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Abstract

The minimum all-ones problem and the connected odd dominating set problem were shown to be NP-complete in different
papers for general graphs, while they are solvable in linear time (or trivial) for trees, unicyclic graphs, and series-parallel graphs.
The complexity of both problems when restricted to bipartite graphs was raised as an open question. Here we solve both problems.
For this purpose, we introduce the related decision problem of the existence of an odd dominating set without isolated vertices, and
study its complexity. Our main result shows that this new problem is NP-complete, even when restricted to bipartite graphs. We
use this result to deduce that the minimum all-ones problem and the connected odd dominating set problem are also NP-complete
for bipartite graphs. We show that all three problems are solvable in linear time for graphs with bounded treewidth. We also show
that the new problem remains NP-complete when restricted to other graph classes, e.g., planar graphs, graphs with girth at least
five, and graphs with a small maximum degree, in particular 3-regular graphs.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and related work

In this paper we study the complexity of a graph problem that has been introduced and studied under various
names. This problem and its variations have received considerable attention [1–4,6–11,13,14,16–26]. The term all-
ones problem was coined by Sutner in [24], where he also discussed applications of this problem in linear cellular
automata (we refer to [24] for the details and more motivation and references). He described the all-ones problem for
square grids as follows: Suppose each square of an n×n chessboard is equipped with an indicator light and a button. If
the button of a square is pressed, the light of that square will change from off to on, and vice versa; the same happens
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to the lights of all the edge-adjacent squares. Initially all lights are off. Now, consider the following questions: is it
possible to press a sequence of buttons in such a way that in the end all lights are on? This is referred to as the all-ones
problem. If there is such a solution, how can we find it? And finally, how can we find a solution that presses as few
buttons as possible? This is referred to as the minimum all-ones problem. All of the above questions can be asked for
arbitrary graphs. Here and in what follows, we consider connected simple undirected graphs only. One can deal with
disconnected graphs component by component. For all terminology and notation not defined here, we refer to [5]; for
computational complexity terminology we refer to [15].

Instead of using the term all-ones problem, we prefer to adopt the terminology of Caro et al. [9], since from a
graph-theoretical point of view the problem fits into the well-developed area of dominating sets. The all-ones problem
is equivalent to the following dominating set problem: Given a graph G = (V, E) with vertex set V and edge set E ,
one asks for a subset S ⊆ V with the property that every vertex in S has an even number of neighbors in S, while
every vertex in V \ S has an odd number of neighbors in S. Since this implies that every vertex is dominated by an
odd number of vertices in S (including the vertex itself if it belongs to S), S is called an odd dominating set (OD-set
for short). In Sutner [24] it is called an odd parity cover. An equivalent version of the all-ones problem was proposed
by Peled in [21], where it was called the lamp lighting problem.

Although it is not immediately clear from the definition, every graph has an OD-set. This has been proved by
Sutner [26], using linear algebra. Another proof based on linear algebra is due to Lossers [20]. A short and elegant
graph-theoretic proof appeared in [13].

If one asks for a smallest OD-set, the problem gets more complicated. Sutner [22] proved that deciding whether
a graph has an OD-set of cardinality at most k is NP-complete. Here k is not fixed of course, since otherwise the
problem is clearly solvable in polynomial time. For trees and unicyclic graphs, there is a linear time algorithm for
finding the smallest OD-set [10,11], as well as for series-parallel graphs [2]. Other graph classes were studied by Caro
et al. [7,8]. The complexity of this problem restricted to bipartite graphs was left as an open problem.

A variation of the problem in which one asks for the existence of a connected OD-set was introduced and studied
in [9]. This problem is obviously trivial for trees and unicyclic graphs, but is NP-complete for general graphs [9]. Also
here, the complexity of the problem restricted to bipartite graphs was left as an open problem.

1.1. Results of this paper

In order to solve the complexity questions for the two problems restricted to bipartite graphs, we introduce and
study the complexity of a new variant in which we weaken the connectivity condition to the condition that the OD-set
contains no isolated vertices (i.e., vertices with no neighbors in the OD-set). This problem is also trivial for trees and
unicyclic graphs. It is interesting in its own right, but we show that it is a useful intermediate for proving complexity
results for the minimum all-ones problem as well as the connected OD-set problem. Our main results show that all
three problems are NP-complete when restricted to bipartite graphs.

For graphs with bounded treewidth, however, all three problems are shown to be solvable in linear time, by using
monadic second-order logic (MSOL). The use of MSOL in this context may look a bit surprising since one cannot
express parity problems in MSOL, but we can get around it by using the paradigm of the lamp lighting problem.

Finally, we show that the problem related to OD-sets without isolated vertices is NP-complete when restricted
to several other graph classes, like planar graphs, graphs with girth at least five, and graphs with a small maximum
degree, in particular 3-regular graphs.

The paper is organised as follows. In the next section we introduce the necessary terminology and notation. In
Section 3 we prove NP-completeness of the new variant restricted to bipartite graphs, while in Sections 4 and 5 we
use this result to prove NP-completeness of the original two problems restricted to bipartite graphs. In Section 6 we
show that all three problems can be solved in linear time when restricted to graphs with bounded treewidth, thereby
generalizing the known results on trees and series-parallel graphs. In Section 7, we show that the problem related to
OD-sets without isolated vertices is NP-complete when restricted to several other graph classes.

2. Preliminaries

Before we present our main results, we introduce some additional terminology and notation. Let G = (V, E) be
a graph. If S ⊆ V and S 6= ∅, then G[S] denotes the subgraph of G induced by S, i.e., G[S] has vertex set S and
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Fig. 1. The cube Q and the oQ-gadget.

its edge set contains all the edges of G with both end vertices in S. A vertex s ∈ S is called an isolate (or isolated
vertex) of S if it has no neighbors in S. The set of neighbors of a vertex v ∈ V is denoted by N (v), and the degree of
v by d(v) = |N (v)|. The closed neighborhood of v is N [v] = N (v) ∪ {v}. An OD-set of G is a set D ⊆ V such that
|N [v] ∩ D| ≡ 1 mod 2 for every vertex v ∈ V ; this implies that all vertices of G[D] have an even degree, a fact that
we will use frequently in the sequel. We use M O D-set for an OD-set of minimum cardinality, COD-set for an OD-set
D such that G[D] is connected, and ¬0OD-set for an OD-set without isolated vertices.

The Cube Q is the graph illustrated in Fig. 1(a). For an arbitrary vertex v ∈ V (Q), the graph Q − v is illustrated
in Fig. 1(b), together with three half-edges that will be used to attach Q − v to some other graph. We call this an open
Cube or oQ-gadget.

A k-lollipop consists of a k-cycle, i.e., a cycle Ck on k ≥ 3 vertices, together with one half-edge, the stick of the
lollipop, incident with one vertex of the k-cycle.

3. Odd dominating sets without isolates

We consider the decision problem ¬0ODS defined as follows:

¬0ODS
INSTANCE: Graph G = (V, E).
QUESTION: Is there a ¬0OD-set S ⊆ V ?

We first prove that ¬0ODS is NP-complete for general graphs. We use a reduction from 1-in-3 3SAT with no negated
literals ([15], Problem LO4; see the comments). We use 3SAT∗ to denote this problem and recall the definition for
convenience:

3SAT∗

INSTANCE: Set U of variables, collection C of clauses over U such that each clause c ∈ C has |c| = 3 and contains
no negated literal.
QUESTION: Is there a truth assignment for U such that each c ∈ C has exactly one true literal?

Theorem 1. ¬0ODS is NP-complete.

Proof. ¬0ODS is obviously in NP. We complete the proof by showing that for any instance I of 3SAT∗ we can
construct a graph G I of polynomial size in terms of the size of the instance I such that I has a satisfying truth
assignment if and only if G I has a ¬0OD-set.

Let I be an instance of 3SAT∗ with clause set C = {c1, c2, . . . , cp} and variable set U = {u1, u2, . . . , uq}. We
construct a graph G I as follows, as indicated in Fig. 2.

For each clause we introduce an oQ-gadget in which the half-edges are incident with the three variables in the
clause; these vertices are called the variable vertices. If two clauses have a variable in common, we add a 4-lollipop
and join its stick to a vertex which we also join to the two corresponding variable vertices; we call this vertex the stick
vertex. We add disjoint 4-lollipops for each of the common variable pairs. We add a new vertex for each clause and
join it to the vertex of the corresponding oQ-gadget that is a neighbor of none of the variable vertices; we call these
vertices of degree 1 the clause vertices. We make a number of simple observations, each followed by a short proof.

(1) None of the stick vertices are in any ¬0OD-set. This is clear, as every vertex of a 4-lollipop is dominated by a
¬0OD-set and therefore all vertices of the 4-cycle are contained in the ¬0OD-set. As every vertex of a ¬0OD-set has
an even number of neighbors in the ¬0OD-set, the stick vertices are not contained in any ¬0OD-set.
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Fig. 2. G I for I = {{x, y, z}, {x, u, v}, {x, y, v}}.

(2) All vertices of the 4-lollipops are in any ¬0OD-set. This is clear.
(3) If a variable is shared by several clauses, then the corresponding variable vertices are either all in the ¬0OD-set

or all not in the ¬0OD-set. This follows from (1) and (2) and the fact that the stick vertices have an odd number of
neighbors in any ¬0OD-set.

(4) The clause vertices are in no ¬0OD-set. This is obvious; otherwise we cannot avoid isolates in the ¬0OD-set.
(5) The neighbors of the clause vertices are in every ¬0OD-set. This follows immediately from (4).
(6) Exactly one C4 of every oQ-gadget is in any ¬0OD-set. By (5) and the fact that there are no isolates in

any ¬0OD-set, two neighbors of exactly one of the variable vertices of every oQ-gadget are in any ¬0OD-set. The
observation follows easily.

If I has a satisfying truth assignment, then in G I we define a ¬0OD-set D as follows. We let all vertices of all
C4’s corresponding to the true variables and the 4-lollipops belong to D. Then D is clearly a set without isolates, it is
consistent with variables appearing in more than one clause, and it is easy to check that D is an OD-set.

Conversely, suppose D is a ¬0OD-set of G I . Then by observations (1)–(6), each oQ-gadget intersects D in exactly
one C4, with C4’s of the corresponding variable vertices that are shared by several clauses all appearing or all not
appearing in D. If we set a variable true if and only if the corresponding C4’s appear in D, we get a satisfying truth
assignment for I . This completes the proof. �

Since the graphs G I that appear in the above proof are clearly bipartite, we obtain the following consequence.

Corollary 2. ¬0ODS is NP-complete for bipartite graphs.

We will use this result in the next two sections to prove that the minimum all-ones problem as well as the connected
OD-set problem remain NP-complete when restricted to bipartite graphs.

Note that, for ease of presentation, in the above proof we joined up all variable vertices that occur in more than one
clause as a complete graph (with 4-lollipops in between). We could have joined them up as a path (with 4-lollipops
in between) just as well. We will use this observation later to restrict the problem to graphs with a small maximum
degree and to 3-regular graphs.

4. Minimum all-ones problem for bipartite graphs

In this section we use the results of Section 3 to prove that the following problem remains NP-complete for bipartite
graphs.

MODS
INSTANCE: Graph G = (V, E) and integer k ≤ |V |.
QUESTION: Is there an OD-set S ⊆ V with |S| ≤ k?

As we remarked before, MODS is known to be NP-complete for general graphs [22], while it is solvable in linear time
for trees [10]. It is natural to ask for the complexity of MODS when restricted to bipartite graphs.
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Theorem 3. MODS is NP-complete for bipartite graphs.

Proof. MODS is obviously in NP. Let G be an instance graph for ¬0ODS from the proof of Theorem 1. Let N denote
the number of stick vertices (the number of lollipops) and O denote the number of oQ-gadgets (the number of clause
vertices) of G. Let A, B be the bipartition classes of G, chosen such that all variable vertices are in B. We add two
new vertices for each A-vertex in each oQ-gadget (but not for the clause vertex) and join them to the corresponding
A-vertex. We also add 4N + 6O + 2 new vertices for each A-vertex in the C4 of every 4-lollipop and join them to the
corresponding A-vertex. Let this new graph be G∗. Since all of the newly added vertices have degree 1, they will be in
an OD-set of G∗ if and only if their neighbor is not in the OD-set. This enables us to prove the following equivalence:
G has a ¬0OD-set if and only if G∗ has an OD-set of cardinality at most 4N + 6O .

If G has a ¬0OD-set D, then as in the proof of Theorem 1, a 4-cycle of each oQ-gadget and 4-lollipop is in D.
This can be extended to an OD-set D∗ of G∗ by adding the two degree 1 vertices for each of the O A-vertices of the
oQ-gadgets that are not in D. In total this gives 2O + 4O + 4N = 6O + 4N vertices in D∗.

For the converse, we assume that G∗ has an OD-set D∗ with |D∗
| ≤ 6O + 4N . This immediately implies that all

A-vertices of the 4-lollipops (minus the sticks) are in D∗, hence that their 4-cycles are in G∗
[D∗

]. We complete the
proof by showing that in D∗ precisely one 4-cycle through one variable vertex of each of the oQ-gadgets belongs to
D∗. This immediately translates to a ¬0OD-set in G.

Since the 4-cycles of all 4-lollipops are in G∗
[D∗

], as in the proof of Theorem 1 all variable vertices of one
variable are either all in D∗ or all not in D∗. If an oQ-gadget has none of its variable vertices in D∗, then not all of
these variable vertices can be dominated by an odd number of neighbors. This is easy to check. So each oQ-gadget
has at least one of its variable vertices v in D∗. If v has degree 2 in G∗

[D∗
], we either have a 4-cycle or a 6-cycle

of this oQ-gadget in G∗
[D∗

]. One easily checks that the 6-cycle leads to a contradiction for the middle vertex or its
neighboring clause vertex. So we obtain that D∗ intersects the oQ-gadget in a 4-cycle and that D∗ also contains the
two pendant vertices that are not adjacent to this 4-cycle. Thus we get a contribution of 6 vertices to D∗ for such an
oQ-gadget. If none of the variable vertices has degree 2 in G∗

[D∗
], then the set D∗ intersects this oQ-gadget in an

independent set. First suppose that at least one A-vertex v of this gadget is in D∗. Then N (v)∩ D∗
= ∅ and the clause

vertex is in D∗. Considering the middle vertex of the gadget, we get that exactly one of the other A-vertices, say w, is
in D∗. But then the variable vertex in N (v) ∩ N (w) has two neighbors in D∗, a contradiction. We conclude that none
of the A-vertices of this gadget is in D∗. But then all 6 added pendant vertices are in D∗ together with all the variable
vertices and the middle vertex of this gadget. Since all oQ-gadgets contribute at least 6 vertices to D∗ and all of the
4-lollipops contribute 4 vertices to D∗, we get a contradiction with |D∗

| ≤ 6O + 4N . Hence this case does not occur.
So each oQ-gadget contributes a 4-cycle and two degree 1 vertices to D∗, so the overall cardinality of D∗ is

4N +6O . As mentioned before, the 4-cycles in G∗
[D∗

] correspond to a ¬0OD-set of G. This completes the proof. �

5. Connected odd dominating set for bipartite graphs

The concept of a COD-set has been introduced recently by Caro et al. [9]. They proved that the related decision
problem is NP-complete for general graphs. It is clearly trivial for trees. In their concluding remarks they mentioned
the natural open problem of resolving the complexity for bipartite graphs. We use the results of Section 3 to solve this
problem by proving that the following problem remains NP-complete for bipartite graphs.

CODS
INSTANCE: Graph G = (V, E).
QUESTION: Is there a COD-set S ⊆ V ?

Theorem 4. CODS is NP-complete for bipartite graphs.

Proof. CODS is obviously in NP. To complete the proof we use a reduction from ¬0ODS for bipartite graphs. From a
bipartite instance graph G of ¬0ODS we construct a bipartite graph G∗ which is polynomial in the size of G such that
G has a ¬0OD-set if and only if G∗ has a COD-set. Our construction resembles the construction known as Mycielski’s
construction ([5], page 129) for obtaining triangle-free graphs of arbitrarily high chromatic number.

Let G be an instance graph for ¬0ODS, with bipartition classes A and B. For each vertex v ∈ A ∪ B we create two
buddies v′ and v′′ and we join v′ and v′′ to all the neighbors of v in G. We also add four new vertices xA, x ′

A, xB and
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Fig. 3. The construction in the proof of Theorem 4.

x ′

B and join xA, x ′

A to all vertices in {v′
|v ∈ A} ∪ {v′′

|v ∈ A}, and xB , x ′

B to all vertices in {v′
|v ∈ B} ∪ {v′′

|v ∈ B}.
Let the new graph be G∗. The construction is illustrated in Fig. 3.

Note that in Mycielski’s construction, only one buddy is created for each vertex of G, and an additional vertex is
joined to all buddy vertices, creating a nonbipartite graph.

G∗ is clearly bipartite. It remains to prove that G has a ¬0OD-set if and only if G∗ has a COD-set. Firstly, let D
be a ¬0OD-set of G. Then we can extend D to an OD-set D∗ of G∗ in the following way: for each v ∈ D put v,
v′, v′′ in D∗. Furthermore put xA, x ′

A, xB , x ′

B in D∗. As v′ and v′′ have the same neighbors in G as v, and are both
neighbors of either xA and x ′

A or xB and x ′

B , clearly all degrees in G∗
[D∗

] are even. By similar arguments, each vertex
in V (G∗) \ D∗ has an odd number of neighbors in D∗, so D∗ is an OD-set. Since D is a ¬0OD-set of G, each v ∈ D
has at least two neighbors in D. Hence each v ∈ D is connected to a u′

∈ D∗ for some u ∈ D. Clearly this implies
that all v ∈ D∗ are connected through the vertices xA, x ′

A, xB , x ′

B . Hence D∗ is a COD-set of G∗.
For the converse, consider the sets A′

= {v′
|v ∈ A} and A′′

= {v′′
|v ∈ A}. Since the corresponding vertices in

A′ and A′′ have the same neighborhoods in G∗, they are both either in an OD-set or not in an OD-set. So any OD-set
contains corresponding subsets of A′ and A′′. This also implies that both xA and x ′

A are in any OD-set of G∗. Similar
arguments apply to the analogously defined sets B ′, B ′′ and xB , x ′

B . Now, except for xA, x ′

A, a vertex of A also has
the same neighbors as its buddies in A′, A′′. So also for A, A′ and A′′ corresponding subsets are in any OD-set of
G∗, and the same holds for B, B ′, B ′′. Now let D∗ be a COD-set of G∗. Then D∗ contains no isolated vertex. Hence
D∗

∩ (A ∪ B) contains no isolated vertex. So the restriction of D∗ to G is a ¬0OD-set of G. This completes the
proof. �

6. Bounded treewidth

In this section we use MSOL; that is, that fragment of second-order logic where quantified relation symbols must
have arity 1. For example, the following sentence, which expresses that a graph (whose edges are given by the binary
relation E) can be 3-coloured, is a sentence of monadic second-order logic:

∃R∃W∃B {∀x ((R(x) ∨ W (x) ∨ B(x)) ∧ ¬(R(x) ∧ W (x))

∧¬(R(x) ∧ B(x)) ∧ ¬(W (x) ∧ B(x)) ) ∧ ∀x∀y ( E(x, y) ⇒

(¬(R(x) ∧ R(y)) ∧ ¬(W (x) ∧ W (y)) ∧ ¬(B(x) ∧ B(y))) )}

(the quantified unary relation symbols are R, W and B, and should be read as sets of ‘red’, ‘white’ and ‘blue’ vertices,
respectively). Thus, in particular, there exist NP-complete problems that can be defined in MSOL.

A seminal result of Courcelle [12] is that on any class of graphs of bounded treewidth, every problem definable in
MSOL can be solved in time linear in the number of vertices of the graph. Moreover, Courcelle’s result holds not just
when graphs are given in terms of their edge relation, as in the example above, but also when the domain of a structure
encoding a graph G consists of the disjoint union of the set of vertices and the set of edges, as well as unary relations
V and E to distinguish the vertices and the edges, respectively, and also a binary incidence relation I which denotes
when a particular vertex is incident with a particular edge (thus, I ⊆ V × E). The reader is referred to [12] for more
details as regards MSOL on graphs and also for the definition of treewidth which is not required here. For the proof of
our claim that all three problems are solvable in linear time for graphs with bounded treewidth, it is sufficient to show
the following.
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Proposition 5. MODS, ¬0ODS and CODS can be defined in MSOL.

Proof. We first recall the paradigm of the lamp lighting problem. Suppose initially that all vertices of a graph G are
in state 0 (no lamp is lighted), and in each step of a lighting scheme for one vertex v the vertices of N [v] change state
from 0 to 1 or from 1 to 0. Then G has an OD-set of cardinality at most k if and only if after k steps of a lighting
scheme all vertices of G are in state 1. So a lighting scheme for a graph G = (V, E) is a sequence of graphs

G ; G1 ; G2 ; · · · ; Gk,

where each Gi is isomorphic to G, but the states of the vertices (can) differ. Let W0 = V and, for 1 ≤ i ≤ k, let Wi
be the set of vertices of Gi that are in state 0. Let V (v) denote that v ∈ V , and let E(u, v) denote that uv ∈ E . (To be
precise, instead of uv ∈ E , we should write ∃e : e ∈ E ∧ (u, e) ∈ I ∧ (w, e) ∈ I .)

If we can write a formula Φ(Wi , Wi+1) of MSOL that says

there exists a vertex vi in Gi such that starting with the set Wi of vertices in state 0 in Gi , changing the state of
the vertices in N [vi ] yields the set Wi+1 of vertices in state 0 in Gi+1,

then we could prove the proposition for MODS with the following sentence Ωk which is satisfied if and only if G has
an OD-set of cardinality at most k:

∃W0∃W1 · · · ∃Wk(∀v(W0(v) ⇔ V (v)) ∧ Φ(W0, W1) ∧ Φ(W1, W2) ∧ · · · ∧ Φ(Wk−1, Wk)

∧(∀v(¬Wk(v) ⇔ V (v))).

(Here and elsewhere we have presupposed that each Wi is a set of vertices; we could easily include additional clauses
to check this explicitly.)

Since the change of states only affects vertices in N [vi ], it is not difficult to write Φ(Wi , Wi+1) (here u plays the
role of vi ):

∃u(V (u) ∧ (Wi (u) ⇔ ¬Wi+1(u)) ∧ ∀w((V (w) ∧ E(u, w) ⇒ (Wi (w) ⇔ ¬Wi+1(w))))).

Checking for isolated vertices in the OD-set or checking whether the OD-set induces a connected subgraph can be
incorporated in a rather straightforward way. We omit the details. �

7. OD-sets without isolates revisited

In this section we study ¬0ODS restricted to other graph classes. We will show that ¬0ODS remains NP-complete
for a number of graph classes, including planar graphs, graphs with girth at least 5, and graphs in which the maximum
degree is bounded by a small constant, in particular also 3-regular graphs. We start by recalling the observation that
in the proof of Theorem 1 we could have connected the variable vertices that occur in more than one clause by a path
instead of a complete graph (with 4-lollipops added in the same way as in the proof of Theorem 1). This immediately
yields the following result.

Corollary 6. ¬0ODS is NP-complete for bipartite graphs with ∆ ≤ 4.

Before we reduce the maximum degree to 3 (losing bipartiteness) in the last subsection, we first introduce another
useful gadget in the next subsection that deals with girth restrictions.

7.1. ¬0ODS for graphs with girth at least 5

The girth of a graph G is the length of a smallest cycle in G. Since the graphs in the proof of Theorem 1 are bipartite
but contain (a lot of) 4-cycles, they have girth 4. In this subsection we show that we can replace the oQ-gadgets by
oP-gadgets, that are defined as follows.

Fig. 4(a) shows the Petersen graph P , whereas in Fig. 4(b) we have redrawn P −v for an arbitrary vertex v ∈ V (P)

together with three half-edges. We call this an open Petersen graph or oP-gadget.
Combined with 5-lollipops this yields the following.

Corollary 7. ¬0ODS is NP-complete for graphs with girth at least 5.
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Fig. 4. The Petersen graph and the oP-gadget.

Fig. 5. A ¬0OD-set for the oP-gadget.

Let us explain the construction. Replace each oQ-gadget in the graphs from the proof of Theorem 1 by an oP-
gadget, and each 4-lollipop by a 5-lollipop. The only thing that remains is to analyze the possible ways in which a
¬0OD-set can intersect an oP-gadget.

The 5-cycle indicated in Fig. 5 by the thick edges contains precisely one variable vertex, and all vertices of the
oP-gadget that are not on this 5-cycle have an odd number of neighbors (one) on this 5-cycle. There is a similar
5-cycle that uses the other two chords of the 9-cycle. These 5-cycles exist for each of the variable vertices. It is easy
to check that the larger cycles in the oP-gadget are not induced or dominate a vertex an even number of times (two).
Therefore, the 5-cycles have the same properties with respect to ¬0OD-sets as the 4-cycles in the oQ-gadget in the
proof of Theorem 1. We omit the details.

We will use the above approach later to prove that ¬0ODS remains NP-complete for 3-regular graphs, but we will
lose the girth restriction.

7.2. ¬0ODS for planar graphs

In this subsection we will show that ¬0ODS remains NP-complete for planar graphs. In order to do so we present
a gadget for replacing intersecting edges in an embedding of the graphs from the proof of Theorem 1. The hardest
part is to show that the proposed gadget has the suitable properties with respect to ¬0OD-sets. First note that the
oQ-gadgets are planar and can be put in the plane without intersecting each other. The only thing we have to consider
is intersections between connecting paths that join variable vertices corresponding to variables that are shared by
several clauses. The lollipops can be neglected as they can always be added to a plane embedding of the graphs in
which the lollipops have been contracted to the stick vertex where they have been attached. By the observation that in
the proof of Theorem 1 we could have connected the variable vertices that occur in more than one clause by a path
instead of a complete graph (with 4-lollipops added in the same way as in the proof of Theorem 1), we may assume
that intersections only occur between connecting paths that join pairs associated with different variables. We will use
the grid gadget that is illustrated in Fig. 6.

As illustrated in Fig. 6, we start with a 4 × 4-grid and we add a P3 with a lollipop attached to its middle vertex at
two sides (let us say west and south) of the 4 × 4-grid, while we add a P3 with nothing attached to it at the other sides
(east and north). The situation that is indicated by the 10-cycle with the thick edges in Fig. 6 corresponds to the case
that both the x-vertices and y-vertices belong to a ¬0OD-set (since their neighbors are clearly not in the ¬0OD-set,
so must have an odd number of neighbors in the ¬0OD-set). If we take a similar 10-cycle containing the north and
east corners of the 4 × 4-grid, this corresponds to the case that both the x-vertices and y-vertices do not belong to a
¬0OD-set. The case that the x-vertices are in a ¬0OD-set that does not contain the y-vertices can be represented by a
10-cycle containing the north and west corner; the final case by a 10-cycle through the east and south corner. It is not
difficult to check that there is no ¬0OD-set that could contain another combination with three variable vertices in or
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Fig. 6. The grid gadget.

not in the set. In fact, by looking at the degree four vertices of the grid, it is not difficult to show that a ¬0OD-set D
can only intersect the grid gadget in one of the four 10-cycles as described above:

• If all of them are in D, then one of the corners of the grid is not dominated.
• If three of them are in D, then the other one cannot have three neighbors in D.
• If two of them are in D, the case that they are nonadjacent yields to a contradiction by looking at one of the other

degree four vertices: it must have three neighbors in D, but then the other neighbor has two neighbors in D; the
case that they are adjacent yields one of the 10-cycles by looking at the number of neighbors the other degree four
vertices have in D: if this number is 3 for one of them, then it is 3 for both, and a 10-cycle is immediate; if this
number is 1 for both, we get a contradiction in a corner of the grid.

• If one of them is in D, then looking at the nonadjacent degree four vertex it must have one neighbor in D. The way
D intersects the grid is then prescribed (up to symmetry) and we get a contradiction in the corner closest to the
degree four vertex in D.

• If none of them is in D, we can only have that D intersects the grid in two paths along opposite sides of the grid, a
clear contradiction (because of the 4-lollipops in the gadget).

This confirms that the grid gadget has the suitable properties with respect to ¬0OD-sets. It is routine to check that
we can replace intersections in an embedding one by one, using the grid gadget. Hence we obtain the following result.

Corollary 8. ¬0ODS is NP-complete for planar graphs.

Using the grid gadget we cannot avoid introducing odd cycles (although triangles can be avoided). It is not unlikely
that some other gadget exists to show that ¬0ODS remains NP-complete for bipartite planar graphs. However, the
above gadget would be useless in the case of OD-sets, since then combinations with three variable vertices in an
OD-set (containing isolates) are possible.

7.3. Further degree restrictions for ¬0ODS

In this subsection we will make some final remarks on restricting the maximum degree of the instance graphs for
¬0ODS, and we will show that ¬0ODS remains NP-complete for 3-regular graphs.

For the remainder we assume we use the oP-gadgets instead of the oQ-gadgets and we use connecting paths
between the variable vertices appearing in more than one clause. By Corollary 6 we only have to take care of removing
any degree two and degree four vertices (there are no vertices with degree smaller than two in the graphs in the proof
of Theorem 1 if we use oP-gadgets). The only variable vertices with degree 2 or 4 are variable vertices appearing in
only one clause or appearing as internal vertices on the connecting paths, respectively; the other variable vertices have
degree 3. We will first introduce a new gadget in order to bring the maximum degree down to 3. After that we will
work towards 3-regular graphs. In order to do so, we will introduce an alternative for the 4-lollipop to avoid degree 2
vertices in the lollipops, and we will duplicate clause gadgets if at least one of its variable vertices has degree 2, and
connect the corresponding variable vertices with paths as before.

In order to get rid of variable vertices that have degree four, we introduce the 3-gadget that is illustrated in Fig. 7.
We assume that the half-edges of this gadget are attached to vertices that are sticks of lollipops. Then it is obvious

that any ¬0OD-set intersects the 3-gadget in a number of cycles. By considering the grey vertices of the gadget we
are able to make the latter statement more precise.
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Fig. 7. The 3-gadget.

Fig. 8. How to get rid of degree 4 vertices.

Fig. 9. The extended lollipop.

If all three grey vertices are in a ¬0OD-set D, then it is easy to see that D intersects the gadget in a 9-cycle neither
containing any of the black vertices nor any of the triangle vertices. If some grey vertex v is not in D, then the triangle
vertices must be in D; otherwise the neighbor of v in the triangle will have 0 or 2 neighbors in D. This implies that in
this case none of the grey vertices is in D. Looking at the black vertices, we can conclude that in this case all vertices
except the grey ones are in D. So, the set D intersects the gadget in a 12-cycle and a 3-cycle.

In particular, we have that either all or none of the black vertices of a 3-gadget are in a ¬0OD-set.
Suppose now that we have a connecting path between variable vertices that occur in more than two clauses, yielding

vertices with degree 4. Then we duplicate all clause gadgets involved in this path, and we use the 3-gadgets to connect
them as indicated in Fig. 8. In this figure the ovals indicate the clause gadgets, the diamonds indicate the lollipops,
and the 6-cycles indicate the connecting 3-gadgets.

By the property of the 3-gadget, it is clear that this shows that ¬0ODS remains NP-complete for graphs with ∆ ≤ 3.
To avoid vertices of degree 2 caused by the 4-lollipops, we can use the extended lollipop that is shown in Fig. 9.

One easily checks that the 4-cycle and 3-cycle indicated by the thick edges in Fig. 9 are contained in any ¬0OD-set
of a graph that contains this extended lollipop attached to some vertex. Using this extended lollipop instead of the
4-lollipops, and duplicating clause gadgets to get rid of degree 2 variable vertices as we discussed before, we obtain
the following result.

Corollary 9. ¬0ODS is NP-complete for 3-regular graphs.
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8. Concluding remarks

In order to solve the complexity questions for MODS and CODS restricted to bipartite graphs, we introduced and
studied the complexity of a new variant ¬0ODS. Our main results showed that all three problems are NP-complete
when restricted to bipartite graphs. For graphs with bounded treewidth, however, all three problems were shown to be
solvable in linear time, by using monadic second order logic. We also studied ¬0ODS restricted to other graph classes.
By using a collection of different gadgets, we could show that ¬0ODS remains NP-complete for a number of graph
classes, including planar graphs, graphs with girth at least 5, and graphs in which the maximum degree is bounded by
a small constant, in particular also 3-regular graphs. By the nature of the reductions we cannot apply these results to
prove complexity results for MODS or CODS when restricted to planar graphs, graphs with girth at least 5, or graphs
with small maximum degree. This implies many open problems with respect to the complexity of MODS and CODS.
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