Path-kipas Ramsey numbers

A.N.M. Salman ${ }^{\text {a }}$, H.J. Broersma ${ }^{\text {b, c }}$
${ }^{a}$ Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132, Indonesia
${ }^{\mathrm{b}}$ Department of Computer Science, Durham University, South Road, Durham DH1 3LE, UK
${ }^{\text {c }}$ Center for Combinatorics, Nankai University, Tianjin 300071, China

Received 30 September 2004; received in revised form 1 February 2006; accepted 19 March 2006
Available online 14 April 2007

Abstract

For two given graphs F and H, the Ramsey number $R(F, H)$ is the smallest positive integer p such that for every graph G on p vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we study the Ramsey numbers $R\left(P_{n}, \hat{K}_{m}\right)$, where P_{n} is a path on n vertices and \hat{K}_{m} is the graph obtained from the join of K_{1} and P_{m}. We determine the exact values of $R\left(P_{n}, \hat{K}_{m}\right)$ for the following values of n and $m: 1 \leqslant n \leqslant 5$ and $m \geqslant 3 ; n \geqslant 6$ and $(m$ is odd, $3 \leqslant m \leqslant 2 n-1$) or (m is even, $4 \leqslant m \leqslant n+1$); $6 \leqslant n \leq 7$ and $m=2 n-2$ or $m \geqslant 2 n ; n \geqslant 8$ and $m=2 n-2$ or $m=2 n$ or $(q \cdot n-2 q+1 \leqslant m \leqslant q \cdot n-q+2$ with $3 \leqslant q \leqslant n-5)$ or $m \geqslant(n-3)^{2}$; odd $n \geqslant 9$ and $(q \cdot n-3 q+1 \leqslant m \leqslant q \cdot n-2 q$ with $3 \leqslant q \leqslant(n-3) / 2)$ or $(q \cdot n-q-n+4 \leqslant m \leqslant q \cdot n-2 q$ with $(n-1) / 2 \leqslant q \leqslant n-4)$. Moreover, we give lower bounds and upper bounds for $R\left(P_{n}, \hat{K}_{m}\right)$ for the other values of m and n.

© 2007 Elsevier B.V. All rights reserved.
MSC: 05C55; 05D10
Keywords: Kipas; Path; Ramsey number

1. Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a graph. We write $V(G)$ or V for the vertex set of G and $E(G)$ or E for the edge set of G. The graph \bar{G} is the complement of G, i.e., the graph obtained from the complete graph on $|V(G)|$ vertices by deleting the edges of G. The graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ (implying that the edges of H have all their end vertices in V^{\prime}).

If $e=\{u, v\} \in E$ (in short, $e=u v$), then u is called adjacent to v, and u and v are called neighbors. For $x \in V$, define $N(x)=\{y \in V \mid x y \in E\}$ and $N[x]=N(x) \cup\{x\}$. If $S \subset V(G), S \neq V(G)$, then $G-S$ denotes the subgraph of G induced by $V(G) \backslash S$. If $e \in E(G)$, then $G-e=(V(G), E(G) \backslash\{e\})$.

We denote by P_{n}, C_{n}, and K_{n} the path, the cycle and the complete graph on n vertices, respectively. A wheel W_{m} with $m \geqslant 3$ is the graph on $m+1$ vertices obtained from a cycle on m vertices by adding a new vertex and edges joining it to all the vertices of the cycle (W_{m} is the join of K_{1} and C_{m}). A kipas \hat{K}_{m} with $m \geqslant 3$ is the graph on $m+1$ vertices obtained from the join of K_{1} and P_{m}. A fan F_{m} with $m \geqslant 2$ is a graph on $2 m+1$ vertices obtained from m disjoint

[^0]
b

Fig. 1. (a) The wheel $W_{10 \text {. (b) The kipas }} \hat{K}_{10}$. (c) The fan F_{5}.
triangles ($K_{3} s$) by identifying precisely one vertex of every triangle (F_{m} is the join of K_{1} and $m K_{2}$). It is also known in the literature as 'dutch windmill'. Note that some authors use the term fan for graphs we defined as kipases. For illustration, consider W_{10} in Fig. 1(a), \hat{K}_{10} in Fig. 1(b), and F_{5} in Fig. 1(c). The vertex corresponding to K_{1} in a wheel or in a kipas or in a fan is called the hub of the wheel or the hub of the kipas or the hub of the fan, respectively.

Given two graphs F and H, the Ramsey number $R(F, H)$ is defined as the smallest positive integer p such that every graph G on p vertices satisfies the following condition: G contains F as a subgraph or \bar{G} contains H as a subgraph.

In 1967 Geréncser and Gyárfás [4] determined all Ramsey numbers for paths versus paths. After that, Ramsey numbers $R\left(P_{n}, H\right)$ for paths versus other graphs H have been investigated in several papers, for example: Parsons [6] when H is a complete graph; Faudree et al. [2] when H is a cycle; Parsons [7] when H is a star; Burr et al. [1] when H is a sparse graph; Häggkvist [5] when H is a complete bipartite graph; Faudree Schelp and Simonovits [3] when H is a tree; Salman and Broersma when H is a fan [9]; Surahmat and Baskoro [10], Salman and Broersma [8] when H is a wheel. We study Ramsey numbers for paths versus kipases.

Clearly, $R\left(P_{n}, \hat{K}_{2 m}\right) \geqslant R\left(P_{n}, F_{m}\right)$, since F_{m} is a spanning subgraph of $\hat{K}_{2 m}$. In this paper we show that $R\left(P_{n}, \hat{K}_{2 m}\right)=$ $R\left(P_{n}, F_{m}\right)$ for the Ramsey numbers $R\left(P_{n}, F_{m}\right)$ that are determined in [9]. Since \hat{K}_{m} is a spanning subgraph of W_{m}, it is obvious that $R\left(P_{n}, \hat{K}_{m}\right) \leqslant R\left(P_{n}, W_{m}\right)$. In this paper we also show that $R\left(P_{n}, \hat{K}_{m}\right)=R\left(P_{n}, W_{m}\right)$ for the Ramsey numbers $R\left(P_{n}, W_{m}\right)$ that are determined in [9]. Moreover, we determine $R\left(P_{n}, \hat{K}_{m}\right)$ for some other values of m and n, namely for the following values of m and $n: n=4$ or $n=6$ and $m=2 n-2$ or $m \geqslant 2 n ; n$ is even, $n \geqslant 8$ and $m=2 n-2$ or $m=2 n$ or $m \geqslant(n-3)^{2}$ or $q \cdot n-2 q+1 \leqslant m \leqslant q \cdot n-q+2$ with $3 \leqslant q \leqslant n-5 ; n=7$ and $m=15$; n is odd, $n \geqslant 9$ and $q \cdot n-3 q+1 \leqslant m \leqslant q \cdot n-2 q$ with $3 \leqslant q \leqslant(n-3) / 2$ or $q \cdot n-q-n+4 \leqslant m \leqslant q \cdot n-2 q$ with $(n-1) / 2 \leqslant q \leqslant n-4)$.

2. Main results

In this paper we determine the Ramsey numbers $R\left(P_{n}, \hat{K}_{m}\right)$ for the following values of n and $m: 1 \leqslant n \leqslant 5$ and $m \geqslant 3$; $n \geqslant 6$ and (m is odd, $3 \leqslant m \leqslant 2 n-1$) or (m is even, $4 \leqslant m \leqslant n+1$); $6 \leqslant n \leqslant 7$ and $m=2 n-2$ or $m \geqslant 2 n ; n \geqslant 8$ and $m=2 n-2$ or $m=2 n$ or $\left(q \cdot n-2 q+1 \leqslant m \leqslant q \cdot n-q+2\right.$ with $3 \leqslant q \leqslant n-5$) or $m \geqslant(n-3)^{2}$; odd $n \geqslant 9$ and $(q \cdot n-3 q+1 \leqslant m \leqslant q \cdot n-2 q$ with $3 \leqslant q \leqslant(n-3) / 2)$ or $(q \cdot n-q-n+4 \leqslant m \leqslant q \cdot n-2 q$ with $(n-1) / 2 \leqslant q \leqslant n-4)$. The Ramsey numbers for 'small' paths versus kipases or paths versus 'small' kipases will be given in Corollary 2. The Ramsey numbers for paths versus 'large' kipases will be given in Corollaries 5 and 7. Moreover, we also give nontrivial lower bounds and upper bounds for $R\left(P_{n}, \hat{K}_{m}\right)$ for (odd $n \geqslant 11$ and $q \cdot n-q+3 \leqslant m \leqslant q \cdot n-3 q+n-3$ with $2 \leqslant q \leqslant(n-7) / 2$) or (even $n \geqslant 8$ and $q \cdot n-q+3 \leqslant m \leqslant q \cdot n-2 q+n-2$ with $2 \leqslant q \leqslant n-5$) or ($n \geqslant 6$ and m is even, $n+2 \leqslant m \leqslant 2 n-4$) in Corollaries 8 and 9 and Theorem 10.

In [9] we have determined the Ramsey numbers for paths versus wheels for the values of m and n that are presented in Theorem 1. This theorem provides upper bounds that yield several exact Ramsey numbers for paths versus kipases.

Theorem 1.

$$
R\left(P_{n}, W_{m}\right)= \begin{cases}1 & \text { for } n=1 \text { and } m \geqslant 3, \\ m+1 & \text { for either }(n=2 \text { and } m \geqslant 3) \text { or }(n=3 \text { and even } m \geqslant 4), \\ m+2 & \text { for }(n=3 \text { and odd } m \geqslant 5), \\ 3 n-2 & \text { for either }(n=3 \text { and } m=3) \text { or }(n \geqslant 4 \text { and } m \text { is odd, } 3 \leqslant m \leqslant 2 n-1), \\ 2 n-1 & \text { for } n \geqslant 4 \text { and } m \text { is even, } 4 \leqslant m \leqslant n+1 .\end{cases}
$$

Corollary 2.

$$
R\left(P_{n}, \hat{K}_{m}\right)= \begin{cases}1 & \text { for } n=1 \text { and } m \geqslant 3, \\ m+1 & \text { for either }(n=2 \text { and } m \geqslant 3) \text { or }(n=3 \text { and even } m \geqslant 4), \\ m+2 & \text { for }(n=3 \text { and odd } m \geqslant 5), \\ 3 n-2 & \text { for either }(n=3 \text { and } m=3) \text { or }(n \geqslant 4 \text { and } m \text { is odd, } 3 \leqslant m \leqslant 2 n-1), \\ 2 n-1 & \text { for } n \geqslant 4 \text { and } m \text { is even, } 4 \leqslant m \leqslant n+1 .\end{cases}
$$

Proof. The graphs

$$
\begin{cases}P_{1} & \text { for } n=1 \text { and } m \geqslant 3 \\ m P_{1} & \text { for } n=2 \text { and } m \geqslant 3, \\ \left\lfloor\frac{m+1}{2}\right\rfloor K_{2} & \text { for } n=3 \text { and } m \geqslant 4, \\ 3 K_{n-1} & \text { for }(n=3 \text { and } m=3) \text { or }(n \geqslant 4 \text { and } m \text { is odd, } 3 \leqslant m \leqslant 2 n-1) \\ 2 K_{n-1} & \text { for } n \geqslant 4 \text { and } m \text { is even, } 4 \leqslant m \leqslant n+1\end{cases}
$$

give lower bounds for $R\left(P_{n}, \hat{K}_{m}\right)$ for the values of m and n in Corollary 2 . Since \hat{K}_{m} is a subgraph of W_{m}, Theorem 1 completes the proof.

The next lemma plays a key role in our proofs of Lemmas 4 and 6 . The proof of this lemma has been given in [8].
Lemma 3. Let $n \geqslant 3$ and G be a graph on at least n vertices containing no P_{n}. Let the paths $P^{1}, P^{2}, \ldots, P^{k}$ in G be chosen in the following way: $\bigcup_{j=1}^{k} V\left(P^{j}\right)=V(G), P^{1}$ is a longest path in G, and, if $k>1, P^{i+1}$ is a longest path in $G-\bigcup_{j=1}^{i} V\left(P^{j}\right)$ for $1 \leqslant i \leqslant k-1$. Denote by ℓ_{j} the number of vertices on the path P^{j}. Let z be an end vertex of P^{k}. Then:
(i) $\ell_{1} \geqslant \ell_{2} \geqslant \cdots \geqslant \ell_{k}$;
(ii) If $\ell_{k} \geqslant\lfloor n / 2\rfloor$, then $N(z) \subset V\left(P^{k}\right)$;
(iii) If $\ell_{k}<\lfloor n / 2\rfloor$, then $|N(z)| \leqslant\lfloor n / 2\rfloor-1$.

The following lemma provides upper bounds that yield several exact Ramsey numbers in the sequel.
Lemma 4. If $n \geqslant 4$ and $m \geqslant 2 n-2$, then

$$
R\left(P_{n}, \hat{K}_{m}\right) \leqslant \begin{cases}m+n-1 & \text { for } m=1 \bmod (n-1) \\ m+n-2 & \text { for other values of } m .\end{cases}
$$

Proof. Let G be a graph that contains no P_{n} and has order

$$
|V(G)|= \begin{cases}m+n-1 & \text { for } m=1 \bmod (n-1), \tag{1}\\ m+n-2 & \text { for other values of } m .\end{cases}
$$

Choose the paths P^{1}, \ldots, P^{k} and the vertex z in G as in Lemma 3. Because of (1), not all P^{i} can have $n-1$ vertices, so $\ell_{k} \leqslant n-2$. If $\ell_{k}<\lfloor n / 2\rfloor$ then by Lemma 3(iii) we obtain $|N(z)| \leqslant\lfloor n / 2\rfloor-1 \leqslant n-3$. If $\lfloor n / 2\rfloor \leqslant \ell_{k} \leqslant n-2$ then by Lemma 3(ii) we obtain $|N(z)| \leqslant \ell_{k}-1 \leqslant n-3$. Hence, $|N[z]| \leqslant n-2$. We will use the following result that has been proved in [2]: $R\left(P_{t}, C_{s}\right)=s+\lfloor t / 2\rfloor-1$ for $s \geqslant\lfloor(3 t+1) / 2\rfloor$. We distinguish the following cases.

Case 1: $|N(z)| \leqslant\lfloor n / 2\rfloor-2$ or n is odd and $|N(z)|=\lfloor n / 2\rfloor-1$. Since $|V(G) \backslash N[z\rfloor| \geqslant m+\lfloor n / 2\rfloor-1$, we find that $\overline{G-N[z]}$ contains a C_{m}. So, there is a \hat{K}_{m} in \bar{G} with z as a hub.
Case 2: n is even and $|N(z)|=n / 2-1$. Since $|V(G) \backslash N[z]| \geqslant(m+n-2)-n / 2=m+n / 2-2$, we find that $\overline{G-N[z]}$ contains a C_{m-1}; denote its vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{m-1}$ in the order of appearance on the cycle with a fixed orientation. There are $n / 2-1$ vertices in $U=V(G) \backslash\left(V\left(C_{m-1}\right) \cup N[z]\right)$, say $u_{1}, u_{2}, \ldots, u_{n / 2-1}$. If some vertex $v_{i}(i=1, \ldots, m-1)$ is no neighbor of some vertex $u_{j}(j=1, \ldots, n / 2-1)$, w.l.o.g. assume $v_{m-1} u_{1} \notin E(G)$. Then \bar{G}
contains a \hat{K}_{m} with z as a hub and its other vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{m-2}, v_{m-1}, u_{1}$. Now let us assume each of the v_{i} is adjacent to all u_{j} in G. For every choice of a subset of $n / 2$ vertices from $V\left(C_{m-1}\right)$, there is a path on $n-1$ vertices in G alternating between the vertices of this subset and the vertices of U, starting and terminating in two arbitrary vertices from the subset. Since G contains no P_{n}, there are no edges $v_{i} v_{j} \in E(G)(i, j \in\{1, \ldots, m-1\})$. This implies that $V\left(C_{m-1}\right) \cup\{z\}$ induces a K_{m} in \bar{G}. Since G contains no P_{n}, no v_{i} is adjacent to a vertex of $N(z)$. This implies that \bar{G} contains a $K_{m+1}-z w$ for any vertex $w \in N(z)$, and hence \bar{G} contains a \hat{K}_{m} with one of the v_{i} as a hub.

Case 3: Suppose that there is no choice for P^{k} and z such that one of the former cases applies. Then $|N(w)| \geqslant\lfloor n / 2\rfloor$ for any end vertex w of a path on ℓ_{k} vertices in $G-\bigcup_{j=1}^{k-1} V\left(P^{j}\right)$. This implies all neighbors of such w are in $V\left(P^{k}\right)$ and $\ell_{k} \geqslant\lfloor n / 2\rfloor+1$. So for the two end vertices z_{1} and z_{2} of P^{k} we have that $\left|N\left(z_{i}\right) \cap V\left(P^{k}\right)\right| \geqslant\lfloor n / 2\rfloor \geqslant \ell_{k} / 2$. By standard arguments in Hamiltonian graph theory, we can find an index $i \in\left\{2, \ldots, \ell_{k}-1\right\}$ such that $z_{1} v_{i+1}$ and $z_{2} v_{i}$ are edges of G. It is clear that we can find a cycle on ℓ_{k} vertices in G. This implies that any vertex of $V\left(P^{k}\right)$ could serve as w. By the assumption of this last case, we conclude that there are no edges in G between $V\left(P^{k}\right)$ and the other vertices. This also implies that all vertices of P^{k} have degree at least m in \bar{G}.

We now turn to P^{k-1} and consider one of its end vertices w. Since $\ell_{k-1} \geqslant \ell_{k} \geqslant\lfloor n / 2\rfloor+1$, similar arguments as in the proof of Lemma 3 show that all neighbors of w are on P^{k-1}. If $|N(w)|<\lfloor n / 2\rfloor$, we get a \hat{K}_{m} in \bar{G} as in Case 1 or Case 2. So we may assume $\left|N\left(w_{i}\right) \cap V\left(P^{k-1}\right)\right| \geqslant\lfloor n / 2\rfloor \geqslant \ell_{k-1} / 2$ for both end vertices w_{1} and w_{2} of P^{k-1}. By similar arguments as before we obtain a cycle on ℓ_{k-1} vertices in G. This implies that any vertex of $V\left(P^{k-1}\right)$ could serve as w. By the assumption of this last case, we conclude that there are no edges in G between $V\left(P^{k-1}\right)$ and the other vertices. This also implies that all vertices of P^{k-1} have degree at least $m-1$ in \bar{G}. (Note that P^{k-1} can have $n-1$ vertices, whereas $\ell_{k} \leqslant n-2$.)

Repeating the above arguments for P^{k-2}, \ldots, P^{1} we eventually conclude that all vertices of G have degree at least $m-1$ in \bar{G}. Now let $H=\bar{G}-V\left(P^{k}\right)$. Then all vertices in $V(H)$ have degree at least $m-1-\ell_{k} \geqslant m / 2+(n-1)-$ $1-\ell_{k} \geqslant \frac{1}{2}\left(m+2 n-4-\ell_{k}-(n-2)\right)=\frac{1}{2}\left(m+n-2-\ell_{k}\right)=\frac{1}{2}(|V(H)|-1)$. Hence, there exists a Hamilton path in H. Since $|V(H)| \geqslant m$ and z is a neighbor of all vertices in H (in \bar{G}), it is clear that \bar{G} contains a \hat{K}_{m} with z as a hub. This completes the proof of Lemma 4.

Corollary 5. If $(4 \leqslant n \leqslant 6$ and $m=2 n-2$ or $m \geqslant 2 n)$ or $\left(n \geqslant 7\right.$ and $m=2 n-2$ or $m=2 n$ or $\left.m \geqslant(n-3)^{2}\right)$ or $(n \geqslant 8$ and $q \cdot n-2 q+1 \leqslant m \leqslant q \cdot n-q+2$ with $3 \leqslant q \leqslant n-5$), then

$$
R\left(P_{n}, \hat{K}_{m}\right)= \begin{cases}m+n-1 & \text { for } m=1 \bmod (n-1) \\ m+n-2 & \text { for other values of } m .\end{cases}
$$

Proof. Let r denote the remainder of m divided by $n-1$, so $m=p(n-1)+r$ for some $0 \leqslant r \leqslant n-2$. Then for $(4 \leqslant n \leqslant 6$ and $m=2 n-2$ or $m \geqslant 2 n$) or ($n \geqslant 7$ and $m=2 n-2$ or $m=2 n$ or $m \geqslant(n-3)^{2}$) or $(n \geqslant 8$ and $q \cdot n-2 q+1 \leqslant m \leqslant q \cdot n-q+2$ with $3 \leqslant q \leqslant n-5$), the graphs

$$
\begin{cases}(p-1) K_{n-1} \cup 2 K_{n-2} & \text { for } r=0, \\ (p+1) K_{n-1} & \text { for } r=1 \text { or } 2, \\ (p+r+1-n) K_{n-1} \cup(n+1-r) K_{n-2} & \text { for other values of } r\end{cases}
$$

show that

$$
R\left(P_{n}, \hat{K}_{m}\right)> \begin{cases}m+n-2 & \text { for } m=1 \bmod (n-1) \\ m+n-3 & \text { for other values of } m\end{cases}
$$

Lemma 4 completes the proof.
Lemma 6. If n is odd, $n \geqslant 7$ and $q \cdot n-q+3 \leqslant m \leqslant q \cdot n-2 q+n-2$ with $2 \leqslant q \leqslant n-5$, then $R\left(P_{n}, \hat{K}_{m}\right) \leqslant m+n-3$.
Proof. The proof is modelled along the lines of the proof of Lemma 4. Let G be a graph on $m+n-3$ vertices, and assume G contains no P_{n}. We will show that \bar{G} contains a \hat{K}_{m}. Choose the paths P^{1}, \ldots, P^{k} and the vertex z in G as in

Lemma 3. Since $|V(G)|=m+n-3$ with $n \geqslant 7$ and $q \cdot n-q+3 \leqslant m \leqslant q \cdot n-2 q+n-2$ with $2 \leqslant q \leqslant n-5, k \geqslant q+2$, and therefore not all P^{i} can have more than $n-3$ vertices. So $\ell_{k} \leqslant n-3$. By similar arguments as in the proof of Lemma 4, this implies $|N(z)| \leqslant n-4$. We will use the following result that has been proved in [2]: $R\left(P_{t}, C_{s}\right)=s+\lfloor t / 2\rfloor-1$ for $s \geqslant\lfloor(3 t+1) / 2\rfloor$. We distinguish the following cases.

Case $1:|N(z)| \leqslant\lfloor n / 2\rfloor-2$. Since $|V(G) \backslash N[z]| \geqslant m+\lfloor n / 2\rfloor-1$, we find that $\overline{G-N[z]}$ contains a C_{m}. So, there is a \hat{K}_{m} in \bar{G} with z as a hub.

Case 2: $|N(z)|=\lfloor n / 2\rfloor-1$. Since $|V(G) \backslash N[z]|=(m+n-3)-\lfloor n / 2\rfloor=m+\lfloor n / 2\rfloor-2$, we find that $\overline{G-N[z]}$ contains a C_{m-1}; denote its vertices by $v_{1}, v_{2}, v_{3}, \ldots, v_{m-1}$ in the order of appearance on the cycle with a fixed orientation. There are $\lfloor n / 2\rfloor-1$ vertices in $U=V(G) \backslash\left(V\left(C_{m-1}\right) \cup N[z]\right)$, say $u_{1}, u_{2}, \ldots, u_{\lfloor n / 2\rfloor-1}$. If some vertex $v_{i}(i=1, \ldots, m-1)$ is no neighbor of some vertex $u_{j}(j=1, \ldots,\lfloor n / 2\rfloor-1)$, w.l.o.g. assume $v_{m-1} u_{1} \notin E(G)$. Then \bar{G} contains a \hat{K}_{m} with z as a hub and its other vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{m-2}, v_{m-1}, u_{1}$. Now let us assume each of the v_{i} is adjacent to all u_{j} in G. For every choice of a subset of $\lfloor n / 2\rfloor$ vertices from $V\left(C_{m-1}\right)$, there is a path on $n-2$ vertices in G alternating between the vertices of this subset and the vertices of U, starting and terminating in two arbitrary vertices from the subset. Let $z_{1} \in N(z)$. Since G contains no P_{n}, there are no edges $v_{i} z \in E(G)$ and $v_{i} z_{1} \in E(G)(i \in\{1, \ldots, m-1\})$ and there is at most one edge $v_{i} v_{j} \in E(G)$ (for some $i, j \in\{1, \ldots, m-1\}$). Assume (at most) $v_{1} v_{2} \in E(G)$. This implies \bar{G} contains a \hat{K}_{m} with hub v_{m-1} and its other vertices $v_{1}, z, v_{2}, z_{1}, v_{3}, \ldots, v_{m-4}, v_{m-3}, v_{m-2}$.

Case 3: Suppose that there is no choice for P^{k} and z such that one of the former cases applies. Then $|N(w)| \geqslant\lfloor n / 2\rfloor$ for any end vertex w of a path on ℓ_{k} vertices in $G-\bigcup_{j=1}^{k-1} V\left(P^{j}\right)$. This implies all neighbors of such w are in $V\left(P^{k}\right)$ and $\ell_{k} \geqslant\lfloor n / 2\rfloor+1$. So for the two end vertices z_{1} and z_{2} of P^{k} we have that $\left|N\left(z_{i}\right) \cap V\left(P^{k}\right)\right| \geqslant\lfloor n / 2\rfloor \geqslant \ell_{k} / 2$. By similar arguments as in the proof of Lemma 4 we obtain a cycle on ℓ_{k} vertices in G. This implies that any vertex of $V\left(P^{k}\right)$ could serve as w. By the assumption of this last case, we conclude that there are no edges in G between $V\left(P^{k}\right)$ and the other vertices. This also implies that all vertices of P^{k} have degree at least m in \bar{G}.

We now turn to P^{k-1} and consider one of its end vertices w. Since $\ell_{k-1} \geqslant \ell_{k} \geqslant\lfloor n / 2\rfloor+1$, similar arguments as in the proof of Lemma 3 show that all neighbors of w are on P^{k-1}. If $|N(w)|<\lfloor n / 2\rfloor$, we get a \hat{K}_{m} in \bar{G} as in Case 1 or Case 2. So we may assume $\left|N\left(w_{i}\right) \cap V\left(P^{k-1}\right)\right| \geqslant\lfloor n / 2\rfloor \geqslant \ell_{k-1} / 2$ for both end vertices w_{1} and w_{2} of P^{k-1}. By similar arguments as before we obtain a cycle on ℓ_{k-1} vertices in G. This implies that any vertex of $V\left(P^{k-1}\right)$ could serve as w. By the assumption of this last case, we conclude that there are no edges in G between $V\left(P^{k-1}\right)$ and the other vertices. This also implies that all vertices of P^{k-1} have degree at least $m-2$ in \bar{G}. (Note that P^{k-1} can have $n-1$ vertices, whereas $\ell_{k} \leqslant n-3$.)

Repeating the above arguments for P^{k-2}, \ldots, P^{1} we eventually conclude that all vertices of G have degree at least $m-2$ in \bar{G}. Now let $H=\bar{G}-V\left(P^{k}\right)$. Then all vertices in $V(H)$ have degree at least $m-2-\ell_{k} \geqslant m / 2+n-2-$ $\ell_{k} \geqslant \frac{1}{2}\left(m+2 n-4-\ell_{k}-(n-3)\right)=\frac{1}{2}\left(m+n-1-\ell_{k}\right)=\frac{1}{2}(|V(H)|+2)$. This implies there exists a Hamilton cycle in H. Since $|V(H)| \geqslant m$ and z is a neighbor of all vertices in H (in $\bar{G})$, it is clear that \bar{G} contains a \hat{K}_{m} with z as a hub. This completes the proof of Lemma 6.

Corollary 7. If $(n=7$ and $m=15)$ or (n is odd, $n \geqslant 9$ and $(q \cdot n-3 q+1 \leqslant m \leqslant q \cdot n-2 q$ with $3 \leqslant q \leqslant(n-3) / 2)$ or $(q \cdot n-q-n+4 \leqslant m \leqslant q \cdot n-2 q$ with $(n-1) / 2 \leqslant q \leqslant n-4))$, then $R\left(P_{n}, \hat{K}_{m}\right)=m+n-3$.

Proof. For $n=7$ and $m=15$, the graph $3 K_{6}$ and for odd $n \geqslant 9$ and $m=q \cdot n-2 q-j$ with either $(3 \leqslant q \leqslant(n-3) / 2$ and $0 \leqslant j \leqslant q-1)$ or $((n-1) / 2 \leqslant q \leqslant n-5$ and $0 \leqslant j \leqslant n-q-4)$, the graph $(q-j-1) K_{n-2} \cup(j+2) K_{n-3}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>m+n-4$. Lemma 6 completes the proof.

Corollary 8. If n is odd, $n \geqslant 11$ and $q \cdot n-q+3 \leqslant m \leqslant q \cdot n-3 q+n-3$ with $2 \leqslant q \leqslant(n-7) / 2$, then

$$
m+n-3 \geqslant R\left(P_{n}, \hat{K}_{m}\right) \geqslant \max \left\{\left\lfloor\frac{m}{n-1}\right\rfloor(n-1)+n, m+\left\lfloor\frac{m-1}{\lceil m /(n-1)\rceil}\right\rfloor\right\}
$$

Proof. Let $t=\lceil m /(n-1)\rceil$ and s denote the remainder of $m-1$ divided by t. Then for m and n satisfying $\lfloor m /(n-1)\rfloor(n-1)+n \geqslant m+\lfloor(m-1) / t\rfloor$, the graph $t K_{n-1}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>\lfloor m /(n-1)\rfloor(n-1)+n-1$. For other values of m and n, the graph $s K_{\lceil(m-1) / t\rceil} \cup(t-s+1) K_{\lfloor(m-1) / t\rfloor}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>m-1+$ $\lfloor(m-1) /\lceil m /(n-1)\rceil\rfloor$.

The upper bound comes from Lemma 6.

Table 1
The Ramsey numbers for paths versus kipases

Corollary 9. If n is even, $n \geqslant 8$ and $q \cdot n-q+3 \leqslant m \leqslant q \cdot n-2 q+n-2$ with $2 \leqslant q \leqslant n-5$, then

$$
m+n-2 \geqslant R\left(P_{n}, \hat{K}_{m}\right) \geqslant \max \left\{\left\lfloor\frac{m}{n-1}\right\rfloor(n-1)+n, m+\left\lfloor\frac{m-1}{\lceil m /(n-1)\rceil}\right\rfloor\right\} .
$$

Proof. Let $t=\lceil m /(n-1)\rceil$ and s denote the remainder of $m-1$ divided by t. Then for m and n satisfying $\lfloor m /(n-1)\rfloor(n-1)+n \geqslant m+\lfloor(m-1) / t\rfloor$, the graph $t K_{n-1}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>\lfloor m /(n-1)\rfloor(n-1)+n-1$.
For other values of m and n, the graph $s K_{\lceil(m-1) / t\rceil} \cup(t-s+1) K_{\lfloor(m-1) / t\rfloor}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>m-1+$ $\lfloor(m-1) /\lceil m /(n-1)\rceil\rfloor$.
The upper bound comes from Lemma 4.
Theorem 10. If $n \geqslant 6$ and m is even with $n+2 \leqslant m \leqslant 2 n-4$, then

$$
m+\left\lfloor\frac{3 n}{2}\right\rfloor-2 \geqslant R\left(P_{n}, \hat{K}_{m}\right) \geqslant \begin{cases}2 n-1 & \text { for } n+2 \leqslant m \leqslant n+\lfloor n / 3\rfloor, \\ \frac{3 m}{2}-1 & \text { for } n+\lfloor n / 3\rfloor<m \leqslant 2 n-4 .\end{cases}
$$

Proof. For $n \geqslant 6$ and m is even with $n+2 \leqslant m \leqslant n+\lfloor n / 3\rfloor$, the graph $2 K_{n-1}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>2 n-2$. For $n \geqslant 6$ and m is even, $n+\lfloor n / 3\rfloor<m \leqslant 2 n-4$, the graph $K_{m / 2} \cup 2 K_{m / 2-1}$ shows that $R\left(P_{n}, \hat{K}_{m}\right)>3 m / 2-2$.

Let G be a graph on $m+\lfloor 3 n / 2\rfloor-2$ vertices, and assume G contains no P_{n}. Choose the paths P^{1}, \ldots, P^{k} and the vertex z in G as in Lemma 3. By Lemma 3, $|N(z)| \leqslant n-2$. Hence, $|V(G) \backslash N[z]| \geqslant m+\lfloor n / 2\rfloor-1$. We can apply the result from [2] that $R\left(P_{n}, C_{m}\right)=m+\lfloor n / 2\rfloor-1$ for m is even and $2 \leqslant n \leqslant m$. This implies that $\overline{G-N[z]}$ contains a C_{m}. So, there is a \hat{K}_{m} in \bar{G} with z as a hub (there is even a wheel on $m+1$ vertices).

3. Conclusion

In this paper we determined the Ramsey numbers for paths versus kipases of varying orders. The numbers are indicated in Table 1. We used different shadings to distinguish the results in the previous section that led to these numbers. The white elements indicate open cases. For these cases we established lower bounds and upper bounds for $R\left(P_{n}, \hat{K}_{m}\right)$.

References

[1] S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau, R.H. Schelp, Ramsey numbers for the pair sparse graph-path or cycle, Trans. Amer. Math. Soc. 269 (2) (1982) 501-512.
[2] R.J. Faudree, S.L. Lawrence, T.D. Parsons, R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) $269-277$.
[3] R.J. Faudree, R.H. Schelp, M. Simonovits, On some Ramsey type problems connected with paths, cycles and trees, Ars Combin. 29A (1990) 97-106.
[4] L. Geréncser, A. Gyárfás, On Ramsey-type problems, Annales Universitatis Scientiarum Budapestinensis, Eötvös Sect. Math. 10 (1967) 167-170.
[5] R. Häggkvist, On the path-complete bipartite Ramsey numbers, Discrete Math. 75 (1989) 243-245.
[6] T.D. Parsons, The Ramsey numbers $r\left(P_{m}, K_{n}\right)$, Discrete Math. 6 (1973) 159-162.
[7] T.D. Parsons, Path-star Ramsey numbers, J. Combin. Theory Ser. B 17 (1974) 51-58.
[8] A.N.M. Salman, H.J. Broersma, On Ramsey numbers for paths versus wheels, Discrete Math. 307 (2007) 975-982.
[9] A.N.M. Salman, H.J. Broersma, Path-fan Ramsey numbers, Discrete Appl. Math. 154 (2006) 1429-1436.
[10] A. Surahmat, E.T. Baskoro, On the Ramsey number of a path or a star versus W_{4} or W_{5}, in: Proceedings of the 12 th Australasian Workshop on Combinatorial Algorithms, 2001, pp. 174-178.

[^0]: E-mail addresses: msalman@math.itb.ac.id (A.N.M. Salman), hajo.broersma@durham.ac.uk (H.J. Broersma).

