 (|V (H)| + 4). This implies there exists a Hamilton
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cycle in H. Since |V (H)|�2m and z is a neighbor of all vertices in H, it is clear that G contains an Fm with z as a hub.
This completes the proof of Lemma 6. �

Corollary 7. If n is odd, n�9 and either ((q · n − 3q + 1)/2�m�(q · n − 2q)/2 with 3�q �(n − 3)/2) or
((q · n − q − n + 4)/2�m�(q · n − 2q)/2 with (n − 1)/2�q �n − 5), then R(Pn, Fm) = 2m + n − 3.

Proof. For odd n�9 and m=(q ·n−2q−j)/2 with either (3�q �(n−3)/2 and 0�j �q−1) or ((n−1)/2�q �n−5
and 0�j �n − q − 4), the graph (q − j − 1)Kn−2 ∪ (j + 2)Kn−3 shows that R(Pn, Fm) > 2m + n − 4. Lemma 6
completes the proof. �

Corollary 8. If n is odd, n�11 and (q · n − q + 4)/2�m�(q · n − 3q + n − 3)/2 with 2�q �(n − 7)/2, then

2m + n − 3�R(Pn, Fm)� max

{⌊
2m

n − 1

⌋
(n − 1) + n, 2m +

⌊
2m − 1


2m/(n − 1)�
⌋}

.

Proof. Let t = 
2m/(n − 1)� and s denote the remainder of 2m − 1 divided by t. Then for m and n satisfying
�2m/(n−1)�(n−1)+n�2m+�(2m−1)/t�, the graph tKn−1 shows that R(Pn, Fm) > �2m/(n−1)�(n−1)+n−1.

For other values of m and n, the graph sK
(2m−1)/t� ∪ (t − s + 1)K�(2m−1)/t� shows that R(Pn, Fm) > 2m − 1 +
�(2m − 1)/
2m/(n − 1)��.

The upper bound comes from Lemma 6. �

Corollary 9. If n is even, n�8 and (q · n − q + 3)/2�m�(q · n − 2q + n − 2)/2 with 2�q �n − 5, then

2m + n − 2�R(Pn, Fm)� max

{⌊
2m

n − 1

⌋
(n − 1) + n, 2m +

⌊
2m − 1


2m/(n − 1)�
⌋}

.

Proof. Let t = 
2m/(n − 1)� and s denote the remainder of 2m − 1 divided by t. Then for m and n satisfying
�2m/(n−1)�(n−1)+n�2m+�(2m−1)/t�, the graph tKn−1 shows that R(Pn, Fm) > �2m/(n−1)�(n−1)+n−1.

For other values of m and n, the graph sK
(2m−1)/t� ∪ (t − s + 1)K�(2m−1)/t� shows that R(Pn, Fm) > 2m − 1 +
�(2m − 1)/
2m/(n − 1)��.

The upper bound comes from Lemma 4. �

Theorem 10. If n�6 and (n + 2)/2�m�n − 2, then

2m +
⌊

3n

2

⌋
− 2�R(Pn, Fm)�

⎧⎨
⎩

2n − 1 for
n + 2

2
�m� n + �n/3�

2
,

3m − 1 for
n + �n/3�

2
< m�n − 2.

Proof. For n�6 and (n + 2)/2�m�(n + �n/3�)/2, the graph 2Kn−1 shows that R(Pn, Fm) > 2n − 2. For n�6 and
(n + �n/3�)/2 < m�n − 2, the graph Km ∪ 2Km−1 shows that R(Pn, Fm) > 3m − 2.

Let G be a graph on 2m + �3n/2� − 2 vertices, and assume G contains no Pn. Choose the paths P 1, . . . , P k and
the vertex z in G as in Lemma 2. By Lemma 2, |N(z)|�n − 2. Hence, |V (G)\N [z]|�2m + �n/2� − 1. We can apply
the result from [2] that R(Pn, C2m) = 2m + �n/2� − 1 for 2�n�2m. This implies that G − N [z] contains a C2m.
So, there is an Fm in G with z as a hub (there is even a wheel on 2m + 1 vertices). �

3. Conclusion

In this paper we determined the exact Ramsey numbers for paths versus fans of varying orders. The numbers are
indicated in Table 1. We used different capitals to distinguish the results in the previous section that led to these numbers.
The shaded elements indicate open cases. For these cases we established nontrivial lower bounds and upper bounds for
R(Pn, Fm). We learned from one of the anonymous referees that Yunqing Zhang et al. established similar results in a
recent paper. We are not aware of the present status of this paper.



A.N.M. Salman, H.J. Broersma / Discrete Applied Mathematics 154 (2006) 1429–1436 1435

Table 1
The Ramsey numbers for paths versus fans
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