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Abstract: The effects of estimating parameters and the violation of the assumption of
normality when dealing with control charts are discussed. Corrections for estimating errors
and extensions of the normal control chart to parametric and nonparametric charts are
investigated. The underlying theory is extensively discussed, including the choice of a suitable
parametric family containing the normal family. It turns out that classical contamination
families like random or deterministic mixtures do not give a suitable solution here. The so-
called normal power family leads to an acceptable family, as it is intimately connected to
the problem at hand of modeling and estimating an extreme quantile. When the underlying
distribution cannot be modeled sufficiently accurately by the normal power family, the
nonparametric control chart comes into the picture. A data-driven procedure makes the
choice between the three different charts. When the nonparametric chart turns up, a large
number of Phase I observations are needed. When such a large sample size is not available,
it may be preferred to replace the individual chart by a grouped one. The new minimum
chart is recommended in that case.
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1. INTRODUCTION

Two aspects of standard control charts that have obtained a lot of attention in
the last years will be discussed in this paper: the effect of estimating parameters
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and the assumption of normality. For monitoring the mean, the basic Shewhart �X
chart produces a signal as soon as an incoming new observation exceeds the 3�
upper or lower limit. More precisely, assuming that the new observation X follows
a normal distribution with mean � and standard deviation �, an upper control
limit UCL = � + 3� and a lower control limit LCL = � − 3� are defined, and a
signal occurs when X > UCL or X < LCL. (In fact, the new observation X may
be the sample mean of a small group of observations. Grouped observations and
statistics based on them other than the sample mean will be discussed later on.
This is especially of interest when normality fails.) The corresponding probability
p of a false alarm producing a signal when the observations are still in control
equals 0�0027. Equivalently, as long as the process is in control, a false alarm will
occur on average once every 370 observations. That is, the average run length
(ARL) equals 370. For simplicity, from now on we focus on the one-sided case of
an upper limit only. Two-sided control charts are treated in a similar way. For
obtaining more generally a false alarm rate (FAR) equal to p, we simply replace 3
by up = ��−1�p�, where �� = 1−� and � denotes the standard normal distribution
function (d.f.).

Obviously, when � and � are unknown, UCL cannot be calculated, and often
estimates of � and � are simply plugged in without further adjustment, although
the dangers have been pointed out from time to time in the literature; see, e.g.,
Ghosh et al. (1981), Quesenberry (1993), Roes (1995), Chen (1997), Woodall and
Montgomery (1999), Chakraborti (2000), Nedumaran and Pignatiello (2001), and
Albers and Kallenberg (2004a,c). These estimates are based on so-called Phase I
observations X1� � � � � Xn, which are assumed to be in control. While in many
statistical problems a sample size of 50–100, say, is already giving rather accurate
results, here much larger sample sizes are needed to reduce the relative error
adequately due to the fact that we are dealing with extreme quantiles, since p is very
small. When such large samples are not available, a correction may be applied to
control the control chart behavior. The first complication is that FAR is no longer a
number, but a random variable (r.v.), because it depends on the estimates and hence
on the Phase I observations X1� � � � � Xn. Denoting now the conditional FAR, given
X1� � � � � Xn, by Pn = Pn�X1� � � � � Xn� it is aimed that Pn is “close” to the intended p.

Two approaches will be discussed, one reducing the bias and the other reducing
the exceedance probability. The most obvious first choice of getting Pn close to p
is to correct UCL in order that EPn is close to p. This is similar to the classical
statistical approach of reducing the bias of an estimator of an unknown parameter.
Note, however, that when, e.g., S2 is an unbiased estimator of �2, the estimator S is
not unbiased for estimating �. Similarly, here a correction for bringing EPn close to
p is not suitable for making E�1/Pn�, the expected ARL, close to 1/p.

The variability of Pn around its expected value is rather large (again unless n is
very large). Bias correction is useful with respect to the long-term behavior of the
chart in a series of separate applications. But for a single application, controlling
an exceedance probability like P��Pn − p�/p > 0�1� by an appropriate correction of
UCL is more interesting. So, with this second approach the aim is to correct UCL
in such a way that Pn exceeds p by more than 10%, say, only with some small
probability.

Errors due to estimation is one aspect, but violating the normality assumption
is another one, and often this has an even much larger effect. This has been shown,
e.g., by Chan et al. (1988), Pappanastos and Adams (1996), and Albers et al. (2004,
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2005). The error due to estimation is called the stochastic error (SE), while the
error due to a wrong distributional assumption is called the model error (ME).
To avoid ME we might deploy a nonparametric control chart, thus removing ME
completely. However, the extreme �1− p� quantile should be estimated in that
case in a nonparametric way, thus inserting a huge SE (unless n is extremely
large). A balance between these two extremes is a parametric control chart, where
the family of normal distributions is extended to a larger parametric family.
Surprisingly, such a seemingly innocent extension reveals itself as a very delicate
point. Classical parametric models such as contamination models or Tukey’s family
lead to insuperable problems as, e.g., estimation comes in. It turns out that the
so-called normal power family provides a good intermediate position, where the
(needed!) correction for estimating the parameters can be executed.

The three control charts (the normal one, the parametric one, and the
nonparametric control chart) are useful tools on their own, each in its own
application region. As long as normality holds, we should not take the more
complicated parametric chart, where more parameters need to be estimated.
Similarly, the nonparametric chart should not be invoked when the parametric chart
suffices, thus avoiding an unnecessarily large SE. It is hard to see beforehand what
the most suitable model is, especially because we are dealing with the extreme tail.
Therefore, the data should provide us this information. With this data-driven choice
of the type of chart, a combined procedure arises with nice properties.

Although this combined control chart works very well in many cases, there still
may be a problem when the data tell us to use the nonparametric control chart
and not that many observations are available. Then we still end up with a rather
large SE and hence an unsatisfactory procedure. Immediate solutions are to either
collect additional data or to reduce the SE by switching over to a larger p. Both
solutions are not really satisfactory, because in both cases the rules of the game
are changed.

A more fundamental way to attack this remaining problem (with keeping n
and p as they are) is to postpone the decision to deliver a signal until a (typically
small) group of new observations has arrived. New questions then arise, like “how
does the group size affect the behavior of the chart?” and “what group statistic
should one take?”. It turns out that in general the chart based on small groups
outperforms the individual chart. With respect to the second question, it is seen that
the sample average (AVE) (being optimal under normality) is neither optimal nor
easy to handle in a nonparametric setting. The minimum (MIN ) of the group is a
nice candidate, in the sense that its loss compared to AVE when normality holds is
small, and outside the normal family its gain is often large. As the observed shift in
MIN does not need to be very extreme in order to warrant a signal, the estimation
step involved automatically also deals with rather modest quantiles and thus leads
to a smaller SE.

The main attention of the present paper is on the ideas and fundamental
theoretical support for the new control charts, taking into account the estimation
aspects and the possible lack of normality. For a nontechnical, methodological
review on the control charts restricted to the ungrouped case, we refer to Albers and
Kallenberg (2005a, 2006b). The paper is organized as follows. Sections 2, 3, and 4
deal with the normal, parametric and nonparametric control charts, respectively. In
Section 5 the data-driven choice between them is considered. The last section gives
results on the grouped charts.
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2. NORMAL CONTROL CHARTS

In this section we consider the normal control chart for the ungrouped case,
and hence we assume that the observations X1� � � � � Xn� Xn+1 are independent and
identically distributed (i.i.d.) r.v.’s each with a N��� �2�-distribution as long as
it concerns the in-control situation. The r.v.’s X1� � � � � Xn are the observations
belonging to Phase I, on which the estimators of � and � are based, while Xn+1

belongs to Phase II: the monitoring phase. In the out-of-control situation, Xn+1 has
a N��1� �

2� distribution with �1 > �, as we restrict attention to UCLs.

2.1. In-Control Behavior

If � and � are known and FAR = p , then UCL = � + up�. As a rule � and � are
unknown, and we estimate them by the sample mean �X and the sample standard
deviation S = √

S2 with S2 = �n− 1�−1 ∑n
i=1�Xi −�X�2. The results of this section

go through in a similar way for other estimators as well, see, e.g., Albers and
Kallenberg (2004c, 2005a), but for simplicity of presentation we consider here �X and
S. This leads to the observed FAR, given by

Pn = Pn��X� S� = P
(
Xn+1 > �X + upS

) = ��
(�X − �

�
+ up

S

�

)
�

2.1.1. Bias

It is easy to correct UCL in terms of unbiasedness: simply replace S by the unbiased
estimator S/c4�n� of �, where c4�n� =

√
2��n/2�/

{√
n− 1���n− 1�/2�

}
. However,

this is unsatisfactory, since the goal is not to get an unbiased UCL, but to remove
the bias in Pn or more generally in g�Pn� with, e.g., g�p� = 1/p corresponding to the
ARL. So we want to correct UCL in order that Eg�Pn� is close to g�p�. Particular
functions g that are of interest are the already-mentioned g�p� = p and g�p� =
1/p. Furthermore, the function g�p� = 1− �1− p�k is of interest; it corresponds to
the probability that the run length is at most equal to k. The standard deviation
of the run length is represented by g�p� = √

1− p/p and its median by g�p� =
�− log 2�/ log�1− p�. Note, however, that since p is very small the latter two
functions behave like 1/p and �log 2�/p, respectively, and hence they are essentially
the same as the ARL. Because E�1/Pn� is strongly determined by the occurrence of
extremely long runs, which are not relevant in practice, Roes (1995, p. 34) remarks
that E�1/Pn� does not adequately summarize the run length properties of the chart;
see also Quesenberry (1993, p. 242). For a more extensive discussion of the bias
of the ARL and the corresponding correction, see Albers and Kallenberg (2004c),
in particular Remarks 2.1 and 2.4, and for the consequences on the out-of-control
behavior, see pp. 228 and 232 in that paper.

If we take g�p� = p, exact correction is possible. Since EPn equals the
unconditional probability P

(
Xn+1 > �X + upS

)
and �Xn+1 −�X�/(S√1+ n−1

)
follows

a Student distribution with n− 1 degrees of freedom, exact correction is obtained
when replacing up by

√
1+ n−1tn−1	p. This correction can be found, e.g., in Yang

and Hillier (1970), Ghosh et al. (1981), and Quesenberry (1991). Roes et al. (1993)
present exact corrections for control charts with several other estimators as well.
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To find suitable correction terms for other functions g, an exact correction
is not possible and we apply an asymptotic approach. Investigating the limiting
behavior of g�Pn� also gives insight in the number of observations needed to get
satisfactory results when using no correction at all. Here we restrict attention to the
functions g�p� = p and g�p� = 1/p, but other functions can be treated similarly; see
Theorem 2.2 in Albers and Kallenberg (2004c). Let 
 denote the standard normal
density. In contrast to the rest of the paper, in the following theorem p is considered
to be dependent on n.

Theorem 2.1. Suppose that up = up�n� ≥ 1 and that up = O�n1/4� as n → �. Then we
have (with p = ���up�)

EPn − p

p
= up
�up�

(
u2
p + 3

)
4pn

+ O
(
u8
pn

−2
)

and

E�1/Pn�− �1/p�
1/p

= −up
�up�
(
u2
p + 3

)
4pn

+ �
�up��
2
(
u2
p + 2

)
2p2n

+ O
(
u8
pn

−2
)

as n → �.

Sketch of Proof. By Taylor expansion we get EPn ≈ p− 
�up�E�up�+ 1
2up
�up�

E2�up� with �up� given by

�up� =
�X − �

�
+ up

(
S

�
− 1

)
�

The result now follows by calculating suitable approximations of E�up� and
E2�up� and a careful treatment of the remainder terms in the Taylor expansion.
The result for E�1/Pn� is obtained similarly. �

Note that in order to get a relative error tending to 0, one should restrict
attention to up = o�n1/4� as n → �. When up is of exact order n1/4, we get that
the explicit terms and the O terms in Theorem 2.1 are of order O�1�. This is still
nontrivial, since p → 0 in that case (and even very fast!).

Theorem 2.1 leads to the following approximations:

EPn ≈ p+ up
�up�
(
u2
p + 3

)
4n

�

E�1/Pn� ≈ 1/p− up
�up�
(
u2
p + 3

)
4p2n

+ �
�up��
2
(
u2
p + 2

)
2p3n

� (2.1)

For instance, take p = 0�001 (yielding up = 3�09) and use the right-hand side of
(2.1) to calculate the smallest value of n such that ��EPn − p�/p� < 0�1. This results
in n = 326. Exact calculation using t distributions gives n = 337. This shows that
the approximation works quite well. It also shows that indeed very many Phase I
observations are needed to get an accurate control chart limit when no correction
is applied.
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The bias can be removed by introducing an appropriate correction term in UCL.
Theorem 2.1 gives us the tools to derive such correction terms. Note that when
changing up in UCL to a corrected version up + c for some correction term c, we
have to change in Theorem 2.1 also p into ���up + c�. Obviously, Pn then stands
for Pn��X� S� = P�Xn+1 > �X + �up + c�S�. The correction term for removing the bias
when g�p� = p is obtained from (2.1) by the equation

���up + c�+ �up + c�
�up + c���up + c�2 + 3�

4n
= ���up��

Ignoring lower-order terms like c2� cn−1, this simply gives

���up�− c
�up�+
up
�up�

(
u2
p + 3

)
4n

= ���up��

and hence

c = up

(
u2
p + 3

)
4n

�

Similarly, the correction term when g�p� = 1/p is given by

c = up

(
u2
p + 3

)
4n

− 
�up�

���up�

(
u2
p + 2

)
2n

�

Taking again p = 0�001 and applying the corrected control chart, the smallest value
of n such that ��EPn − p�/p� < 0�1 turns out to be n = 31. This shows that the
sample size needed to get accurate control charts indeed is tremendously reduced
and that common sample sizes of Phase I observations are sufficient.

2.1.2. Exceedance Probability

The second criterion to express the closeness of Pn to the prescribed p is the
exceedance probability. Rather than worrying about ��EPn − p�/p� < 0�1, we now
try to figure out how large P��Pn − p�/p > 0�1� is and which correction is needed
to reduce this probability for moderate sample sizes. While in the bias case rather
large sample sizes were already needed when no correction was applied, here
really huge sample sizes should be available to get the exceedance probability at a
reasonable level. For instance, when p = 0�001 and n = 5000, then P��Pn − p�/p >
0�1� = 0�203. In general, we want to find correction terms such that for suitable
(small) values of � ≥ 0 and � > 0 we get

P

(
g�Pn�− g�p�

g�p�
> �

)
≤ �

for increasing (and positive) functions g, like g�p� = p� g�p� = 1− �1− p�k, and

P

(
g�Pn�− g�p�

g�p�
< −�

)
≤ �
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for decreasing (and positive) functions g, like g�p� = 1/p� g�p� = √
1− p/p� g�p� =

�− log 2�/ log�1− p�. Note that for increasing (and positive) functions g we have

P

(
g�Pn�− g�p�

g�p�
> �

)
= P

(
Pn − p

p
> �̃

)
with

�̃ = g−1�g�p��1+ ���− p

p
(2.2)

and similarly for decreasing (and positive) functions g: just replace � by −� in (2.2).
Hence, we may restrict ourselves without loss of generality to g�p� = p.

Writing the corrected UCL as �X + �up + c�S the next theorem gives the exact
correction term.

Theorem 2.2. Let Gn−1�� stand for the d.f. of the noncentral t distribution with n− 1
degrees of freedom and noncentrality parameter � and write �Gn−1�� = 1−Gn−1��. The
correction term

c = n−1/2�G−1
n−1�n1/2b���− up (2.3)

with b = up�1+�� gives

P

(
Pn − p

p
> �

)
= ��

Proof. The random FAR Pn with the correction term c in UCL is given by

Pn = Pn��X� S� = P�Xn+1 > �X + �up + c�S� = ��
(�X − �

�
+ �up + c�

S

�

)
�

Hence, we get

P

(
Pn − p

p
> �

)
= P

(�X − �

�
+ �up + c�

S

�
< b

)

= P

(
−n1/2

�X − �

�
+ n1/2b > n1/2�up + c�

S

�

)

= P

(−n1/2��X − ��/� + n1/2b

S/�
> �G−1

n−1�n1/2b���

)
= ��

which completes the proof. �

To get more insight in the nature of the correction term it is useful to derive
an approximation to it. The following lemma produces an informative and accurate
approximation.

Lemma 2.1. For the correction term c given in (2.3) we have

c = up�1+�� − up + u�

(
u2
p�1+�� + 2

2n

)1/2

+ O�n−1� (2.4)

= − �

up

+ u�

(
u2
p + 2

2n

)1/2

+ R (2.5)



130 Albers and Kallenberg

with �R� ≤ C1��� p�n
−1 + C2�p��

2 + C3u
−6
p , in which C1 depends on � and p, C2

depends on p only, and C3 is just a constant, not depending on p or �.

For the proof of this lemma and more refinements of it we refer to Albers and
Kallenberg (2004a). As expected, this correction is much larger than the one for the
bias. The latter is of order n−1, while here the order is n−1/2. To show the accuracy
of the approximations, let p = 0�001� � = 0�1� � = 0�2, and n = 100; then P��Pn −
p�/p > �� = 0�224 when using approximation (2.4) and 0�228 when applying (2.5).
For more details and an extensive discussion on the roles of n� p� �, and �, we refer
to Albers and Kallenberg (2004a).

2.2. Out-of-Control Behavior

In the out-of-control situation the new observation Xn+1 has an N��1� �
2�

distribution with �1 > �, as we restrict attention to UCLs. For convenience we write
�1 = � + d� with d > 0. Let p1 = ���up − d� be the out-of-control rate when the
parameters � and � are known. By a similar type of argument as in Theorem 2.1, we
get as approximation for the expected random out-of-control rate when applying the
corrected control chart with UCL = �X + �up + c�S (denoted by EdPn) the following
expression:

EdPn ≈ p1 − c
�up − d�+ up
�up − d�

4n
+ �up − d�
�up − d�

(
2+ u2

p

)
4n

�

Clearly, the influence of the correction term c is only in the term −c
�up − d�. Since
p1 is typically not small (in contrast to p), the effect of the correction term on
the out-of-control behavior with respect to relative error is negligible. In fact, the
relative error can be approximated well by

EdPn − p1

p1

≈ 
�up − d�

���up − d�

{
−c + up + �up − d��2+ u2

p�

4n

}

≈ 4
5
�1+ �up − d��

{
−c + up + �up − d�

(
2+ u2

p

)
4n

}
�

where we use that 
�x�/���x� can be approximated adequately by 4�1+ x�/5 for
0 ≤ x ≤ 3�5. In the case of exceedance probability, the correction term c is of order
n−1/2, and thus the n−1 term is negligible in that situation. Therefore, we end up with

EdPn − p1

p1

≈ −4
5
c�1+ �up − d�� (2.6)

for the exceedance case. To illustrate that the influence of this correction term is
indeed rather small (even although this correction term is much larger than the one
that reduces the bias), take p = 0�001� p1 = 0�20 (leading to d = 2�25), � = 0�1� � =
0�2, and n = 100 (leading to c = 0�170 when using equation 2.5); then the right-
hand side of (2.6) yields �EdPn − p1�/p1 ≈ 0�25, and thus the (only theoretically
attainable) value 0�20 is replaced by 0�15. In terms of the ARL (for which the relative
error result holds as well), we find 6�25 instead of 1/0�20 = 5. We may conclude
that the correction terms do not disturb the behavior of the control charts in the
out-of-control situation.
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3. PARAMETRIC CONTROL CHARTS

The effect of nonnormality on standard control charts (which assume normality) is
very large. It is not unusual that FAR is 5 or even 10 times as large as it should
be when the true distribution differs from normality. One way of avoiding such
errors is to extend the normal family to a larger parametric family containing the
normal family as a subfamily. The advantage is, of course, that the true distribution
is closer to the supposed distribution (as we have a larger domain of distributions
available); the disadvantage might be that we have to estimate more parameters,
thus leading to larger SEs. As in the normal family we will always take a location
parameter � and a scale parameter �. Under normality, then, the distribution of
�X − ��/� is fixed to the standard normal distribution. The extension consists in
embedding the standard normal distribution in a family of distributions with one or
more additional parameters. Let us call this parameter or vector of parameters �, its
d.f. K�, and the corresponding upper p quantile �K−1

� �p�. The estimated uncorrected
UCL equals

�X + �K−1
�̂ �p�S�

where �̂ is an estimator of �.

3.1. Model Error and Stochastic Error

We consider the in-control situation. We assume that the observations
X1� � � � � Xn� Xn+1 are i.i.d. r.v.’s each with a d.f. F . The total error Pn − p with
Pn = Pn��X� S� �̂� = �F��X + �K−1

�̂ �p�S� can be split up in two parts

Pn − p = {�F�� + �K−1
� �p���− p�+ ��F��X + �K−1

�̂ �p�S�−�F�� + �K−1
� �p���

}
�

The first part is a deterministic term and expresses the error due to model
misspecification (and equals 0 if the observations come from the parametric model
with �Xi − ��/� having the upper p quantile �K−1

� �p�). We call this term the ME.
The second part deals with the replacement of the unknown parameters by the
corresponding estimators and is called the SE. The idea behind the parametric
model is that for many distributions, ME is substantially reduced compared to the
ME obtained when we deal with the normal control chart. The latter ME is called
the restrictive model error (RME), since it occurs when we have the restriction to
normality, and is defined by

RME = �F�� + up��− p�

3.2. Parametric Models

The following models are candidates for the parametric model. The models are
defined in such a way that varying tail behavior can be described. Heavier tails than
those of the normal distribution are especially of interest. In terms of high upper
quantiles, this means larger values than the normal upper quantiles. The location
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and scale parameters � and � are treated separately, and they are estimated by �X
and S. Therefore, the d.f. K� corresponds to an r.v. Z� with EZ� = 0 and var�Z�� = 1.

The conditions for an appropriate general model are rather comprehensive.
Therefore, several classical ways of extending the normal model turn out to cause
(technical) difficulties. In order to make the necessary (bias) corrections, we need
to evaluate (first and second) moments of �X + S�K−1

�̂ �p�− (
� + ��K−1

� �p�
)
up to high

precision. This implies that either �K−1
� �p� should be analytically tractable as a

function of �, or we should have a very precise approximation of �K−1
� �p� by a simple

function of �.

1. Random mixture. In the random mixture model we take K� = �1− ��� + �K1

with K1 a (fixed) d.f. with corresponding expectation 0 and variance 1. The r.v. Z�

can be written as

Z� = �1−W�Z0 +WZ1�

where W is independent of Z0 and Z1, P�W = 1� = 1− P�W = 0� = �, and Z0 and
Z1 have d.f.’s � and K1, respectively. The random mixture model looks at first
sight like an attractive parametric model, and is indeed very often used as extension
of normality. However, normality is a “boundary point” in this model, obtained
by taking � = 0 . Because negative values of � are meaningless in this model, �̂
should be restricted to nonnegative values, which can often only be achieved by
adding a suitable indicator function to the definition of the estimator, thus making
�̂= 0 when its “natural” definition would give negative values. Due to the required
precision, this causes great (technical) problems, aggravated by the fact that �̂ (and
also the indicator function) is tied up with �X and S. Apart from that, the truncation
of negative values also introduces a large artificial bias near � = 0, which is also
rather unattractive. To be more precise, take for Z1 a symmetric distribution with
fourth moment unequal to 3 = EZ4

0, e.g., a standardized Student distribution with
six degrees of freedom, giving EZ4

1 = 6. Because EZ4
� = �EZ4

1 + 3�1− �� and hence
� = (

EZ4
� − 3

)
/
(
EZ4

1 − 3
)
, we take as initial estimator of �

n−1 ∑n
i=1

(
Xi−�X
S

)4 − 3

EZ4
1 − 3

�

giving 1
2

{
n−1 ∑n

i=1�
Xi−�X
S

�4 − 3
}
in case of the above-mentioned Student distribution.

To get nonnegative values for our estimator, we take

�̂ = n−1 ∑n
i=1

(
Xi−�X
S

)4 − 3

EZ4
1 − 3

1
(
n−1 ∑n

i=1

(
Xi−�X
S

)4 − 3

EZ4
1 − 3

> 0
)
�

where 1�A� = 1 if A holds and 0 otherwise. For finding appropriate correction terms,
one has to evaluate moments like E��S − 1��̂� up to the needed high precision of
order n−1. This is not easy at all. Moreover, under normality we get limn→� P��̂ =
0� = 1/2, and obviously a large bias is introduced, which should be corrected too.
In view of all these kinds of problems, this model is not a suitable model for our
purposes.
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2. Deterministic mixture. Since we are focused on quantiles here, it seems more
natural to consider mixtures of quantiles than mixtures of d.f.’s as in the random
mixture model; that is, take K−1

� = c�����1− ���−1 + �K−1
1 � with K1 a d.f. with

corresponding expectation 0 and variance 1 and where c��� is a normalizing factor
such that var�Z�� = 1. The r.v. Z� can be written as

Z� = c�����1− ��Z0 + �Z1�

with Z0 = �−1�U�� Z1 = K−1
1 �U�, and U a r.v. with a uniform distribution on

�0� 1�. Note that Z0 and Z1 have d.f.’s � and K1, respectively, but that they are
anything but independent; in fact these r.v.’s are comonotone. Although K−1

� is
analytically more attractive in the deterministic mixture model than in the random
mixture model, unfortunately, the deterministic mixture model suffers from the same
problem as the deterministic mixture model for estimating �. Again normality is
a boundary point in this model, which causes great problems and also makes this
model impracticable.

3. Tukey’s family. The r.v. Z� is given by

Z� = c����U 0�14−� − �1− U�0�14−���

where U has a uniform distribution on �0� 1� and c��� is a normalizing constant such
that Z� has variance 1. The choice � = 0 gives a distribution close to the standard
normal distribution, especially for upper t quantiles with t from 0�2 to 0�005; cf. also
Chan et al. (1988, p. 118). For � = 0�14, we define Z� in a continuous way, leading
to the logistic distribution. In this model �K−1

� �p� is simply given by c����p0�14−� −
�1− p�0�14−��, and � = 0 is an interior point of the parameter space. Nevertheless,
analytic evaluation of the estimators of the parameters up to the required precision
is very difficult, and therefore this model also is not used. The same holds for the
generalization of Tukey’s family, the so called generalized � family, introduced by
Ramberg and Schmeisser (1972, 1974).

4. Orthonormal family. Starting from a uniform distribution, an orthonormal
family of densities with respect to the Lebesgue measure on �0� 1� is defined by

f�y� �� = c∗��� exp
{ k∑

j=1

�j�j�y�

}
�

where c∗��� is a normalizing constant such that the integral of f equals 1, and where
�j is the jth Legendre polynomial on �0� 1�. Let Y be an r.v. having density f�y� ��
and let E��� and c���−1 be the expectation and standard deviation of �−1�Y�. The
r.v. Z� is given by

Z� = c�����−1�Y�− E�����

Indeed, again c��� is a normalizing factor such that var�Z�� = 1. This model offers
explicitly the possibility for more than one additional parameter beyond � and �.
However, if desired, the random and deterministic mixtures obviously can also be
taken for more than just two. The orthonormal family on �0� 1� is attractive in the
sense that the log-density is approximated in a natural way, which approximation
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can be made more and more accurate by adding new terms, that is, taking a larger
k. Normality (� = 0) is an interior point, but �K−1

� �p� is not easy, and again the
estimators are not easily handled. Therefore, this model is not appropriate for our
purposes.

5. Normal power family. Other distributions than the (standard) normal one
are characterized by larger quantiles (when heavier tails occur) or smaller quantiles
(when we have a lighter tail). One way to model this, still getting normality as an
interior point, is to take as p quantiles u1+�

p . This seems to be the most natural
approach for our purposes. Values � > 0 correspond to heavier tails, and � < 0 gives
lighter tails. This approach leads to the normal power family, defined by

�K−1
� �p� = c����up�1+�sign�up�� (3.1)

where � > −1 and where c��� is a normalizing constant given by

c��� = �E�Z�2�1+���−1/2 = �1/42−�1+��/2�

(
�+ 3

2

)−1/2

with Z an r.v. with a standard normal distribution. We may also write

Z� = c����Z�1+�sign�Z�

for � > −1. It turns out that this model is appropriate for our goals, although even
here a lot of technical problems should be solved.

At first sight it is surprising that going (a little bit) beyond normality causes
immediately such big problems in many parametric models, but on the other hand a
lot of requirements have to be fulfilled in order to get a suitable parametric family.
From now on our parametric model will be the normal power family. Obviously,
the reduction of the RME is very large when in fact F belongs to the normal
power family itself. For instance, when � = 0�75 we have RME = 7�9 and ME = 0.
Note that RME = 7�9 means that in the limit (when n → �), FAR is about nine
times as large as it should be. This reduction, fortunately, is not restricted to the
normal power family itself. Also, for many distributions outside the normal power
family a substantial reduction appears. For instance, for the logistic distribution
we get RME = 2�7 and ME = 1�3, while the normal inverse Gaussian (2� 1�5� 0� 1)
distribution (cf. Barndorff-Nielsen, 1996) gives RME = 14�7 and ME = 1�9.

3.3. Estimation

The estimator �̂ of � that we use does not try to fit the distribution globally, but
takes into account that we are dealing with the right tail only. This is particularly
important for skew distributions like the normal inverse Gaussian (2� 1�5� 0� 1). The
estimator is based on the ratio of two quantiles, thus getting rid of c���. The choice
of the quantiles is such that they are in the tail, but not in the very far tail, where
we have no observations to estimate them properly. It is seen from (3.1) that

�K−1
� �0�05�

�K−1
� �0�25�

=
(
u0�05

u0�25

)1+�
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and hence

� = log
(�K−1

� �0�05�/�K−1
� �0�25�

)
log�u0�05/u0�25�

− 1�

Our estimator now becomes

�̂ = log
((
X��0�95n+1�� −�X)/(X��0�75n+1�� −�X))

log�u0�05/u0�25�
− 1�

where �x� denotes the entier of x and X�1�� � � � � X�n� are the order statistics of
X1� � � � � Xn.

Some large deviation properties of the estimators �X� S, and �̂ are presented in
the next theorem. They are used in this section, but also in the proof of Theorem 5.1.
Furthermore, they are of interest on their own. Note that for � > 1, the moment
generating function of Xi, having a normal power distribution with parameter �,
does not exist, and therefore the results of Theorem 3.1 and its proof are not
standard. For a proof of this theorem we refer to Albers et al. (2006).

Theorem 3.1. Let X1� � � � � Xn be i.i.d. r.v.’s with a normal power distribution with
parameter �. Then for each � > 0

lim sup
n→�

n−min�1� 2/�1+��� logP���X� > �� < 0�

lim sup
n→�

n−min�1� 1/�1+��� logP��S2 − 1� > �� < 0�

and

lim sup
n→�

n−min�1� 2/�1+��� logP���̂− �� > �� < 0�

3.4. In-Control Behavior

We assume that the observations X1� � � � � Xn� Xn+1 are i.i.d. r.v.’s each with a d.f.
F , given by F�x� = K���x − ��/�� with K� belonging to the normal power family. If
�� �, and � are known and FAR = p, then UCL = � + �K−1

� �p��. As a rule �� �, and
� are unknown, and we estimate them by �X� S, and �̂. This leads to the observed
FAR, given by

Pn = Pn��X� S� �̂� = P
(
Xn+1 > �X + �K−1

�̂ �p�S
) = �K�

(�X − �

�
+ �K−1

�̂ �p�
S

�

)
�

3.4.1. Bias

It was already mentioned that a seemingly innocent extension of the normal
family to a larger parametric family in fact causes great and often insuperable
complications. The normal power family, being a natural extension in the context
of control charts, offers a solution, but a lot of technicalities are still involved. We
will not present all the details here, but give a sketch of the main ideas to get
approximately unbiased control charts.
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We write cu��̂� for a correction term giving (almost) unbiasedness. This leads to
UCL = �X + ��K−1

�̂ �p�+ cu��̂��S, and the observed FAR is given by

Pn = �K�

(�X − �

�
+ {�K−1

�̂ �p�+ cu��̂�
}S
�

)
= �K�

(
�K−1

� �p�+ V + cu��̂�
S

�

)
�

where

V = �X − �

�
+ �K−1

�̂ �p�
S

�
− �K−1

� �p�� (3.2)

For the estimators �X� S, and �̂ we restrict attention to neighborhoods of �� �, and �.
The error involved with this is presented in Theorem 3.1. Letting

An��� =
{∣∣∣∣�X − �

�

∣∣∣∣ > ��

∣∣∣∣
(
S

�

)2

− 1

∣∣∣∣ > �� ��̂− �� > �

}
�

we have by Theorem 3.1 P�An���� ≤ exp�−�nmin�1� 1/�1+���� for some � > 0, and hence
for each � > 0 we have P�An���� = o�n−1� as n → �. By Taylor expansion of
Eg�Pn� and careful evaluation of EV and EV 2, the suitable correction term is
obtained. The following theorem presents the result for g�p� = p. In that case the
correction term is given by

cu��̂� = −B1n��̂�−
1
2
B2n��̂�

k′�̂
k�̂

(�K−1
�̂ �p�

)
� (3.3)

where k� = K′
�, the density of Z�, and where B1n��� and B2n��� are the first-order

terms of EV and EV 2. For explicit formulas of B1n��� and B2n���, a theorem
on general functions g, the proof of the theorem, and more details, we refer to
Albers et al. (2004). The theorem shows that indeed the correction does what it
should do: give unbiasedness up to order o�n−1�.

Theorem 3.2. Let X1� � � � � Xn� Xn+1 be i.i.d. r.v.’s with �Xi − ��/� having a normal
power distribution with parameter �. Then we have

EPn = p+ o�n−1� as n → ��

3.4.2. Exceedance Probability

As explained while discussing the normal control chart, we may restrict ourselves
without loss of generality to g�p� = p when dealing with exceedance probabilities.
Writing ce��̂� for the correction term involved in this approach, we consider UCL =
�X + ��K−1

�̂ �p�+ ce��̂��S. The correction term should be chosen in such a way that for
suitable (small) values of � ≥ 0 and � > 0 we get

P

(
Pn − p

p
> �

)
= P

(�K�

(�K−1
� �p�+ V + ce��̂�

S
�

)− p

p
> �

)
≤ �

with V given by (3.2). The following theorem gives the required (limiting) correction
result.
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Theorem 3.3. Let X1� � � � � Xn� Xn+1 be i.i.d. r.v.’s with �Xi − ��/� having a normal
power distribution with parameter �. Define

ce��� =
√
B2n��� ��u� + �K−1

� �p�1+ ���− �K−1
� �p��

where B2n��� �� is obtained from B2n��� in (A.9) of Albers et al. (2004) by replacing

(twice) �K−1
� �p� with �K−1

� �p�1+ ��� and replacing (twice)
��K−1

h−1��∗��p�

��∗ with
��K−1

h−1��∗��p�1+���

��∗ .
Then

lim
n→�P

(
Pn − p

p
> �

)
= ��

Sketch of Proof. Let

V� =
�X − �

�
+ �K−1

�̂ �p�1+ ���
S

�
− �K−1

� �p�1+ ����

We get

�K�

(�K−1
� �p�+ V + ce��̂�

S
�

)− p

p
> �

⇐⇒ �K−1
� �p�+ V + ce��̂�

S

�
< �K−1

� �p�1+ ���

⇐⇒ V� +
√
B2n��̂� ��u�

S

�
< 0�

Since for the normal power family V�/
√
B2n��� �� is asymptotically standard normal

and since B2n��̂� ��/B2n��� �� converges in probability to 1, we have

lim
n→�P

(
Pn − p

p
> �

)
= lim

n→�P

(
V� +

√
B2n��̂� ��u�

(
S

�
− 1

)
+√

B2n��̂� ��u� < 0
)

= lim
n→�P�−V�/

√
B2n��� �� > u�� = ��

�

3.5. Out-of-Control Behavior

Under the out-of-control case Xn+1 is shifted to the right in the sense that it is
distributed as � + d� + �Z�. Let p1 = �K���K−1

� �p�− d� be the out-of-control rate
when the parameters �� �, and � are known. The expectation of the random out-of-
control rate when applying the corrected control chart with UCL = �X + {�K−1

�̂ �p�+
ce��̂�

}
S can be approximated in the following way (here Ed denotes the out-of-

control expectation and E refers to the in-control expectation, that is, with d = 0):

EdPn = E�K�

(�X − �

�
+ {�K−1

�̂ �p�+ ce��̂�
}S
�
− d

)
≈ �K�

(�K−1
� �p�+ ce���− d

)
≈ p1 − ce���k�

(�K−1
� �p�− d

)
�
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Straightforward calculation shows that (for p1 <
1
2 �

k�
(�K−1

� �p�− d
)

p1

= k�
(�K−1

� �p�− d
)

�K�

(�K−1
� �p�− d

) = u−�
p1

�1+ ��c���


�up1
�

���up1
�
≈ 4�1+ up1

�

5�1+ ��c���u
�
p1

�

Hence, we get

EdPn − p1

p1

≈ −ce���
4�1+ up1

�

5�1+ ��c���u
�
p1

�

The same holds in the bias case, replacing ce��� by cu���. Just as for the normal
control chart, we may conclude that the correction terms do not disturb the
behavior of the control charts in the out-of-control situation.

4. NONPARAMETRIC CONTROL CHARTS

The ME can be avoided completely by using a nonparametric control chart. The
idea is as follows. Suppose that F is known. Then a control chart with FAR=p
is easily obtained by taking UCL = F−1�p�. The nonparametric control chart is
obtained by estimating F�x� by the empirical d.f. Fn�x� = n−1 ∑n

i=1 1�Xi ≤ x� with
1�A� = 1 if A holds and 0 otherwise. The corresponding quantile function F−1

n �t� =
inf�x�Fn�x� ≥ t� leads to UCL = �F−1

n �p� = F−1
n �1− p� = X�n−�np��. For some closely

related charts, see Ion et al. (2000) and Willemain and Runger (1996); for a recent
overview of nonparametric charts in general, see, e.g., Chakraborti et al. (2001).

4.1. In-Control Behavior

Consider the in-control situation, that is, X1� � � � � Xn� Xn+1 are i.i.d. r.v.’s each with
(continuous) d.f. F . The uncorrected nonparametric control chart has ME = 0, but
its SE is very large. Take, e.g., p = 0�001 and n = 500; then r = 0 and the random
FAR P100 = �F�X�500��, and thus EP500 = 1/501, which is about twice as much as it
should be, even though we have 500 Phase I observations. As for the normal and
parametric control chart, we discuss both the bias and the exceedance probability
approach.

4.1.1. Bias

To reduce the bias we can apply a randomization procedure as follows. Let U�1� ≤
· · · ≤ U�n� be the order statistics of the random sample U1� � � � � Un from a uniform
distribution on (0� 1) and define U�0� = 0 and U�n+1� = 1. For an increasing g, define
the integer r with 0 ≤ r = r�p� ≤ n by

Eg�U�r�� ≤ g�p� < Eg�U�r+1��� (4.1)

Let V be an r.v. independent of X1� � � � � Xn+1 taking as its values 0 and 1.
Replace the control chart by

Xn+1 > VX�n−r� + �1− V�X�n−r+1� with P�V = 1� = g�p�− Eg�U�r��

Eg�U�r+1��− Eg�U�r��
� (4.2)

where in the case r = 0 we define X�n+1� = �.
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In particular, for g�p� = p we get r = �p�n+ 1��, and the nonparametric control
chart reads as

Xn+1 > VX�n−�p�n+1��� + �1− V�X�n−�p�n+1��+1� with P�V = 1� = p�n+ 1�− �p�n+ 1���

Similarly, for a decreasing g, define 0 ≤ r = r�p� ≤ n by

Eg�U�r�� ≥ g�p� > Eg�U�r+1��� (4.3)

The control chart is again given by (4.2). In particular, for g�p� = 1
p
we get r =

�np�+ 1, and provided that r ≥ 2 (that is np ≥ 1), the nonparametric control chart
reads as

Xn+1 > VX�n−�np�−1� + �1− V�X�n−�np�� with P�V = 1� = ��np�+ 1��np− �np��

np
�

When r = 1 and g�p� = 1
p
, the nonparametric control chart gives an out-of-control

signal if Xn+1 > X�n−1�, and hence Pn = �F�X�n−1��, implying E 1
Pn

= E 1
U�2�

= n < 1
p
�

Theorem 4.1. Let X1� � � � � Xn� Xn+1 be i.i.d. r.v.’s each with (continuous) d.f. F . Let
g be an increasing or a decreasing function and let r be defined by (4.1) and (4.3),
respectively. Assume that �Eg�U�r+1��� < � and �Eg�U�r��� < �. The control chart given
by (4.2) satisfies

Eg�Pn� = g�p��

Proof. Note that Pn is now defined as the probability of a false alarm, given
X1� � � � � Xn and V , that is, Pn = V�F�X�n−r��+ �1− V��F�X�n−r+1��. Since �F�X�n−r�� and�F�X�n−r+1�� are distributed as U�r+1� and U�r�, respectively, we get

Eg�Pn� = P�V = 1�Eg�U�r+1��+ P�V = 0�Eg�U�r��

= Eg�U�r��+ P�V = 1��Eg�U�r+1��− Eg�U�r��� = g�p�� �

From a practical point of view the nonparametric control chart is still
questionable for r = 0, because it implies that with positive probability we will never
get an out-of-control signal! Therefore a modification of the nonparametric control
in case r = 0 is presented in Albers et al. (2006). We do not discuss this modification
here.

4.1.2. Exceedance Probability

As before, we can restrict ourselves without loss of generality to g�p� = p. To obtain

P

(
Pn − p

p
> �

)
≤ �

for the uncorrected nonparametric control chart at some reasonable values of
� and �, we need really huge sample sizes. For instance, taking p = 0�001, � =
0�1, and � = 0�2, we need n = 88� 021. To find suitable corrections, we consider
UCL = VX�n−�np�+k−1� + �1− V�X�n−�np�+k� for some k ≥ 0. Let B�n� p̃� y� denote the
cumulative binomial probability P�Y ≤ y� with Y bin�n� p̃�. Then the following
theorem gives the right correction.
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Theorem 4.2. Let k ≥ 0 be such that B�n� p�1+ ��� �np�− k� ≤ � < B�n� p�1+
��� �np�− k+ 1�, and let

P�V = 1� = �− B�n� p�1+ ��� �np�− k�

B�n� p�1+ ��� �np�− k+ 1�− B�n� p�1+ ��� �np�− k�
�

Then

P

(
Pn − p

p
> �

)
= ��

Proof. We have

P

(
Pn − p

p
> �

)
= P�Pn > p�1+ ���

= P�V = 1�P��F�X�n−�np�+k−1�� > p�1+ ���

+ P�V = 0�P��F�X�n−�np�+k�� > p�1+ ���

= P�V = 1�P�U��np�−k+2� > p�1+ ���

+ P�V = 0�P�U��np�−k+1� > p�1+ ���

= P�V = 1�B�n� p�1+ ��� �np�− k+ 1�

+ P�V = 0�B�n� p�1+ ��� �np�− k�

= �� �

When �np� = 0 and limn→� np�1+ �� < �log ��, then we get limn→� B�n� p�1+
��� �np�� = limn→��1− p�1+ ���n > �, and hence k = 1, implying that with positive
probability we will never get an out-of-control signal. Hence, we should have a
sufficiently large sample size to avoid such effects. On the other hand, much smaller
sample sizes are needed than without correction.

4.2. Out-of-Control Behavior

The new observation Xn+1 has in the out-of-control situation d.f. F�x − d� with
d > 0, as we restrict attention to UCLs. Typically p1 = �F��F−1�p�− d� may still
be small, but not extremely so, like p. We compare the uncorrected chart where
UCL = �F−1

n �p� = X�n−�np�� with a corrected one of the form UCL = VX�n−�np�+k−1� +
�1− V�X�n−�np�+k� for some k ≥ 0. The following theorem gives the result.

Theorem 4.3. Replacement of UCL = X�n−�np�� by UCL = VX�n−�np�+k−1� + �1−
V�X�n−�np�+k� for some k ≥ 0 results in a relative change in EdPn approximately equal to

−�k− P�V = 1��
p1

f��F−1�q�− d�

f��F−1�q��

in which f = F ′� q = ��np�+ 1�/�n+ 1�, provided that �np� is not too small. For
�np� = 0 and k = 1 the reduction of EdPn equals P�V = 1�.



Shewhart Control Charts in New Perspective 141

Proof. If Xn+1 has d.f. F�x − d�, it follows that Pn with the uncorrected control
limit UCL = X�n−�np�� is distributed as �F��F−1�U��np�+1��− d�, and thus EdPn

can be approximated by �F��F−1�EU��np�+1��− d� = �F��F−1�q�− d�. The change
in EdPn caused by replacing X�n−�np�� by X�n−�np�+k� approximately equals
−kf��F−1�q�− d�/f��F−1�q��. Therefore, the change in EdPn when taking UCL =
VX�n−�np�+k−1� + �1− V�X�n−�np�+k� instead of X�n−�np�� equals −�k− 1�P�V = 1�
f��F−1�q�− d�/f��F−1�q��− kP�V = 0�f��F−1�q�− d�/f��F−1�q��, and the first result
of the theorem immediately follows. When �np� = 0 and k = 1, we have
�F�VX�n−�np�+k−1� + �1− V�X�n−�np�+k�� = �F�VX�n� + �1− V�X�n+1�� = V�F�X�n��, and
thus EdPn is reduced by a factor P�V = 1�. �

Examples show that a considerable price has to be paid in terms of out-of-
control performance, unless n or p are sufficiently large. For more details we refer
to Albers and Kallenberg (2004b).

5. COMBINED CONTROL CHART

All three types of charts discussed so far have their own merits, if they are used
individually; however, all three also have disadvantages if the proper conditions for
the specific chart are not opportune. For instance, when normality holds, we should
not use the nonparametric chart, etc. Therefore, we introduce a combined chart by
choosing between the three available charts. Since the form of the distribution in
the tails is the key issue, the choice between the three charts is based on the tail
behavior, as expressed by the data. Hence, we take the rescaled maximum �X�n� −�X�/S as starting point. We restrict ourselves here to the bias situation with g�p� = p.

We consider the following combined control chart. When

��−1

(−0�7+ 0�5 log n
n

)
≤ X�n� −�X

S
≤ ��−1

(
5

n
√
n

)
(5.1)

the normal chart is chosen, that is, we take as the UCL

UCLN = �X +
(
up +

up�u
2
p + 3�

4n

)
S�

The idea is to stay as long as possible at the normal chart. Under standard
normality we have P�X�n� < ��−1��−0�7+ 0�5 log n�/n�� ≈ 2/

√
n and P�X�n� >��−1�5/�n

√
n��� ≈ 5/

√
n. Distributions with heavier tails than the normal one give

problems with the in-control behavior, leading for common distributions to EPn

being 4 or even 12 times as large as it should be; see Table 1 in Albers et al.
(2004). Distributions with thinner tails are conservative in the in-control case with in
consequence, a loss in the out-of-control case. Because errors in the in-control case
are more serious (the control chart is then invalid) than those in the out-of-control
case, and since a positive ME as large as p can easily occur, while a negative ME
is at most −p, we take the selection rule unbalanced. The particular choice of the
boundaries is partly by theoretical arguments (see Theorem 5.1) but also based on
our simulation experience. For a more extensive discussion we refer to Albers et al.
(2006).



142 Albers and Kallenberg

When (5.1) does not hold and

�K−1
�̂

(−0�2+ 0�5 log n
n

)
≤ X�n� −�X

S
≤ �K−1

�̂

(
3

n
√
n

)
� (5.2)

the parametric chart is chosen with UCL

UCLP = �X + {�K−1
�̂ �p�+ cu��̂�

}
S

with cu��̂� given by (3.3). When both (5.1) and ( 5.2) are violated, the nonparametric
chart is chosen with UCL

UCLNP =VX�n−�p�n+1��� + �1−V�X�n−�p�n+1��+1� with P�V = 1�=p�n+ 1�− �p�n+ 1���

The next theorem shows that the combined chart behaves asymptotically as well
as each of the individual charts on their own domain, both with respect to the in-
control case as for the out-of-control case.

Theorem 5.1.

(i) Let X1� � � � � Xn� Xn+1 be i.i.d. r.v.’s with Xi ∼ N��� �2� for i = 1� � � � � n and
Xn+1 ∼ N�� + d�� �2�. Then for d = 0 (in control) as well as for d > 0 (out of
control), we have

�EdP
c
n − EdP

N
n � ≤

e0�7 + 5√
n

�1+ o�1�� as n → ��

where Pc
n is the observed FAR of the combined control chart and PN

n the one of
the normal control chart.

(ii) Let X1� � � � � Xn� Xn+1 be i.i.d. r.v.’s with Xi distributed as � + �Z� for i = 1� � � � � n
and Xn+1 distributed as X1 + d�, where Z� has a normal power distribution with
� �= 0. Then for d = 0 (in control) as well as for d > 0 (out of control), we have

�EdP
c
n − EdP

P
n � ≤

e0�2 + 3√
n

�1+ o�1�� as n → ��

where Pc
n is the observed FAR of the combined control chart and PP

n the one of
the parametric control chart.

(iii) Let X1� � � � � Xn� Xn+1 be i.i.d. r.v.’s with Xi having d.f. F for i = 1� � � � � n and Xn+1

distributed as X1 + d. Let EX1 = �� var�X1� = �2, and let � be defined as the limit
of the estimator �̂ under F , that is, by

� = log
(
F−1�0�95�−�

F−1�0�75�−�

)
log

(
�−1�0�95�
�−1�0�75�

) − 1�

Then, for each �i� �i� �i > 0, i = 1� � � � 4� with �3� �4 < 1+ �� we have for sufficiently
large n ∣∣EdP

c
n − EdP

NP
n

∣∣ ≤ min�m1�m2�+min�m3�m4��
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where Pc
n is the observed FAR of the combined control chart and PNP

n the one of the
nonparametric control chart and where

m1 = F
(
� + �

(√
1+ �1 + �1

)√
2 log n

)n + P

(∣∣∣∣�X − �

�

∣∣∣∣ > �1

)
+ P

(∣∣∣∣S2

�2
− 1

∣∣∣∣ > �1

)
�

m2 = 1− F
(
� + �

(√
1− �2 − �2

)√
2 log n

)n + P

(∣∣∣∣�X − �

�

∣∣∣∣ > �2

)
+ P

(∣∣∣∣S2

�2
− 1

∣∣∣∣ > �2

)
�

m3 = F
(
� + �

(√
log n

)1+�+2�3)n + P

(∣∣∣∣�X − �

�

∣∣∣∣ > �3

)
+ P

(∣∣∣∣S2

�2
− 1

∣∣∣∣ > �3

)
+ P���̂− �� > �3��

m4 = 1− F
(
� + �

(√
log n

)1+�−2�4)n + P

(∣∣∣∣�X − �

�

∣∣∣∣ > �4

)
+ P

(∣∣∣∣S2

�2
− 1

∣∣∣∣ > �4

)
+ P���̂− �� > �4��

Theorem 5.1 only makes sense if F differs from the normal family in the sense
that for some � > 0

lim
n→�

[
F
(
� + ��1+ ��

√
2 log n

)]n = 0

(heavier tail than the normal distribution) or

lim
n→�

[
F
(
� + ��1− ��

√
2 log n

)]n = 1

(thinner tail than the normal distribution) and F is outside the normal power family
in the sense that for some � > 0

lim
n→�

[
F
(
� + ��

√
log n�1+�+�

)]n = 0

(heavier tail than the normal power family) or

lim
n→�

[
F
(
� + ��

√
log n�1+�−�

)]n = 1

(lighter tail than the normal power family).

Proof. It is not hard to see that

∣∣EdP
c
n − EdP

N
n

∣∣ ≤ P

(
X�n� −�X

S
�
[
��−1

(−0�7+ 0�5 log n
n

)
���−1

(
5

n
√
n

)])
�

A careful analysis, using large deviation theory, leads to

P

(
X�n� −�X

S
< ��−1

(−0�7+ 0�5 log n
n

))
=

(
1− −0�7+ 0�5 log n

n

)n

�1+ o�1��

= e0�7√
n
�1+ o�1�� as n → ��
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and

P

(
X�n� −�X

S
> ��−1

(
5

n
√
n

))
= 5√

n
�1+ o�1�� as n → ��

which completes the proof of (i). The proofs of (ii) and (iii) are along the same line
of argument, but in particular the proof of (ii) is technically much more complicated.
For details of the proof and for more general statements of the theorem we refer to
Albers et al. (2006). �

6. GROUPED OBSERVATIONS

As shown in the previous section, the combined chart has very nice properties
in the sense that it behaves as the appropriate chart according to the underlying
distribution. When the nonparametric chart is chosen, even though this is the best
thing to do, a lot of Phase I observations are needed to have a good performance;
see also Section 4. In fact, in such a case we cannot improve much when considering
an individual chart. As noted in the introduction, a more fundamental solution is
to use a (small) group of observations. The essential point is that we may postpone
the decision until somewhat more observations have arrived. When the process goes
out of control, it is sometimes hard to see it on the basis of one observation, but
if two or more observations show different behavior, it is easier to recognize it. In
this section we discuss several charts for grouped observations. In fact, two types of
comparisons play a role. In the first place, for each fixed value of the group size m,
various monitoring statistics can be compared. Second, each given type of statistic
can also be compared for varying m. Even the normal case is not quite trivial in
this respect and still leads to some interesting insights. The point is, of course, that
we are not dealing with a single given out-of-control situation, implying that the
optimal choice of m will vary according to the alternative considered. We do not
focus here on the estimation part of the problem, but estimation is nevertheless
present in the background, since the UCLs of the monitoring statistics should be
estimated in a nonparametric way, and the possibility and consequences of such an
estimation procedure should be taken into account.

So we start by considering only Phase II observations with a known (but not
necessarily normal) underlying distribution. That is, we have a (small) group of
observations Xn+1� � � � � Xn+m (with m = 1� � � � � 5, thus including the individual chart
as well), which are either in control, that is, they are distributed as X1, with d.f. F ,
say, or they are out of control and are distributed as X1 + d with d > 0. A chart is
defined by a statistic w�Xn+1� � � � � Xn+m� and a UCL�w�m�, and an alarm is produced
when

w�Xn+1� � � � � Xn+m� > UCL�w�m��

To compare the charts for different values of m in a fair way, we match the ARLs
in the in-control situation. Hence, writing Fw�m for the d.f. of w�Xn+1� � � � � Xn+m� in
the in-control case, we have

UCL�w�m� = �F−1
w�m�mp�� (6.1)
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The performance of several statistics w�Xn+1� � � � � Xn+m� (and several values of m)
are investigated in Albers and Kallenberg (2006a) by their ARL under the out-of-
control case: the smaller the ARL, the better the chart. Here we restrict attention to
two of them, the obvious first choice (at least under normality) taking the AVE and
the MIN of Xn+1� � � � � Xn+m�

6.1. AVE

The AVE chart is based on

w�Xn+1� � � � � Xn+m� = m1/2�X�m� with �X�m� = m−1
m∑
i=1

Xn+i�

When normality holds this clearly is the optimal choice, but also in a nonparametric
context it is a potential candidate. When F is known and F ∗

m is the d.f. of the
convolution X1 + · · · + Xm, then we get (see equation 6.1)

UCL = �F−1
w�m�mp� = m−1/2�F ∗ −1

m �mp�� (6.2)

Let us discuss some results on the estimation step for this chart in the nonparametric
case. Suppose that we have Phase I observations X1� � � � � Xn. For the (uncorrected)
individual chart (m = 1) we take UCL = �F−1

n �p�, where Fn is the empirical d.f. of
X1� � � � � Xn. Similarly, the d.f. of the convolution F ∗

m is estimated nonparametrically
by the empirical d.f. of the convolution, defined by

F ∗
mn�x� =

1(
n
m

) ∑ · · ·∑
1≤i1<···<im≤n

1�Xi1
+ · · · + Xim

≤ x��

This leads, according to (6.2), to

UCL = m−1/2�F ∗ −1
mn �mp��

Consider the exceedance probability criterion. Then we are looking for a corrected
version of the form UCL = m−1/2�F ∗−1

mn �mq�, say, with q = q��� �� such that for
suitable (small) values of � ≥ 0 and � > 0 we get

P

(
Pn −mp

mp
> �

)
≤ ��

where Pn is the observed FAR, given by

Pn = P
(
m1/2�X�m� > m−1/2�F ∗ −1

mn �mq�
) = �F ∗

m

(�F ∗ −1
mn �mq�

)
�

It can be shown (see Lemma 1 in Albers and Kallenberg, 2006b) that

P�Pn > mp�1+ ��� = P

(
�F ∗
mn

(�F ∗ −1
m �mp�1+ ���

) ≤ �
(
n

m

)
mq�(
n

m

) )
�

The question is whether taking a group of size m is helpful in the estimation part in
the sense that the range of p and n for which we get a useful asymptotic expression
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is larger than in the individual case. When relying on asymptotic normality we
therefore have to consider the limiting behavior of �F ∗

mn

(�F ∗ −1
m �mpn�1+ �n��

)
or, more

generally, �F ∗
mn�tn�. On the one hand, the number of terms in the empirical d.f. of the

convolution is much larger than for the empirical d.f. of X1� � � � � Xn. On the other
hand, the terms are dependent. More terms are in general favorable for asymptotic
normality, but dependence has a negative influence. The following theorem gives the
asymptotic normality.

Theorem 6.1. Define

�sn�t��
2 = P�X1 + X2 + · · · + Xm > t�X1 + X̃2 + · · · + X̃m > t�− ��F ∗

m�t��
2�

where X1� X2� � � � � Xm� X̃2� � � � � X̃m are i.i.d. r.v.’s with d.f. F . Further define

�0�n = n−1/2E

∣∣∣∣�F ∗
m−1�tn − X1�−�F ∗

m�tn�

sn�tn�

∣∣∣∣
3

�

�3�r�n = 4�m− 1�
n1/2�n− 1�

��F ∗
m�tn��1−�F ∗

m�tn��
r + �1−�F ∗

m�tn����F ∗
m�tn��

r �1/r

sn�tn�
for r ≥ 1�

Then there exists a constant C ∈ �, such that for 3
2 ≤ r < 2,

sup
x∈�

∣∣∣∣P
(√

n

m

�F ∗
mn�tn�−�F ∗

m�tn�

sn�tn�
≤ x

)
−��x�

∣∣∣∣
≤ C

(
�0�n +

1
2− r

n13/6�
1/3
0�n�

r
3�r�n + n4/3�

2/3
0�n�3�3/2�n

)
�

The estimate remains true for r = 2 if 1/�2− r� is replaced by log n.

The proof is based on the Berry-Esseen bound given in Theorem 2.1(a), (c) of
Friedrich (1989); see Albers and Kallenberg (2005b). Application of Theorem 6.1
yields for m = 2 and �n bounded when F = �, the standard normal distribution,
that asymptotic normality of �F ∗

mn

(�F ∗ −1
m �mpn�1+ �n��

)
holds if

lim
n→� npn�log pn�1/2 = � or pn =

an

n
√
log n

with an → ��

while for F�x� = 1− exp�−x�, the standard exponential distribution, we get

lim
n→�

npn

�log pn�
= � or pn =

an log n
n

with an → ��

Compared to m = 1, where asymptotic normality is obtained when limn→� npn =
�, a relaxation in the sense of a slightly larger range of pn’s for which asymptotic
normality holds is possible (F = �) as well as a restriction to a smaller ranges of
admissible pn’s (F�x� = 1− exp�−x�), depending on the d.f. of the observations.
When m = 1 and limn→� npn < �, we get convergence to a Poisson distribution.
This is not true for m > 1; see Albers and Kallenberg (2005b). The conclusion
therefore is that in the estimation step we do not get a helpful progress when taking
groups and applying AVE.
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6.2. MIN

The statistic involved here is the smallest of Xn+1� � � � � Xn+m, that is,

w�Xn+1� � � � � Xn+m� = min�Xn+1� � � � � Xn+m��

When using MIN we take advantage of the effect that in a group the observations
intensify each other. That is, if m observations are pretty large and not necessarily
extremely large, this is already enough evidence to give an alarm. In contrast to
when taking the maximum, here really the group is used; see also Albers and
Kallenberg (2006a). Because under the in-control case

�FMIN�m�y� = P�min�Xn+1� � � � � Xn+m� > y� = ��F�y��m�
we get as the UCL (see equation 6.1)

UCL = �F−1
MIN�m�mp� = �F−1��mp�1/m��

As concerns the estimation step, it is now easily seen that for asymptotic normality
it is only needed that limn→� np1/m

n = �, and indeed, when using MIN we benefit
from dealing with much less extreme quantiles, which facilitates the estimation step
substantially. While getting asymptotic exceedance probability equal to � for the
AVE chart requires a lot of intricate conditions (see Theorem 4 in Albers and
Kallenberg, 2005b), for MIN this is much easier, as is seen in the following theorem.

Theorem 6.2. Let pn satisfy limn→� pn = 0� limn→� np1/m
n = �, and suppose that

�n ≥ 0 is bounded. Let Pn be the observed FAR for the corrected minimum control chart
with UCL = �F−1

n ��mqn�
1/m�, where

qn = pn�1+ �n�−
mu�pn�1+ �n�√
n�mpn�1+ �n��

1/m
�1+ o�1�� as n → ��

then

lim
n→�P

(
Pn −mpn

mpn

> �n

)
= �

Proof. A signal is given when

min�Xn+1� � � � � Xn+m� > �F−1
n ��mqn�

1/m��

and hence

Pn =
{�F(�F−1

n ��mqn�
1/m�

)}m
�

This implies (see also the proof of Theorem 4.2)

P

(
Pn −mpn

mpn

> �n

)
= P�Pn > mpn�1+ �n��

= P
(�F(�F−1

n ��mqn�
1/m�

)
> �mpn�1+ �n��

1/m
)

= B�n� �mpn�1+ �n��
1/m� �n�mqn�

1/m���

The proof is completed by using the asymptotic normality of the binomial
distribution. �
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6.3. Comparison of AVE and MIN under the Out-of-Control Case

Clearly, from the estimation point of view MIN is far more attractive than AVE.
However, we should also compare their out-of-control behavior. Therefore we
consider the ARL of both procedures under the out-of-control case. We restrict
ourselves here to the situation where F is known, thus ignoring the estimation
effects. They have been considered before (when the process is in control), and they
are less important under the out-of-control case. The FAR of MIN during the out-
of-control case is given by

P
(
min�Xn+1� � � � � Xn+m�+ d > �F−1��mp�1/m�

) = {�F��F−1��mp�1/m�− d�
}m

�

and thus

ARL�MIN�m� d� = m

��F��F−1��mp�1/m�− d��m
�

The most favorable distribution for AVE is the normal distribution. When F = �
we get UCL = ump and

ARL�AVE�m� d� = m

���ump −m1/2d�
�

Figures 1 and 2 give an impression of the ARLs for different shifts. On the
horizontal axis the ARL of the individual chart is presented, while on the vertical
axis the difference with the individual chart is given, that is, in Figure 1 ARL�1� d�−
ARL�AVE�m� d� against ARL�1� d�, and in Figure 2 ARL�1� d�− ARL�MIN�m� d�
against ARL�1� d�, where ARL�1� d� = ARL�AVE� 1� d� = ARL�MIN� 1� d�. In the
figures ARL�1� d� is shortly denoted as IND, ARL�AVE�m� d� as AVE�m�, and
ARL�MIN�m� d� as MIN�m�.

Both for AVE and MIN a substantial gain can be obtained when using larger
values of m, in particular for smaller shifts and hence larger ARLs. For shifts with
d ≥ 1, corresponding to ARL�1� d� ≤ 55, the differences between m = 3� 4� 5 are
rather small. Further, we see that even for normally distributed observations MIN
actually performs quite well, in particular if we compare it with the individual chart.
For example, at d = 1 we get ARL�1� d� = 54�6; it is improved with 26�7 by taking
MIN with m = 3, yielding ARL = 27�9; the further improvement when using AVE
with m = 3 is much less: 8�5, giving ARL = 19�4.

As a second distribution we consider a skew distribution, the gamma
distribution with parameters 4 and 1 having density 1

6x
3e−x. Its coefficient of

skewness equals 1. In Figure 3 the difference of the ARLs of AVE and MIN are
plotted against the ARL of AVE.

It is seen that MIN is somewhat better than AVE. Both of them are much better
than the individual chart. For instance, the ARL of the individual chart at d = 1
equals 213�2, and the ARL of the MIN chart at d = 1 equals 79�6, 41�1, 26�2, 19�3
for m = 2� 3� 4� 5, respectively, while the AVE chart at d = 1 gives 87�1, 47�8, 31�4,
23�3 for m = 2� 3� 4� 5, respectively.

From these and other distributions we have investigated (see Albers and
Kallenberg, 2006a), together with the results on the estimation step, we conclude
that the chart based on a group of m = 2� � � � � 5 in general performs better than the
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Figure 1. AVE chart under normality.

Figure 2. MIN chart under normality.
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Figure 3. Difference between the ARLs of AVE and MIN .

individual chart, and that accurate nonparametric estimation for the MIN chart is
quite straightforward for moderate values of n, but that nonparametric estimation
for the AVE chart gives no improvement compared to the individual chart, and
hence no solution for moderate n and current values of p. Therefore, when the
nonparametric chart is the most appropriate one, the MIN chart is recommended.
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