
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008 3

Towards Software Defined Radios Using
Coarse-Grained Reconfigurable Hardware

Gerard K. Rauwerda, Paul M. Heysters, and Gerard J. M. Smit

Abstract—Mobile wireless terminals tend to become multimode
wireless communication devices. Furthermore, these devices
become adaptive. Heterogeneous reconfigurable hardware pro-
vides the flexibility, performance, and efficiency to enable the
implementation of these devices. The implementation of a wide-
band code division multiple access and an orthogonal frequency
division multiplexing receiver using the same coarse-grained
reconfigurable MONTIUM tile processor is discussed. Besides the
baseband processing part of the receiver, the same reconfigurable
processor has also been used to implement Viterbi and Turbo
channel decoders.

Index Terms—Heterogeneous reconfigurable hardware, orthog-
onal frequency division multiplexing (OFDM), software defined
radio (SDR), system-on-chip (SoC), turbo decoding, viterbi, wide-
band code division multiple access (WCDMA).

I. INTRODUCTION

FUTURE wireless communication systems tend to become
multimode, multifunctional devices. Adaptivity becomes

more important now then ever. These systems have to adapt to
changing environmental conditions (e.g., more or less users in
a cell or varying noise figures due to reflections or user move-
ments) as well as to changing user demands [bandwidth, traffic
patterns, and quality-of-service (QoS)]. When the system can
adapt (at run-time) to the environment, significant savings in
computational costs can be obtained [3], [4]. Furthermore, the
hardware architectures have to be extremely efficient as these
are used in battery-operated terminals and have to be cost effec-
tive as they are used in consumer products.

Heterogeneous reconfigurable hardware platforms offer the
necessary flexibility for performing multiple wireless commu-
nication standards and can achieve the performance required by
the wireless standards. Furthermore, the combination of mixed-

Manuscript received May 10, 2006; revised May 6, 2007. This work was sup-
ported in part by the EU-FP6 project 4S (Smart Chips for Smart Surroundings)
(IST-001908) and the Freeband Knowledge Impulse Programme, a joint initia-
tive of the Dutch Ministry of Economic Affairs, knowledge institutions and in-
dustry. A preliminary version of this paper was presented at the Proceedings of
the International Conference on Engineering and Reconfigurable Systems Al-
gorithms (ERSA), 2005 and 2006.

G. K. Rauwerda is with Recore Systems, 7500 AB Enschede, The Nether-
lands and also with University of Twente, Department of Electrical Engineering,
Mathematics, and Computer Science, 7500 AB Enschede, The Netherlands
(e-mail: gerard.rauwerda@recoresystems.com).

P. M. Heysters is with Recore Systems, 7500 AB Enschede, The Netherlands
(e-mail: paul.heysters@recoresystems.com).

G. J. M. Smit is with Department of Electrical Engineering, Mathematics, and
Computer Science, University of Twente, 7500 AB Enschede, The Netherlands
(e-mail: g.j.m.smit@utwente.nl).

Digital Object Identifier 10.1109/TVLSI.2007.912075

grained reconfigurable solutions enables energy efficient imple-
mentations of the wireless standards. Much work has been done
on software defined radio (SDR) in the SDR forum context.1

One of the main reasons for introducing reconfigurable hard-
ware in a wireless terminal is to support multiple wireless com-
munication standards. The support of multiple wireless com-
munication standards introduces a first level of adaptivity in
the wireless terminal because the terminal can switch between
wireless communication standards. For example, when packet
data transport is performed over Universal Mobile Telecommu-
nications System (UMTS) and a wireless local area network
(WLAN) hotspot becomes available the terminal can switch
from UMTS to a WLAN standard. This is referred to as stan-
dards level adaptivity. Standards level adaptivity has an impact
on the digital signal processing (DSP) in the wireless terminal
because the wireless communication standard defines the DSP
functions that have to be performed to implement the standard
[5].

Although a wireless communication standard usually defines
the DSP functionality, which has to be performed to implement
the standard, it usually does not define the algorithms that have
to be used to implement these functions. So, the communica-
tion system can, therefore, “adapt the algorithms” that are used
to implement the DSP functionality. “Adapt the algorithms”
means that the communication system selects an algorithm from
a set of algorithms that implement the same DSP functionality.
Therefore, this second level of adaptivity is referred to as algo-
rithm-selection level adaptivity [5].

For a specific algorithm, there are also opportunities for adap-
tivity by changing parameters of the algorithm. This third level
of adaptivity is called algorithm-parameter level adaptivity [5].

Dynamic reconfiguration of hardware is required in order to
have real adaptive systems. The rate of reconfiguration depends
on the levels of adaptivity that is addressed by the receiver.
Hence, the algorithm-parameter level will be more frequently
addressed than the algorithm-selection level. The reconfigura-
tion rate is highly dependent on the operating environment. The
standards level is due to interaction with the end-user. For in-
stance, the standard selected by the user changes on a minute
or hour rate, while the parameters of a standard can change on
a second rate, influenced by the quality of, e.g., the wireless
channel.

In this paper, we discuss the implementation of wireless
communication systems on heterogeneous dynamically recon-
figurable hardware. The implementation of a flexible RAKE
receiver, used for UMTS communications, and the implementa-
tion of an orthogonal frequency division multiplexing (OFDM)

1SDR forum. [Online]. Available: http://www.sdrforum.org

1063-8210/$25.00 © 2008 IEEE

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

receiver, used in HiperLAN/2, is studied to show the feasibility
of implementing multimode communication systems using
dynamically reconfigurable hardware.

Besides baseband processing, the presented reconfigurable
architecture is also used to implement channel decoding algo-
rithms. The implementation of flexible Viterbi and Turbo de-
coders is discussed. These channel decoders have been applied
in many wireless communication standards, using slightly dif-
ferent settings for each standard.

Section II introduces the heterogeneous reconfigurable
system-on-chip (SoC) template. The coarse-grained recon-
figurable processing elements in the SoC are implemented
by MONTIUM processing tiles. The application domain of the
proposed SoC template is explained in Section III. Examples
of applications, which are intended to be mapped on reconfig-
urable hardware, are baseband functionality of wideband code
division multiple access (WCDMA) and OFDM receivers, and
channel decoders. The implementation results of DSP kernels
in reconfigurable hardware are presented in Section IV. In
Section V, conclusions are drawn on the presented work.

II. RECONFIGURABLE HETEROGENEOUS ARCHITECTURE

Implementation of SDR requires a flexible hardware archi-
tecture. Traditional SDR approaches are implemented on homo-
geneous flexible architectures, like general purpose processors
(GPPs) or digital signal processors (DSPs) [6]. Since baseband
processing in the wireless receiver is computationally intensive,
the terminal’s hardware architecture has to be quite powerful.
Moreover, as wireless terminals are battery-powered, the impor-
tance of energy efficiency of the hardware architecture is em-
phasized.

A common drawback of the traditional homogeneous flexible
architecture is its relative energy inefficiency. Whereas, het-
erogeneous reconfigurable hardware, consisting of processing
elements of different granularities, is designed with these con-
straints—flexibility, performance, and energy efficiency—in
mind.

A. Chameleon SoC Template

The idea of heterogeneous processing elements is that one
can match the granularity of the algorithms with the granularity
of the hardware. Four processor types can be distinguished:
general purpose, fine-grained [e.g., field-programmable gate
array (FPGA)], coarse-grained (e.g., MONTIUM [7], [8]),
and dedicated [e.g., application-specific integrated circuit
(ASIC)]. Fig. 1 depicts a heterogeneous reconfigurable hard-
ware template, consisting of processing elements of different
granularities. Matching the granularity of the reconfigurable
hardware with the algorithm provides flexibility at the right
level.

• General Purpose. The general purpose processor is the
most flexible hardware architecture. It can be programmed
to perform almost any algorithm. General purpose proces-
sors are well suited for control-oriented functions. Due to
the large overhead in control, these processors are not very
energy efficient.

• Fine-Grained. Fine-grained reconfigurable devices are bit-
level programmable. Because of the configurability at bit-

Fig. 1. Chameleon SoC template.

Fig. 2. MONTIUM processing tile.

level, the configuration overhead is large. Fine-grained re-
configurable devices are perfectly suited for prototyping
and implementing encryption algorithms.

• Coarse-Grained. Coarse-grained reconfigurable devices
are flexible at word-level. Multipliers, adders, etc., are
hardwired in these devices. Because only coarse func-
tional blocks have to be configured, the configuration
overhead is small. These architectures are more suited for
data-oriented functions, like algorithms performed in the
DSP domain.

The proposed tiled SoC template, Chameleon [8], is com-
posed of the previously mentioned processor types (see Fig. 1).
The tiles are interconnected by a network-on-chip (NoC). Both
SoC and NoC are dynamically reconfigurable, which means that
the programs (running on the reconfigurable tiles) as well as the
communication channels are defined at run-time. The configu-
ration of the processing tiles and the configuration of the NoC
is coordinated by a special coordination function. This coordi-
nation function can be implemented in a GPP processing tile,
which is programmed with a run-time operating system, which
schedules the DSP tasks at run-time on the heterogeneous re-
configurable SoC. The coarse-grained reconfigurable tiles in the
Chameleon SoC template are MONTIUM processing tiles [7], as
depicted in Fig. 2.

B. Montium Processing Tile

The MONTIUM is an example of a coarse-grained reconfig-
urable processor. The MONTIUM [7], [8] targets the 16-bit DSP

RAUWERDA et al.: TOWARDS SOFTWARE DEFINED RADIOS USING COARSE-GRAINED RECONFIGURABLE HARDWARE 5

algorithm domain. A single MONTIUM processing tile is de-
picted in Fig. 2. At first glance the MONTIUM architecture bears
a resemblance to a VLIW processor. However, the control struc-
ture of the MONTIUM is very different.

1) Communication and Configuration Unit: The lower part
of Fig. 2 shows the communication and configuration unit
(CCU) and the upper part shows the reconfigurable tile pro-
cessor (MONTIUM TP). The CCU implements the interface for
off-tile communication. The definition of the off-tile interface
depends on the NoC technology that is used in the SoC. The
CCU enables the MONTIUM to run in “streaming” as well
as in “block” mode. In “streaming” mode the CCU and the
MONTIUM TP run in parallel (communication and computation
overlap in time). In “block” mode the CCU first reads a block of
data, then starts the MONTIUM TP, and finally after completion
of the MONTIUM TP the CCU sends the results to the next tile.

The CCU implements the network interface controller be-
tween the NoC and the MONTIUM TP. The CCU provides con-
figuration and communications services to the MONTIUM TP,
i.e., it follows:

• configuration of the Montium TP and parts of the CCU
itself;

• block-based communication to move data into or from the
Montium TP memories and registers (using direct memory
access);

• streaming communication to stream data into and/or out of
the Montium TP while computing.

2) Montium Tile Processor: The TP is the computing part of
the MONTIUM that can be configured to implement a particular
algorithm. Fig. 2 reveals that the hardware organization of the
tile processor is very regular. The five identical arithmetic logic
units (ALUs) (ALU1–ALU5) in a tile can exploit spatial con-
currency to enhance performance. This parallelism demands a
very high memory bandwidth, which is obtained by having ten
local memories (M01–M10) in parallel. The small local mem-
ories are also motivated by the locality of reference principle.
The data path has a width of 16-bits and the ALUs support both
signed integer and signed fixed-point arithmetic. The ALU input
registers provide an even more local level of storage. Locality
of reference is one of the guiding principles applied to obtain
energy efficiency in the MONTIUM. A vertical segment that con-
tains one ALU together with its associated input register files, a
part of the interconnect, and two local memories is called a pro-
cessing part (PP). The five PPs together are called the processing
part array (PPA). A relatively simple sequencer controls the en-
tire PPA. The sequencer selects configurable PPA instructions
that are stored in the decoders of Fig. 2. For (energy) efficiency,
it is imperative to minimize the control overhead. This can be
accomplished by statically scheduling instructions as much as
possible at compile time.

Fig. 3 shows a block diagram of the ALU that is used in the
MONTIUM. A single ALU has four 16-bit inputs. Each input has
a private input register file that can store up to four operands.
The input register file cannot be bypassed, i.e., an operand is al-
ways read from an input register. Input registers can be written
by various sources via a flexible interconnect. An ALU has two
16-bit outputs, which are connected to the interconnect. The
ALU is entirely combinational and consequentially there are no

Fig. 3. MONTIUM ALU.

pipeline registers within the ALU. The function units in level
1 of the ALU can be configured to perform general arithmetic
and logic operations that are available in languages like C (ex-
cept multiplication and division). Neighboring ALUs can also
communicate directly on level 2. The West-output of an ALU
connects to the East-input of the ALU neighboring on the left.

3) Configuration: The MONTIUM TP has no fixed instruction
set, but the instructions are configured at configuration-time.
During configuration of the MONTIUM, the CCU loads the con-
figuration data (i.e., instructions of the ALUs, memories, and
interconnects; sequencer and decoder instructions) in the con-
figuration memory of the MONTIUM. The total configuration
memory size of the MONTIUM is about 2.8 kB. However, con-
figuration sizes of DSP algorithms mapped on the MONTIUM

are typically in the order of 1 kB. For example, a 64-point fast
fourier transform (FFT) has a configuration size of 946 bytes.

By sending a configuration file containing configuration
RAM addresses and data values to the CCU, the MONTIUM TP
can be configured via the NoC. The configuration memory of
the MONTIUM is implemented as a 16-bit wide RAM memory
that can be written by the CCU. By updating certain configu-
ration locations of the configuration memory, the MONTIUM is
partially reconfigured.

4) Memory: In the considered MONTIUM implementation,
each local SRAM is 16-bit wide and has a depth of 1024
positions, which adds up to a storage capacity of 16 kb/local
memory. A reconfigurable address generation unit (AGU)
accompanies each memory. It is also possible to use the
memory as a lookup table for complicated functions that cannot
be calculated using an ALU, such as sine or division (with
one constant). A memory can be used for both integer and
fixed-point lookups.

C. Multiprocessor SoC

The MONTIUM is typically used in a heterogeneous multipro-
cessor SoC. For instance, one or more MONTIUM cores can be
used to offload digital signal processing tasks from a general

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

Fig. 4. Reconfigurable subsystem with four MONTIUM tiles.

purpose processor. Fig. 4 shows an example of a simple recon-
figurable subsystem that is part of a more complex SoC. A proto-
type chip with four MONTIUM tiles is currently implemented and
samples are expected end 2007. The chip is intended to be used
for digital radio (e.g., DAB) and contains only 4 MONTIUM TPs,
which is sufficient for the digital radio application. The chip is
manufactured in 130-nm CMOS technology and the area of the
reconfigurable subsystem is about 15 mm [9].

In Fig. 4, four MONTIUM processing tiles are connected via
the CCU to an NoC. Each processing tile is connected to a router
of the circuit switched NoC. Both routers are connected to the
advanced high performance bus (AHB) bridge, which connects
the reconfigurable subsystem to embedded processors, high-
performance peripherals, DMA controllers, on-chip memory,
and input/output interfaces.

III. APPLICATION DOMAIN

A. SDR

SDR for wireless communication systems are characterized
by an analog front-end followed by a programmable, digital
baseband processing part. In the analog front-end, the radio
signal is received, filtered, and amplified. The filtered, ampli-
fied radio signal is converted to digital samples, which are the
input of the digital baseband processing part. A programmable,
digital baseband processing part enables adaptation features as
described in Section I.

A complete ASIC-based radio system has limited use since
parameters for each of the functional modules are fixed. A radio
system built using SDR technology extends the usability of the
system to a range of applications using different link-layer pro-
tocols and modulation/demodulation techniques. SDR provides
an efficient and relatively inexpensive solution to the design of
multimode, multiband, multifunctional wireless devices that can
be enhanced using software upgrades.

SDR-enabled devices (i.e., mobile terminals) can be dynam-
ically programmed to reconfigure the characteristics of the de-
vice. So, the same hardware can be adapted to perform different
functions at different times (time-multiplexed).

Another advantage of the SDR template is the fact that real
adaptive systems can be implemented. Traditional algorithms

TABLE I
DOWNLINK UMTS PROPERTIES

in wireless communications are rather static. The recent emer-
gence of new applications that require sophisticated adaptive,
dynamical algorithms based on real-time signal and channel sta-
tistics to achieve optimum performance has drawn renewed at-
tention to run-time reconfigurability [10].

However, this flexibility comes at a cost of extra area and
configuration overhead. By choosing the right granularity of the
reconfigurable hardware, the costs can be controlled. To get a
better understanding of these costs, we will proceed as follows:

1) describe key building blocks of the wireless application
domain (Sections III-B–III-E);

2) discuss the implementation results and costs of building
blocks in reconfigurable hardware (Sections IV-A–IV-E).

B. Wideband CDMA Receiver

The UMTS standard, defined by ETSI, is an example of a
third generation (3G) mobile communication system. The com-
munication system has an air interface that is based on CDMA.
We only focus on the downlink of the UMTS receiver at the mo-
bile terminal in the FDD mode, the most relevant UMTS prop-
erties are shown in Table I [11].

Fig. 5 shows a possible baseband processing function, per-
formed in the WCDMA receiver. Since multipath fading is a
common phenomenon in wireless communication systems, the
receiver has to combat for the effects of multipath fading. In the
UMTS communication system, the signals from the strongest
multipaths are received individually. This means that the path
searcher of the receiver searches for the strongest received paths
and estimates the path-delays. Whenever the delay of an indi-
vidual path is known, the receiver will perform the descram-
bling and despreading operations on the delayed signal. The op-
erations of descrambling and despreading are also denoted as
a RAKE finger. In the maximal ratio combiner (MRC) the re-
ceived soft-values of the individual RAKE fingers are individu-
ally weighted and combined to provide optimal signal-to-noise
ratio. The weighting factors of the individual RAKE fingers are
determined by a channel estimator. The RAKE fingers in coop-
eration with the MRC are called RAKE receiver.

C. OFDM Receiver

High performance radio local area network (HiperLAN/2) is
a WLAN access technology and is similar to the IEEE 802.11a
WLAN standard. HiperLAN/2 operates in the 5 GHz frequency
band and uses orthogonal frequency division multiplexing
(OFDM) to transmit the analogue signals. The bit rate of
HiperLAN/2 at the physical level depends on the modulation
type and is either 12, 24, 48, or 72 Mb/s.

The basic idea of OFDM is to transmit high data rate informa-
tion by dividing the data into several parallel bit streams, and let
each one of these bit streams modulate a separate subcarrier. A

RAUWERDA et al.: TOWARDS SOFTWARE DEFINED RADIOS USING COARSE-GRAINED RECONFIGURABLE HARDWARE 7

Fig. 5. WCDMA baseband functions in the receiver.

TABLE II
PROPERTIES OF DIFFERENT OFDM-BASED STANDARDS

Fig. 6. HiperLAN/2 baseband functions in the receiver.

HiperLAN/2 channel contains 52 subcarriers and has a channel
spacing of 20 MHz. 48 subcarriers carry actual data and 4 carry
pilots.

The receiver not only performs the inverse operation of the
transmitter, it also has to correct for all the distortions that are
introduced in the wireless channel. Fig. 6 depicts a model of
the HiperLAN/2 receiver. In general, the model can be used for
any OFDM-like system. The different standards for OFDM-like
systems, e.g., HiperLAN/2, WiMAX, digital audio broadcasting
(DAB), digital radio mondiale (DRM), are generally different
in the number of subcarriers and the transmission bandwidth.
Table II summarizes the OFDM properties for different stan-
dards.

The synchronization of the receiver is performed in two steps.
First, coarse-synchronization is performed in order to synchro-
nize the receiver with the frame. During coarse-synchronization
the received signal is correlated with known preambles, which
indicate the start of a frame. Second, the prefix information of an
OFDM symbol is used for fine-synchronization. After fine-syn-
chronization, the prefix is removed from the OFDM symbol.

Differences between the oscillator frequencies of the trans-
mitter and the receiver result in frequency offset and cause inter-
subcarrier interference. The HiperLAN/2 receiver can compen-
sate for frequency offset by multiplying the data samples of an
OFDM symbol with the frequency offset correction coefficient.
The frequency offset correction coefficient can be determined
by using information from the received preamble sections.

The inverse OFDM part of the receiver converts the received
signal into received subcarrier values. The received subcarrier
values may still suffer from distortions that need to be corrected
before demapping them to a bitstream.

The equalizer corrects the distortions caused by frequency se-
lective fading. The coefficients for the equalizer can be deter-
mined by using information from the received preamble sections
of the MAC frame. Since the coherence time of a HiperLAN/2
channel is about 20 ms and a burst of a MAC frame has a du-
ration of 2 ms, the coefficients need to be determined only at
the start of the MAC frame [12]. Based on the equalized pilot
values, the phase distortion of the received signal is corrected.

The received complex-number samples will be translated into
an useful received bitstream. The demap function assumes that
the most likely symbol that was transmitted, was the symbol that
maps to the value closest to the received value.

D. Viterbi Decoder

Shannon described in [13] that it is possible to reliably send
information over a communication channel with a transmission
rate, which is limited by the Shannon capacity (or Shannon

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

Fig. 7. Convolutional encoder (left) and its state machine (right).

Fig. 8. Turbo encoder (left) and decoder (right).

limit). The Shannon limit is the absolute limit, where no im-
provement on the bit error rate (BER) can be made without in-
creasing the energy of the bits. Shannon described his theorem,
however, he did not give a solution to reliably send informa-
tion. Many error-correction code schemes have been proposed
until now. For example, convolutional codes are widely used in
communication systems as error-correction codes. These error-
correction codes enable reliable communication of information
over a noisy, distorted communication channel by adding redun-
dant information [14].

Convolutional code decoding algorithms are used to estimate
the encoded input information, using a method that results in the
minimum possible number of errors. Fig. 7 shows the functional
diagram of a convolutional encoder as well as its state machine.
In [15], Viterbi originally described his maximum-likelihood
sequence estimation algorithm, commonly known as the Viterbi
algorithm. The job of the decoder is to estimate the path through
the trellis that was followed by the encoder. A trellis diagram
simply shows the progression of the state of the encoder for
different symbol times.

E. Turbo Decoder

Turbo codes, a new family of convolutional codes were pro-
posed in [16] and [17]. These codes are built using concatena-
tion of two recursive systematic convolutional (RSC) codes and
their performance is close to the Shannon limit. The recursive
codes have a feedback loop in the convolutional encoder, which
causes the state of the encoder to be dependent on the state as
well as the input. Fig. 8 depicts the basic building blocks of the
turbo encoder and its decoder. The Turbo encoder consists of
two RSC encoders and an interleaver.

The decoding of Turbo codes is performed in an iterative way.
The decoder consists of a deinterleaver and two decoder blocks.
These decoders are mostly referred to as soft-input–soft-output

Fig. 9. RAKE receiver in heterogeneous processing tiles.

(SISO) decoders. Each SISO decoder estimates the log-likeli-
hood ratio (LLR), which denotes the logarithm of the probability
that a “1” is transmitted divided by the probability that a “0” is
transmitted, based on its input signals. These input signals of the
SISO decoder are the parity input and systematic input, which
is also called the intrinsic information, and the feedback infor-
mation derived by the previous SISO decoder, which is called
the extrinsic information. Each iteration of Turbo decoding will
add extra information to make a better decision on the decoded
bit stream.

The Turbo and convolutional code schemes have been
adopted by many wireless communication standards. In the
3G UMTS system both coding schemes are employed. Turbo
coding has been used for data channels and convolutional
coding for voice channels [18]. Convolutional code schemes are
employed in many OFDM-based standards, like HiperLAN/2
and DAB.

IV. IMPLEMENTATION RESULTS

The previously mentioned DSP building blocks have been
implemented in heterogeneous reconfigurable hardware. The
target architecture for mapping the DSP algorithms was the
coarse-grained MONTIUM architecture. Mapping an application
efficiently to, e.g., the MONTIUM TP requires knowledge of both
the hardware architecture and the application. Details on the
mapping of the applications are described in [1] and [2]. This
section emphasizes on implementing multistandard multimode
receivers using the MONTIUM architecture in a heterogeneous
reconfigurable SoC.

A. Wideband CDMA Receiver

The baseband processing of the WCDMA receiver has been
implemented in heterogeneous reconfigurable hardware. Since
most baseband processing consists of multiply-accumulate
(MAC) operations, the baseband processing of the receiver
was implemented in coarse-grained reconfigurable hardware,
in our case, the MONTIUM. The scrambling code in the receiver
can be generated with simple combinational logic, consisting
of shift-registers and XOR gates. These are typical operations
that can be performed well in fine-grained reconfigurable
hardware, like an FPGA. We assume that the control-oriented
functionality is performed in the GPP and provides the right
information to the baseband processing part of the WCDMA
receiver. Fig. 9 shows the functional blocks of the WCDMA

RAUWERDA et al.: TOWARDS SOFTWARE DEFINED RADIOS USING COARSE-GRAINED RECONFIGURABLE HARDWARE 9

Fig. 10. Signal activity inside the MONTIUM on the global buses (1)–(10).

receiver that are implemented in each processing tile of a
heterogeneous reconfigurable SoC.

The WCDMA receiver runs in “streaming” mode. The re-
ceiver can process four individual paths of the received signal.
Consequently, the receiver requires four complex-number
data streams for the four fingers. All fingers require the same
scrambling code. The receiver takes the complex-number
scrambling code stream as an input. The spreading code is
stored in local memory, because the code is relatively small
with a maximum length of 512 samples. Furthermore, the
spreading code is assigned to a particular user in the UMTS
communication system and, therefore, the spreading code will
not change frequently. The received symbols of the individual
signal paths—fingers—are combined, where each symbol is
scaled with a complex-number coefficient. These coefficients
are provided by the channel estimator, which is performed on
the GPP. The receiver outputs a bit stream with the received
data.

Fig. 2 shows that the CCU is directly connected to the
global buses inside the MONTIUM. The CCU implements the
interface for off-tile communication and so it guarantees that
during “streaming” mode the correct signals are available for
the MONTIUM tile. Fig. 10 depicts typical signal activity on the
global buses inside the MONTIUM during RAKE processing.
The different signal streams, which are streamed from outside
the MONTIUM, are indicated with characters (“A” till “J”) in
Fig. 10. The MONTIUM is able to process two RAKE fingers in
parallel. The chips of two RAKE fingers can be descrambled
and despread in two clock cycles. The typical signal activity
reveals the regular organization of the implemented receiver.
First, one chip of finger 1 and one of finger 2 are descrambled
and despread, in the next two clock cycles one chip of finger 3
and one of finger 4 are descrambled and despread. This typical
sequence of signal processing repeats till a complete symbol
(consisting of SF chips) is descrambled and despread. The next
five clock cycles are used for combining the results of the four
fingers and demapping the symbols to a bit stream. So, in total

clock cycles are needed to process one output
symbol, with SF denoting the spreading factor.

1) Configuration: The configuration size of the flexible
RAKE receiver in the MONTIUM is only 858 bytes. One tile can
be configured for RAKE receiving in 429 clock cycles. For a
configuration clock frequency of 100 MHz this means that a
RAKE receiver with four fingers can be configured in 4.29 s.2

In case the spreading factor changes, and so the spreading
code, the new spreading code only has to be loaded in the local
memory of the MONTIUM and a constant in the MONTIUM con-
figuration has to be changed. Loading a particular spreading
code and reconfiguring the constant takes clock cycles
(partial reconfiguration).

The signal streams for the different fingers are buffered in
local memories inside the MONTIUM. When the delay of one of
the paths changes, then the buffering strategy in the local mem-
ories has to be changed. The buffering strategy of the memories
is configured with 24 bytes. These 24 bytes can be reconfigured
into 12 clock cycles. Consequently, the RAKE receiver can up-
date its complete path delay profile in 120 ns.

The signal activity in Fig. 10 shows that the signal processing
of four RAKE fingers is very regular. The idea behind the reg-
ular structure of the four-RAKE receiver is that it can be easily
adapted to another configuration with less fingers. Suppose
we want to change the receiver to a two-finger equivalent, this
means that finger 3 and finger 4 are no longer needed. The CCU
will, therefore, stall the streaming of stream “C” and “D” onto
global buses 1, ,4 (see Fig. 10). So, the descrambling and
despreading phase of finger 3 and finger 4 (data streams “C”
and “D”) can be bypassed and the number of operations in the
combining phase can also be reduced. In total, for reconfiguring
the number of fingers from 4 to 2, only 24 bytes have to be
reconfigured in the configuration memory of the MONTIUM.
The RAKE receiver can be reconfigured in 120 ns, which
corresponds to 12 clock cycles.

2) Frequency Scaling: From Fig. 10 it can be seen that the
clock frequency of the MONTIUM during RAKE processing of
four fingers is about four times the chip rate. Moreover, when the
RAKE receiver is reconfigured to two-finger processing, then

2In the rest of this paper, we assume that the clock frequency of (re)configu-
ration is 100 MHz.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

Fig. 11. HiperLAN/2 receiver in heterogeneous processing tiles.

the clock frequency of the MONTIUM can be reduced to about
two times the chip rate.

Using power estimation tooling, we estimated the dynamic
power consumption of a typical multiply-accumulate operation
in the MONTIUM to be about 0.5 mW/MHz, realized in 0.13- m
CMOS technology. Consequently, the power consumption of
the implemented RAKE receiver will be 5 mW in two-finger
mode and 10 mW in a four-finger mode.

An efficient ASIC implementation of a WCDMA RAKE re-
ceiver was described in [19]. The receiver was implemented in
0.13- m CMOS technology. According to [19], the power dis-
sipation of the ASIC implementation is about 1.5 mW, regard-
less whether two or four RAKE fingers are implemented. When
we compare the power consumption of the ASIC implementa-
tion with the MONTIUM implementation, we can conclude that
the power consumption of the MONTIUM is about three to seven
times larger. As expected, the ASIC implementation is more en-
ergy efficient than an implementation in reconfigurable hard-
ware, however, the ASIC implementation is fixed and the func-
tionality of the ASIC cannot be changed, whereas the MONTIUM

can be reconfigured for another function.

B. OFDM Receiver

The baseband processing part of the HiperLAN/2 receiver has
been implemented in the same reconfigurable hardware. Fig. 11
shows the functional blocks of the receiver that are implemented
in each processing tile of a heterogeneous reconfigurable SoC.

Irregular tasks, which are outside the algorithm domain of the
MONTIUM, are performed in software (i.e., on the GPP). The ir-
regular processes in the HiperLAN/2 receiver are the estimation
of frequency offset and estimation of equalization coefficients.
These channel estimations have to be determined only once per
MAC frame, i.e., once per 2 ms.

During frequency offset correction, which is performed in
the MONTIUM tile, every complex-number sample is multiplied
with the frequency offset correction factor. One OFDM symbol,
containing 64 complex-number samples, can be corrected in 67
clock cycles.

An FFT on a vector of 64 complex-number time samples can
perform the inverse OFDM function. Using the MONTIUM, the

TABLE III
PROPERTIES OF THE HIPERLAN/2 IMPLEMENTATION

64-FFT can be performed in 204 clock cycles for one OFDM
symbol.

The equalizer, phase offset correction and demapping func-
tionality are implemented in one MONTIUM tile in a pipelined
fashion. The coefficients for equalization are determined once
every 2 ms in software by the GPP. During equalization, the
received subcarriers are multiplied with the equalization coeffi-
cients. After equalization the pilot values are used to determine
the phase offset correction factor. The phase offset correction
factor is determined in the MONTIUM, since the phase offset
can vary for every OFDM symbol and the correction factor has
to be determined on an OFDM symbol basis (i.e., once every
4 s). Hence, determining the phase offset correction factor in
software (i.e., on the GPP) would create a large communication
overhead between the GPP and the MONTIUM tile. Phase offset
correction invokes also a complex multiplication, like equaliza-
tion. As a consequence, the equalizer and phase offset corrector
use the same functionality of the MONTIUM. In a pipelined
manner, the corrected complex-number samples are translated
into a bitstream. Hard-decision demapping is implemented
with the LUT functionality. A parametrizable demapper has
been implemented, which can be used for QPSK, 16-QAM, and
64-QAM modulated signals by only changing the LUT table in
the local memory of the MONTIUM.

1) Configuration: The total configuration sizes of the
MONTIUM are small for the different functions (see Table III).
The FFT implementation in the MONTIUM requires the largest
configuration size, which is less than 1 kB of data. The con-
figuration data of the FFT algorithm can be written into the
configuration memory of the MONTIUM in 473 clock cycles,
since 2 bytes are written in one clock cycle. This MONTIUM tile
can be (re)configured in 4.73 s. Notice that the maximum radio
turn-around time of the HiperLAN/2 communication system is
6 s [20] and, therefore, the implemented HiperLAN/2 receiver
can be considered as a real-time dynamically reconfigurable
receiver.

2) Frequency Scaling: All operations in the physical layer of
the HiperLAN/2 system are performed on OFDM symbols. So,
one should assure that each 4 s a new OFDM symbol can be
processed. When a streaming on-chip network between the pro-
cessors is assumed, the communication time is not a bottleneck
and one only has to guarantee that, for example, the data pro-
cessing for frequency offset correction is performed within 4 s.
Hence, the minimum clock frequency of the assigned MONTIUM

processing tile is 17 MHz, when a streaming on-chip network
between the tiles is assumed. Table III summarizes requirements
on the clock frequency for the MONTIUM tile processors.

RAUWERDA et al.: TOWARDS SOFTWARE DEFINED RADIOS USING COARSE-GRAINED RECONFIGURABLE HARDWARE 11

C. Viterbi Decoder

A fully flexible Viterbi decoder has been implemented in the
MONTIUM, based on a hybrid register exchange/traceback ap-
proach [21]. The rate as well as the constraint length and
the decision depth of the decoder can be adapted within certain
boundaries. These boundaries depend on the size of the local
memories inside the MONTIUM. Implementation properties of
the Viterbi decoder on the MONTIUM are discussed based on
the settings of the DAB communication system, and

with a decision depth .
1) Configuration: The total configuration size of the

MONTIUM Viterbi implementation is 1356 bytes. The configu-
ration of the Viterbi decoder can be loaded in the MONTIUM’s
configuration memory in 6.78 s.

Once the MONTIUM is configured as Viterbi decoder, only
partial reconfiguration has to be performed in order to adjust
the constraint length, decision depth, or rate. Especially the de-
cision depth depends heavily on the conditions of the wireless
channel. Thus, adjusting the decision depth can be typically per-
formed at run-time via dynamic reconfiguration.

2) Throughput: In the implemented DAB Viterbi decoder,
always 10 bits are generated during the survivor decision phase.
On average 47 clock cycles are required to decode one output
bit. The output rate of the Viterbi decoder in the MONTIUM is
2.1 Mb/s running at 100 MHz. This is sufficient for DAB, which
requires an output rate of 1.8 Mb/s.

D. Turbo Decoder

The SISO decoders in the Turbo decoder can be im-
plemented using several algorithms [22]. We implemented
the max-log-map (MLM) algorithm in the MONTIUM. This
algorithm has a regular optimized structure and achieves
near-optimal BER.

The MLM algorithm consists of three processing phases: for-
ward recursion, backward recursion, and LLR calculation. The
information from the forward and backward recursion are used
to estimate the LLR information. Because the LLR calculation
can be done while the backward recursion is performed, the
backward estimations do not need to be stored in memory. How-
ever, all the forward estimations have to be stored in memory.
Hence, in order to be compliant with the 3G UMTS standard, at
most 5114 8 forward estimates have to be stored for full block
length. The required memory to store the forward estimates can
be reduced by applying the sliding window approach [23]. This
approach divides the full block into smaller blocks, windows,
on which the algorithm is applied. The number of forward esti-
mates that needs to be stored is now equal to the window length.

1) Configuration: The total configuration size of the
MONTIUM MLM implementation is 1262 bytes. This configu-
ration can be loaded in the MONTIUM’s configuration memory
in 6.36 s.

2) Throughput: The Turbo codes used in the UMTS com-
munication system have constraint length , which means
that eight states exist in the trellis of the Turbo code. So, for
each time instant of the trellis, eight forward state metric esti-
mations have to be performed during the forward recursion, and
eight backward state metric estimations have to be made for the

backward recursion. The parallelism of ALUs and memories in
the MONTIUM provides resources to calculate the forward and
backward recursion in four clock cycles for one time instant of
the trellis.

The intermediate forward state metrics are stored in the local
memories of the MONTIUM. Immediately after the calculation
of the backward state metrics, the LLR is calculated. The LLR
calculation in the MONTIUM is performed in four clock cycles
per time instant of the trellis. Consequently, eight clock cycles
are required to apply the MLM algorithm for one time instant
of the trellis.

The maximum channel data rate of the UMTS communica-
tion system is 1.92 Mb/s, which means the maximum Turbo
frame of 5114 bits has to be processed in 2.66 ms. In order to per-
form Turbo decoding with ten iterations, the MONTIUM should
run at a speed of 110 MHz in this case. The inner and outer de-
coder are applied during one Turbo decoding iteration without
considering the interleaving process.

E. Discussion

In [24], a channel decoder chip was proposed that is com-
pliant with the 3G wireless standard. However, this chip is a ded-
icated solution for the 3G UMTS system, which cannot be used
in other wireless communication standards. We implemented
both the Turbo and the Viterbi decoder in the coarse-grained re-
configurable MONTIUM architecture, which can also be used to
implement the baseband processing. The flexible coarse-grained
reconfigurable MONTIUM enables the implementation of flex-
ible baseband processing and flexible channel decoding in mul-
timode communication systems.

The unified channel decoder chip in [24] has been imple-
mented in older CMOS technology, therefore, we cannot fairly
compare the implementation with the MONTIUM implemen-
tation. In [25], another reconfigurable architecture for Viterbi
and Turbo decoding was reported. That architecture, Viturbo,
can be configured to decode convolutionally coded data and
Turbo coded data. The Viturbo decoder is only aimed for
channel decoding, whereas the MONTIUM architecture is more
flexible and suitable for baseband processing as well. The area
of the MONTIUM is slightly larger than the Viturbo decoder
(250 kGates versus 200 kGates).

To enable a multistandard multimode SDR receiver that is
capable of both baseband processing and channel decoding, the
heterogeneous reconfigurable SoC needs to be equiped with a
coordination function, as introduced in Section II. This coordi-
nation function can be implemented in a GPP processing tile,
which is controlled by a run-time operating system. The oper-
ating system schedules the DSP tasks at run-time on processing
tiles in the heterogeneous reconfigurable SoC. The configura-
tions for the MONTIUM TPs of the different SDR applications,
as described in Section IV, can be compiled at design time. The
coordination function selects the right configuration when an
application is started and handles the reconfiguration of the pro-
cessing tiles in the SoC.

V. CONCLUSION

Because, in our opinion, heterogeneous reconfigurable sys-
tems will become the future of mobile hardware, we proposed

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 1, JANUARY 2008

a heterogeneous SoC containing reconfigurable processing el-
ements of different grain sizes. The processing elements in the
SoC are dynamically interconnected by an NoC.

The MONTIUM architecture showed to have sufficient flexi-
bility and processing capabilities for implementing key building
blocks of wireless communication systems. The feasibility of
using heterogeneous hardware is demonstrated by imple-
menting a RAKE receiver and a HiperLAN/2 receiver on the
same SoC.

The flexible RAKE receiver implements the baseband pro-
cessing for receiving WCDMA signals. It is flexible because
the number of RAKE fingers can be adjusted in real-time.
In less than 5 s a MONTIUM can be configured for RAKE
processing. One MONTIUM can be partially reconfigured to
change the number of fingers in the RAKE receiver. Adjusting
the number of fingers from four to two only takes 120 ns; short
enough to classify as dynamic reconfiguration.

The same reconfigurable hardware can be configured as a
HiperLAN/2 receiver. The HiperLAN/2 receiver can be imple-
mented in four MONTIUM tiles. The performance requirements
of the receiver can be met at fairly low clock frequencies, with
low configuration overhead. The MONTIUM tiles can be config-
ured for HiperLAN/2 baseband processing in less than 5 s.

Moreover, we showed that the coarse-grained reconfigurable
MONTIUM is suitable for implementing channel decoding algo-
rithms. We presented the implementation results of the Viterbi
algorithm as well as the MLM algorithm, used in Turbo de-
coding, in the same MONTIUM processing tile.

The configuration overhead of the decoders is relatively
small, as the configuration files of both decoders are small.
Hence, changing the functionality of the channel decoder
from Turbo to Viterbi, or vice versa, can be done dynamically,
because of the short reconfiguration times. Depending on
the desired communication standard, one can configure the
hardware in the mobile terminal to implement the right channel
decoder. The reconfiguration time of the Viterbi or Turbo
decoder implementation is less than 7 s.

REFERENCES

[1] G. J. M. Smit and G. K. Rauwerda, “Reconfigurable architectures for
adaptable mobile systems,” in Proc. Int. Conf. Eng. Reconfigurable
Syst. Algorithms (ERSA), 2005, pp. 17–25.

[2] G. K. Rauwerda et al., “Reconfigurable turbo/viterbi channel decoder
in the coarse-grained montium architecture,” in Proc. Int. Conf. Eng.
Reconfigurable Syst. Algorithms (ERSA), 2006, pp. 110–116.

[3] L. T. Smit, G. J. M. Smit, and J. L. Hurink, “Energy-efficient wireless
communication for mobile multimedia terminals,” in Proc. Int. Conf.
Adv. Mobile Multimedia, 2003, pp. 115–124.

[4] L. T. Smit, “Energy-efficient wireless communication,” Ph.D. disser-
tation, Dept. Comput. Sci., Univ. Twente, Enschede, The Netherlands,
2004.

[5] G. Rauwerda et al., “Adaptive wireless networking,” in Proc. 4th
PROGRESS Symp. Embedded Syst., 2003, pp. 205–211.

[6] R. Schiphorst, “Software-defined radio for wireless local-area net-
works,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Twente, Enschede,
The Netherlands, 2004.

[7] P. M. Heysters, G. J. M. Smit, and E. Molenkamp, “A flexible and
energy-efficient coarse-grained reconfigurable architecture for mobile
systems,” J. Supercomput., vol. 26, no. 3, pp. 283–308, Nov. 2003.

[8] P. M. Heysters, “Coarse-grained reconfigurable processors—Flexi-
bility meets efficiency,” Ph.D. dissertation, Dept. Comput. Sci., Univ.
Twente, Enschede, The Netherlands, 2004.

[9] “Smart chips for smart surroundings,” [Online]. Available: http://www.
smart-chips.net

[10] J. Potman, F. Hoeksema, and K. Slump, “Tradeoffs between spreading
factor, symbol constellation size and rake fingers in UMTS,” in Proc.
ProRISC, 2003, pp. 543–548.

[11] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access for Third
Generation Mobile Communications. New York: Wiley, 2001.

[12] A. Berno, “Time and frequency synchronization algorithms for
HIPERLAN/2,” M.S. thesis, Dept. of Electron. Comput. Sci., Univ.
Padova, Padova, Italy, 2001.

[13] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423–623–656, 1948.

[14] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[15] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
no. 2, pp. 260–269, Apr. 1967.

[16] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. IEEE
ICC, 1993, pp. 1064–1070.

[17] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: Turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10,
pp. 1261–1271, Oct. 1996.

[18] 3rd Generation Partnership Project, “Technical specification group
radio access network; multiplexing and channel coding (FDD),” ,
3GPP TS 25.212 v4.3.0 (2001-12), Jan. 2002.

[19] M. Nilsson, “Efficient ASIC implementation of a WCDMA rake re-
ceiver,” M.S. thesis, Dept. Comput. Sci. Elect. Eng., Div. Comput.
Eng., Luleå Univ. Technol., Stockholm, Sweden, 2002.

[20] European Telecommunications Standards Institute (ETSI), “Broad-
band radio access networks (BRAN); HiperLAN Type 2; Data link
control (DLC) layer part 1: Basic data transport functions,” ETSI TS
101 761-1 v1.1.1 (2000-04), 2000.

[21] C. M. Rader, “Memory management in a viterbi decoder,” IEEE Trans.
Commun., vol. 29, no. 9, pp. 1399–1401, Sep. 1981.

[22] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log do-
main,” in Proc. IEEE ICC, 1995, pp. 1009–1013.

[23] J. Dielissen et al., “Power-efficient layered turbo decoder processor,”
in Proc. Conf. Des., Autom. Test Europe (DATE), 2001, pp. 246–251.

[24] M. A. Bickerstaff et al., “A unified turbo/viterbi channel decoder for
3GPP mobile wireless in 0.18-�m CMOS,” IEEE J. Solid-State Cir-
cuits, vol. 37, no. 11, pp. 1555–1564, Nov. 2002.

[25] J. R. Cavallaro and M. Vaya, “VITURBO: A reconfigurable architec-
ture for viterbi and turbo decoding,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), 2003, pp. 497–500.

Gerard Rauwerda received the M.Sc. degree in
wireless communications from the University of
Twente, Enschede, The Netherlands, in 2002, where
he is currently pursuing the Ph.D. degree with an in-
terest in mapping software defined radio algorithms
on reconfigurable hardware. His thesis is entitled
“Multi-standard adaptive wireless communication
receivers.”

He is currently Executive Director with Recore
Systems, Enschede, The Netherlands, of which he
is also a cofounder. He was a Visiting Researcher

with Atmel Germany, Ulm, Germany, where he investigated opportunities for
reconfigurable computing in digital radio broadcasting receivers.

Paul Heysters received the M.Sc. degree in
computer science and the Ph.D. degree from the
University of Twente, Enschede, The Netherlands,
in 1998 and 2004, respectively, with the Ph.D. thesis
entitled “Coarse-grained reconfigurable proces-
sors—Flexibility meets efficiency.”

He has been CEO of Recore Systems, Enschede,
The Netherlands, since September 2005. He has more
than seven years experience working in the field of re-
configurable computing. In his career, he worked for
high-technology companies in both Europe and the

USA, including Ericsson, Philips, and Chameleon Systems. Prior to cofounding
Recore Systems, he was leading research on coarse-grained reconfigurable com-
puting for the CHAMELEON Project with the University of Twente, Enschede,
The Netherlands, and worked collaboratively with industry organizations.

RAUWERDA et al.: TOWARDS SOFTWARE DEFINED RADIOS USING COARSE-GRAINED RECONFIGURABLE HARDWARE 13

Gerard Smit received the M.Sc. degree in elec-
trical engineering from the University of Twente,
Enschede, The Netherlands. He finished his Ph.D.
thesis entitled “the design of Central Switch com-
munication systems for Multimedia Applications” in
1994.

He has been a Full Professor with the faculty of
EEMCS, University of Twente since 2007, where he
is responsible for a number of research projects spon-
sored by the EC, industry, and Dutch government in
the field of multimedia and reconfigurable systems.

After receiving the M.Sc. degree, he worked for four years at the Research Lab-
oratory of Océ, Venlo, The Netherlands. In 1994, he was a Visiting Researcher
with the Computer Laboratory, Cambridge University, Cambridge, MA, and, in
1998, he was a Visiting Researcher with Lucent Technologies Bell Labs Innova-
tions, Murray Hill, NJ. Since 1999, he has been with the CHAMELEON Project,
which investigates new hardware and software architectures for battery-pow-
ered hand-held computers. Currently, his research interests include low-power
communication, wireless multimedia communication, and reconfigurable archi-
tectures for energy reduction.

