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We consider specially structured matrices representing optimization
problems with quadratic objective functions and (finitely many) affine
linear equality constraints in an n-dimensional Euclidean space. The class
of all such matrices will be subdivided into subsets [‘strata’], reflecting the
features of the underlying optimization problems. From a differential-
topological point of view, this subdivision turns out to be very satisfactory:
Our strata are smooth manifolds, constituting a so-called Whitney Regular
Stratification, and their dimensions can be explicitly determined. We
indicate how, due to Thom’s Transversality Theory, this setting leads to
some fundamental results on smooth one-parameter families of linear-
quadratic optimization problems with (finitely many) equality and
inequality constraints.
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1. Introduction

The structure of general non-linear (parametric) finite optimization problems has

been studied intensively in the past (see, e.g. [3,4,5,10]). In this article, we deal with

the important special subclass of (parametric) linear-quadratic programming

problems. In order to introduce the subject of this article, let Q be the following

linear–quadratic optimization problem with only equality constraints:

Q
min
x2Rn

1

2
xTAxþ aTx such that

Bxþ b ¼ 0;

8<:
where A is a symmetric n� n-matrix, B an m� n-matrix; a2R

n, b2R
m and (�)T

stands for transpose. Then, the Karush–Kuhn–Tucker equations (KKT) take the

matrix form:

KKT
A BT

B O

� �
x

�

� �
þ

a

b

� �
¼ 0;
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where O is the m�m-null matrix and �2R
m. We put

M :¼
A BT

B O

� �
; c :¼

a

b

� �
It is natural to represent the optimization problem Q by the (mþ n)� (mþ nþ 1)

matrix [M ..
.
c], which is obtained from M by augmenting this matrix with c as

(mþ nþ 1)th column. In the sequel, the set of all matrices [M ..
.
c] will be referred to as

the representation space Mn,m. Note that Mn,m may be identified with R
N,

N ¼ ð1=2Þnðnþ 3Þ þmðnþ 1Þ.

Now we are in the position to present our aim:

1.1. Aim

. To give a subdivision [stratification] ofMn,m into finitely many, pair wise

disjoint sets – in the sequel called strata – such that:

. Each stratum represents only optimization problems with the same

features;
. Each stratum attains a unique ‘simplest element’ (normal form);
. All strata are smooth manifolds, constituting a Whitney regular

stratification;
. The dimension of each stratum can explicitly be expressed in terms of

the features of the underlying optimization problem Q.

. To motivate the above subdivision by indicating its relevance for 1-

parameter families of linear-quadratic optimization problems in R
n with

finitely many (in-) equality constraints.

This article is organized as follows. In the next section, we spell out the features of
the optimization problems Q, underlying the stratification of the representation

spaceMn,m, and derive a characterization of the strata. Moreover, in this section, we

shall formulate our main results in terms of three theorems. In Section 3, we explain

the relevance of these results for 1-parametric linear-quadratic optimization, and

mention some other possible applications. The remaining sections are devoted to the

proofs of our three theorems.

2. Results

Let Q be an optimization problem as introduced in Section 1, with A and B its

associated matrices. Let S be a matrix with as columns a (linear independent) basis of

ker(B), where ker(�) stands for ‘kernel’. Then the so called restriction of A to

ker(B) is defined as AjkerB :¼ STAS. The inertia of this restriction, denoted In(�), is

given by:

InðA��kerBÞ :¼ ð�þ; ��; �0Þ;
where �þ, �� and �0 are the numbers of positive, negative and zero eigenvalues of ST

AS respectively. Note that, by Sylvester’s Law, this inertia is independent of the
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ambiguity in the choice of S. In the sequel, we put rank (B)¼ k. Thus, S is an

n� (n� k)-matrix1 and �þþ ��þ �0¼ n� k.
The feasible set of Q is denoted by FQ, and let KQ be the Karush–Kuhn–Tucker

set of Q (i.e. the solution set of the equation KKT in Section 1). So, we have:

FQ :¼ fx 2 R
n
j Bxþ b ¼ 0g; KQ :¼ fy 2 R

nþm
jMyþ c ¼ 0g:

Now we are ready to list the kind of features of Q, which we have in mind.

2.1. Q-Features

. FQ is empty/non-empty (, rank[B ..
.
b]¼ rank(B)þ 1/rank[B ..

.
b]¼ rank(B)).

. KQ is empty/non-empty (, rank[M ..
.
c]¼ rank(M)þ 1/rank[M ..

.
c]¼

rank(M)).
. Feasible set equation is homogeneous/inhomogeneous (,b¼ 0 / b 6¼ 0).
. KKT-equation is homogeneous/inhomogeneous (,c¼ 0 / c 6¼ 0).
. Rank(B) (¼ k).
. If b¼ 0: rank [BT ..

.
a] (¼ k/kþ 1)

. In ðAjkerBÞ (¼ (�þ , ��, �0))

. Sign [M ..
.
c]; :¼ sign (yTc) for any y2KQ, where sign (�) stands for signature.

Note that some of these features are not ‘independent’ from each other. For
example, the condition KQ 6¼ ; makes only sense if FQ 6¼ ; in order to define sign

[M ..
.
c] it is necessary that KQ 6¼ ;. On the other hand, rank(B) and InðAjkerBÞ are –

irrespectively of the other features – always well-defined.2

Special attention should be paid to the last feature: Let y0 be another vector in

KQ. Then M(y� y0)¼ 0 and thus: [use that A and thus also M is symmetric]

ðy� y0ÞTc ¼ �ðyTMðy� y0ÞÞT ¼ 0:

Hence, sign [M ..
.
c] does not depend on the ambiguity in the choice of y.

We collect the above Q-features in groups that respect the possible dependencies:

(1) rank(B); In(Ajker B); FQ¼; [thus b 6¼ 0]
(2) rank(B); In(Ajker B); b 6¼ 0; FQ 6¼ ;; KQ¼;

(3) rank(B); In(Ajker B); b 6¼ 0; FQ 6¼ ;; KQ 6¼ ; sign[M
..
.
c]

(4) rank(B); In(Ajker B); b¼ 0 [thus FQ 6¼ ;]; KQ¼; [thus a 6¼ 0]
(5) rank(B); In(Ajker B); b¼ 0; [thus FQ 6¼ ;]; a 6¼ 0; rank[BT ..

.
a]¼ k [thus KQ 6¼ ;]

(6) rank(B); In(Ajker B); b¼ 0 [thus FQ 6¼ ;]; rank[BT ..
.
a]¼ kþ1 [thus a 6¼ 0];

KQ 6¼ ; sign[M
..
.
c]

(7) rank(B); In(Ajker B); b¼ 0; a¼ 0 [thus FQ 6¼ ; KQ 6¼ ;]

It is easily verified that this ‘clustered set of features’3 induces a partition of the
representation setMn,m into strata V

ð‘Þ
�;k;½��, according to Table 1, where ‘ refers to the

underlying cluster of Q-features, � to any vector (�þ, ��, �0) with non-negative
components summing up to (n� k), and �¼�1 or¼ 0 [only if ‘¼ 3 or ‘¼ 6].

Some of the strata are empty. This can be derived from the very definitions of
V
ð‘Þ
�;k;½��, but is also a direct consequence of the forthcoming Theorem 1.
We proceed by formulating our main results.
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THEOREM 1 (Normal forms) Each non-void stratum V
ð‘Þ
�;k;½�� contains a unique matrix

(normal form) of the type:

½N ..
.
n� :¼

A B
T ..

.
a

B O ..
.

b

24 35;
with

A ¼
O O

O J�

� �
; J� ¼

I�þ O O

O �I�� O

O O O

264
375; B ¼

Ik O

O O

� �
;

where I�þ stand for the �þ� �þ unit matrix etc., O for null matrices of appropriate

dimensions, and a; b are ‘compositions in accordance with the block structure of N ’of

vectors of the type 0¼ (0, . . . , 0)T [‘null’] and e¼ (1, 0, . . . , 0)T [‘unit’] of appropriate

dimensions. In fact, if

a ¼ ðaT1 ; a
T
2 Þ

T
2 R

k
� R

n�k;with a2 ¼ ða
T
�þ ; a

T
�� ; a

T
�0 Þ

T
2 R

�þ
�R

��
�R

�0

b ¼ ðbT1 ; b
T
2 Þ

T
2 R

k
� R

m�k

then a and b are as indicated in Table 2.

Table 1. The strata ofMn,m.

½M..
.
c� 2 Vð‘Þ�;k;½�� iff ðA��kerBÞ ¼ �; rankðBÞ ¼ k; and moreover; Vð‘Þ�;k;½�� ¼ ; iff

‘¼
1 rank[B ..

.
b]¼ kþ 1 k¼m

2 b6¼ 0 rank[B ..
.
b]¼ k, k¼ 0, or ¼ n,

rank[M ..
.
c]¼ 1þ rank(M) or �0¼ 0

3 b 6¼ 0 rank[M ..
.
c]¼ rank(M), sign[M ..

.
c]¼ � k¼ 0

4 b¼ 0 rank[M ..
.
c]¼ 1þ rank(M) �0¼ 0

5 b¼ 0, a6¼0 rank[BT ..
.
a]¼ k k¼ 0

6 b¼ 0 rank[BT ..
.
a]¼ kþ 1, �þ¼ ��¼ 0, or

rank[M ..
.
c]¼ rank(M), ��¼ 0, �¼þ 1,0 or

sign[M ..
.
c]¼ � �þ¼ 0, �¼�1, 0

7 b¼ 0, a¼ 0

Table 2. Specification of �n in the normal forms [ �N ..
.

�n].

‘¼ �¼ a1 a�þ a�� a�0 b1 b2

1 – 0 0 0 0 0 e
2 – 0 0 0 e e 0
3 þ1 �e 0 0 0 e 0
3 �1 e 0 0 0 e 0
3 0 0 0 0 0 e 0
4 – 0 0 0 e 0 0
5 0 e 0 0 0 0 0
6 þ1 0 0 e 0 0 0
6 �1 0 e 0 0 0 0
6 0 0 e e 0 0 0
7 0 0 0 0 0 0 0
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Some of the blocks/vectors are possibly empty.

THEOREM 2 (Manifolds)

. Each non-void stratum V
ð‘Þ
�;k;½�� is a smooth submanifold of R

N (i.e. locally
diffeomorphic to an open set in R

q, where q stands for dim ðV
ð‘Þ
�;k;½��Þ).

. codim ðV
ð‘Þ
�;k;½��Þ½¼ N� q� can explicitly be expressed in terms of the parameters

n, m, k, � and [�], see Table 3.

Recall that �þþ ��þ �0¼ n� k.

A finite subdivision of R
N into pair wise disjoint smooth manifolds [strata] is

called a Whitney regular stratification if neighbouring strata stick together in such a
‘regular’ way that the local topological type4 remains constant along (the connected
components) of each stratum. See [2,10] for a more analytical definition.

With this concept in mind, we have the following result:

THEOREM 3 (Whitney regular stratification) The subdivision of Mn,m into the sets
V
ð‘Þ
�;k;½�� is a Whitney regular stratification.

We end up this section with a short comment on the relationship between the
proofs of Theorems 1, 2 and 3. The proof of the latter theorem is the more
sophisticated one since it relies upon some basic properties from algebraic geometry.
In fact, let A be a locally finite partition of R

N into semi algebraic sets5 (strata).
Assume, moreover, that the homogeneity property6 for each stratum of A holds.
Then, basically due to the fact that any non-void semi algebraic set contains at least
one regular7 point (hence, all strata are smooth manifolds), and taking Whitney’s
Theorem on the ‘bad set’ of two semi-algebraic smooth manifolds into account, it
follows that A is a Whitney regular stratification (cf [2]). So, we are done when we
are able to prove that our strata V

ð‘Þ
�;k;½�� fulfill both conditions.

The homogeneity property is a direct consequence of the proof of Theorem 1
(which is based on the observation that, given any V

ð‘Þ
�;k;½�� and any [M ..

.
c] in this

stratum, a diffeomorphism from V
ð‘Þ
�;k;½�� onto itself exists which maps [M ..

.
c] to the

normal form ½N ..
.
n� in V

ð‘Þ
�;k;½��). The semi algebraic character of the stratification is

proved in Section 6, Corollary 3. We emphasize that the Whitney regularity of our
stratification automatically yields the ‘manifold statement’ in Theorem 2. However,
in order to derive the formulae for the codimensions (which are crucial for the
applications we have in mind, cf Section 3), we must treat each stratum separately. In
fact, using again the homogeneity property, it is sufficient to identify defining

Table 3. Codimensions of the strata.

‘¼ codimVð‘Þ�;k;½��

1 ðn� kÞðm� kÞ þ 1
2 �

0ð�0 þ 1Þ
2 ðn� kþ 1Þðm� kÞ þ 1

2 �
0ð�0 þ 1Þ

3 ðn� kþ 1Þðm� kÞ þ 1
2 �

0ð�0 þ 3Þ þ 1� �2

4 mþ ðn� kÞðm� kÞ þ 1
2 �

0ð�0 þ 1Þ
5 mþ ðn� kÞðm� kþ 1Þ þ 1

2 �
0ð�0 þ 1Þ

6 mþ ðn� kÞðm� kÞ þ 1
2 �

0ð�0 þ 3Þ þ 1� �2

7 mþ nþ ðn� kÞðm� kÞ þ 1
2 �

0ð�0 þ 1Þ
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systems around the normal forms (cf Theorem 1) for each stratum. Doing so, we

prove again – as a side result – that all our strata are smooth manifolds.

3. Motivation

In parametric optimization, one seeks to investigate how changes of the parameter
do influence the characteristics of the optimization problem. In general, this

influence will be quite unpredictable. However, in some cases it is possible to identify
subclasses of optimization problems, which on one hand are large enough to cover

‘almost all’ problems under consideration, and on the other hand, are restrictive

enough to allow relevant statements. For discussions on this ‘genericity point of
view’, see e.g. the treatises [5] and [10].

In the case of linear-quadratic optimization, the results in Section 2 do play a

crucial role in this genericity approach. In order to clarify this role, let Q(t) be a

smooth r-parameter family of linear-quadratic optimization problems, i.e. problems
Q as introduced in Section 1 for which the entries of A, B, a and b are smooth

functions of a parameter t2R
r. (Note that, if r¼ 1, such a family may be regarded as

a smooth curve in the representation spaceMn,m).
Basically due to Thom’s Transversality Theorem for Whitney Regular

Stratifications (cf [6,10]) and our Theorem 3, we have the following ‘genericity result’:

. Generically8 Q(Rr) only intersects strata V
ð‘Þ
�;k;½�� of codimension � r, and

the inverse image Q�1(Mn,m) is Whitney regular stratified with strata

Q�1ðV
ð‘Þ
�;k;½��Þ. Moreover,

. If Q�1ðV
ð‘Þ
�;k;½��Þ 6¼ ;, then codim Q�1ðV

ð‘Þ
�;k;½��Þ ¼ codim V

ð‘Þ
�;k;½��.

In the case where r¼ 1, it follows that, generically, a 1-parameter family of
optimization problems Q(t), t2R , only intersects codim 0 or codim 1 strata ofMn,m.

Due to Theorem 2, we are able to give a list of all such strata, together with the

corresponding Q-features (cf Tables 4 and 5). It turns out that all underlying Q(t)’s –
if their feasible sets, respectively KKT-sets are non-empty – fulfill the conditions

LICQ and ND (cf. endnote 2), with as the only exception the optimization problems

represented by the codim 1 stratum V
ð3Þ
0;n;½�1�;m ¼ nþ 1. In this latter case it is easily

verified that FQ consists of a singleton, whereas dim KQ¼ 1.
We call x a generalized critical (g.c.) point for Q, whenever x2FQ, and Axþ a

together with the columns of BT, form a linear dependent set of vectors9 (in R
n).

Note that a feasible x is g.c. point iff either LICQ is violated at x, or LICQ holds and

(xT, �T)T2KQ for some � in R
m.

The above considerations lead to:

LEMMA (Two types) Let Q(t) be a smooth 1-parameter family of optimization

problems Q. Then, generically, at a g.c. point Q(t) admits one of the following two
possibilities:

Either

. LICQ and ND hold, and in this case: m� n or

. LICQ is violated, and in this case: m¼ nþ 1.

Now, we broaden our scope and consider linear-quadratic optimization problems,
say eQ, with m equality and p inequality constraints, m5 n, p� 0. Each combination
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of the equality constraints, together with any subset of (active) inequality constraints,

yields a sub problem of type Q, giving rise to conditions LICQ and ND. An

additional non-degeneracy condition comes up: The non-vanishing of all Lagrange

parameters, associated to active inequality constraints (under LICQ) at the g.c.
points (of the various sub problems). This condition is referred to as to the strict

complementarity condition (SCC). For the sake of completeness, we quote in a

rather rough form – a result that we obtained in [11]:

THEOREM (Three types) Let eQðtÞ be a smooth 1-parameter family of optimization

problems eQ. Then, generically, eQðtÞ admits at a g.c. point, one of following alternatives,
which (apart from some additional, technical conditions) may be characterized as:

Either

. LICQ, ND and SCC hold (regular g.c. point), or

. LICQ and ND hold, but SSC not, and precisely one of the Lagrange
parameters to the active inequality constraints vanishes (degenerate g.c.

point), or
. LICQ is violated and # (all active constraints)¼ nþ 1 (degenerate g.c.

point).

Moreover, the set of all regular g.c. points constitutes a smooth curve in R
n

(critical curve) and the degenerate g.c. points are isolated points in the topological

closure of this curve. For each regular g.c. point its nature with respect to the

corresponding problem eQðtÞ, (i.e. minimum, maximum. or saddle point) is

determined by a quadruple of indices. Traversing the topological closure of the

critical curve, these quadruples only change when a degenerate g.c. point is passed

through (in which case the transitions of these quadruples can be described in terms

of characteristics of this degenerate g.c. point).
In [11], we focused on the (rather tough) verification – in the generic case – of the

(additional) conditions characterizing the three types of g.c. points in the above

theorem, as well as on the relationship with the five (!) types of g.c. points (cf [7,8])

which are possible in the general case of smooth optimization problems with finitely

many (in-)equality constraints. Although, the present Theorem 3 and Tables 4 and 5

constitute one of the cornerstones for [11], in this article we merely applied these
results, without giving their proofs.10

This motivational section is concentrated on 1-parameter families Q(t). However,

we feel that our results enjoy also some intrinsic value; possibly they can also be used

to develop genericity approaches to other problems that are characterized by

Table 4. Strata of codim 0.

Vð‘Þ�;k;½��of codim 0 Q-features

m� nþ 1; ‘ ¼ 1; k¼ n; (�0 ¼ 0) FQ¼ ;

m¼ n; ‘¼ 3; k¼m (�0¼ 0); �¼�1 KQ¼ {y}; LICQ, ND hold
0�m� n; ‘¼ 3; k¼m; �0¼ 0; �¼� 1 KQ¼ {y}; LICQ, ND hold
m¼ 0; ‘¼ 6; (k¼ 0); �0¼ 0; �¼� 1 No constraints; KQ¼ {y};

ND holds

Between parentheses: condition which is implied by the preceding
conditions in this row.
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matrices, structured according to [M ..
.
c]. For example, it is easily shown (by

analyzing the strata V
ð‘Þ
�;k;½�� of codim 2) that 2-parameter families Q(t), with

05m5 n, generically admit only g.c. points for which either LICQ and ND hold, or

LICQ holds but ND not. Another example, not related to Parametric Optimization,

is the following: The so-called extraneous singularities for a gradient Newton flow are

characterized by a rank condition on certain matrices of the form [M ..
.
c], with B¼O,

b¼ 0, cf. [10, Ch. 9]. This leads to a generic description of the sets of extraneous

singularities (at least for lower dimensions).

4. Proof of Theorem 1 (Normal forms)

We consider block matrices U of the following type:

U ¼
V K

O W

� �
; where

V and W are regular matrices of dimensions n� n and m�m respectively, K is an

arbitrary n�m-matrix, and O the m� n-null matrix.
Apparently, the set G of all matrices U is a group (w.r.t. to matrix multiplication).
For all U2G and all �2R\{0}, we introduce the map

�U,� : [M
..
.
c]� [UMUT ..

.
�Uc].

By direct verification one finds:

½UMUT ..
.
�Uc� ¼

A0 B0T ..
.
a0

B0 O ..
.
b0

24 35; with

A0 ¼ VAVT þ KBVT þ VBTKT

B0 ¼WBVT;

O ¼ m�m� null matrix

a0 ¼ �ðVaþ KbÞ; b0 ¼ �Wb

ð1Þ

By (1) we have: (recall thatMn,m	R
N)

LEMMA 1

. �U,� is a diffeomorphism ofMn,m onto itself, i.e. �U,�2Diff(Mn,m);

. (U,�)� �U,� is a morphism G�R\{0}�Diff(Mn,m).

Table 5. Strata of codim 1.

Vð‘Þ�;k;½��of codim 1 Q-features

m4 nþ 1; does not occur – – – –
m¼ nþ 1; ‘¼ 3; k¼ n; (�0¼ 0); �¼� 1 LICQ violated; FQ¼ {x}, dim KQ¼ 1
m¼ n; ‘¼ 1; k¼ n� 1; �0¼ 0 FQ¼ ;

m¼ n; ‘¼ 3; k¼ n; (�0¼ 0); �¼ 0 KQ¼ {y}; LICQ, ND hold
m¼ n; ‘¼ 5; k¼ n¼ 1; (�0¼ 0) KQ¼ {y}; LICQ, ND hold
05m5 n; ‘¼ 2; k¼m; �0¼ 1 FQ 6¼ ;; KQ¼ ;; LICQ holds
05m5 n; ‘¼ 3; k¼m; �0¼ 0; �¼ 0 KQ¼ {y}; LICQ, ND hold
05m5 n; ‘¼ 6; k¼m¼ 1; �0¼ 0; �¼ � 1 KQ¼ {y}; LICQ, ND hold
m¼ 0; ‘¼ 4; (k¼ 0); �0¼ 1; FQ 6¼ ;; KQ¼ ;

m¼ 0; n4 1; ‘¼ 6; (k¼ 0); �0¼ 0; �¼ 0 KQ¼ {y}; ND holds
m¼ 0; n¼ 1; ‘¼ 7; (k¼ 0); �0¼ 0; KQ¼ {y}; ND holds

Between parentheses: condition which is implied by the preceding condition in this row.
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The next lemma is crucial:

LEMMA 2 The map �U,� respects all Q-features mentioned in Section 2.

Proof We extend the notations as introduced in (1). So,

�U,�([M
..
.
c])¼ [UMUT ..

.
�Uc]¼ [M0 ..

.
c0], the optimization problem represented by

[M0 ..
.
c0] is denoted Q0, and matrix S0 has as columns a basis for ker (B0), . . . .

Moreover, V�T stands for ðVTÞ
�1
¼ ðV�1ÞT, etc. Then, from (1) it follows:

x 2 FQ iff �V�Tx 2 FQ0 and y 2 KQ iff �U�Ty 2 KQ0 : ð2Þ

Hence, the emptiness/non-emptiness of FQ and KQ are respected by �U,�.
For y0 2KQ0, from (1) and (2) it follows: (y0)Tc0 ¼ (�U�Ty)T�Uc¼ �2yTc, and thus

�¼ �0.
By (1), we also have: z2 ker(B) iff V�Tz2 ker(B0). So, we may choose S0 ¼V�TS.

Since BS¼ 0 and using (1) we find:

In(A0jkerB0)¼ In(S0TA0S0)¼ In(STASþSTV�1K[BS]þ [STBT]KTV�TS¼ In(STAS)¼

In(Ajker B).
The properties ‘b¼ 0 iff b0 ¼ 0’, ‘rank(B)¼ rank(B0)’, and ‘a¼ b¼ 0 iff a0 ¼ b0 ¼ 0’

are trivial consequences of (1). Finally, if b¼ b0 ¼ 0 we find by (1):

‘z fulfils BT zþ a¼ 0 iff z0 ¼ �W�Tz fulfils B0T z0 þ a0 ¼ 0’. Hence, rank[BT ..
.
a]¼

rank[B 0T ..
.
a0]. g

Now we are going to prove the first proposition of Theorem 1:

LEMMA 3 (Normal forms for M) Let [M ..
.
c] be an arbitrary, but fixed matrix in

V
ð‘Þ
�;k;½��. Then, a matrix U2G exists such that:

UMUT ¼ N;

where N is the normal form as described in the statement of Theorem 1.

Proof It is well-known that there exist regular matrices V1, W1 such that:

W1BV
T
1 ¼

Ik O

O O

� �
ð¼ BÞ

Now we choose a matrix, say U1, from G by V :¼V1, W :¼W1 and K :¼O. Then:

U1MUT
1 ð¼M 0Þ ¼

A0 B
T

B O

" #
; with A0 ¼

A0k;k A0k;n�k
A0n�k;k A0n�k;n�k

" #
ðblock matrixÞ

Here, and in the sequel, a pair of subscripts of a block indicates its dimensions.

For example, A0k,n�k is a k� (n� k)-matrix; note that, by construction, the matrices

A0k,k and A0n�k,n�k are symmetric, and A0n�k,k¼ (A0k, n�k)
T.

Next, we choose a matrix, say U2, from G by V :¼ In, W :¼ Im, and

K :¼
�
1

2
A0k;k O

�A0n�k;k O

24 35:
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By a simple calculation, we derive from (1):

U2M
0UT

2 ¼
A00 B

T

B O

" #
; with A00 ¼

Ok;k Ok;n�k

On�k;k A00n�k;n�k

" #

Successive application of Lemma 2 yields: InðAjkerBÞ ¼ InðA00
jkerB
Þ ¼ InðA00n�k;n�kÞ,

where the last equality is obtained by direct verification; note that A00n�k,n�k is

symmetric.
Now, a regular (n� k)� (n� k)-matrix Z exists such that Z(A00n�k,n�k)Z

T
¼ J�.

Finally, we choose U32G, by

V :¼
Ik O

O Z

� �
; W :¼ Im; and K :¼ O:

Now, we define U :¼U3U2U1(2G). Then, due to the construction of U, and by

Lemma 2, we have:

�U;�ð½M
..
.
c�Þ ¼ ½N ..

.
�Uc� 2 V

ð‘Þ
�;k;½��;

in particular: UMUT ¼ N. g

COROLLARY 1 (Empty strata) The list of empty strata in Table 1 follows directly from

the special structure of N.

The following relationship between the inertia’s of M and AjkerB is well-known

from literature, cf [10].

COROLLARY 2 (Inertia theorem) In(M)¼ In(AjkerB)þ (k, k,m� k).

Proof Let {e1, . . . , enþm} be the standard basis for R
nþm. By inspection, one finds

that N admits the eigenvectors: (e1� enþ1), . . . , (ek� enþk) [eigenvalues �1 according

to �], ekþ1, . . . , en [eigenvalues þ1, �1 or 0, distributed according to In(J�)], and

enþkþ1, . . . , enþm [eigenvalues 0]. These vectors constitute a basis for R
nþm. Hence,

the assertion follows from Lemmas 2, 3. (Note that N
jkerB ¼ J�). g

Before turning over to the remaining part of the proof of Theorem 1, we need

some technical lemmas, concerning classes of matrices U2G such that:

�U;�½N
..
.
c� ¼ ½N ..

.
�Uc�;

and, moreover, by appropriate choices of U, at least two of the sub vectors a1, a2, b1,

b2 of c remain invariant under the mapping c�Uc.

LEMMA 4 Let U2G be given by:

V :¼
P O

O In�k

� �
; W :¼

P�T O

O Im�k

� �
;

with P a regular k� k-matrix, and K:¼O.
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Then,

�U;�½N
..
.
c� ¼ ½N ..

.
c0�; with c0 ¼ �ððPa1Þ

T; aT2 ; ðP
�Tb1Þ

T; bT2 Þ
T:

Proof By inspection. (Note that the lemma also holds if k¼ 0 [V¼ In; W¼ Im; P, a1
and b1 non-existent], if k¼m; [W¼P�T; b2 non-existent] and if k¼ n [V¼P; J� and

a2 non-existent]). g

LEMMA 5 Let U2G be given by:

V ¼
Ik P

O In�k

� �
; K ¼

L O

R O

� �
; W ¼ Im;

where P is a k� (n� k)-matrix, L a k� k-matrix, and R an (n� k)� k-matrix. Then:


 UNUT ¼ N iff
LT þ Lþ PJ�P

T ¼ O

Rþ J�P
T ¼ O

(


 if UNUT ¼ N; then :�U;�½N
..
.
c� ¼

h
N ..

.
�ðða1 þ Pa2 þ Lb1Þ

T;

ða2 þ Rb1Þ
T; bT1 ; b

T
2 Þ

T
i
:

ð3Þ

Proof By inspection (Note that due to condition (3), matrix R and to some extent

also L, is determined by P, whereas P itself may be arbitrarily chosen). g

LEMMA 6 Given: H a regular (n� k)� (n� k)-matrix, k� 0, and U2G with:

V ¼
Ik O

O H

� �
; K ¼ O; W ¼ Im:

Then,


 UNUT ¼ N iff HJ�H
T ¼ J�


 if HJ�H
T ¼ J� then �U;�½N

..

.
c� ¼

h
N ..

.
�ðaT1 ; ðHa2Þ

T; bT1 ; b
T
2 Þ

T
i
:

(If k¼ 0, then V reduces to H, and c to ðaT2 ; b
T
2 Þ

T; if k¼m, then b2 is non-existent).

Proof By inspection. g

Now, we are ready to present the remaining part of the proof of Theorem 1:

Proof of Theorem 1 Due to Lemma 3, we may start with a matrix ½N ..
.
c� 2 V

ð‘Þ
�;k;½��

and seek pairs (U, �)2G�R\{0} such that

UNUT ¼ N; �Uc ¼ n:

Here, the ‘normal vectors’ n depend on the value of ‘ see (the statement of) Theorem

1. In order to keep our treatment relatively simple, we assume:

0 < k < m < n:
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This assumption does not affect our final results: Some cases, which are excluded

correspond to empty strata (Table 1), whereas in the remaining situations a simple

adaptation to the general line of reasoning is possible.

We distinguish between the various values of ‘:
½N ..

.
c� 2 V

ð1Þ
�;k;½�� :

Taking into account the structure of N, we find b2 6¼ 0. We extend b2 to a basis for

R
m�k. Consider the regular (m� k)� (m� k)-matrix, say P, with this basis as

columns. Then Pe¼ b2, where e¼ (1, 0, . . . , 0)T2R
m�k, and thus P�1b2¼ e. Put:

U1 :¼
Inþk D

O P�1

� �
; with D ¼

�a ..
.
On;m�k�1

�b1
..
.
Ok;m�k�1

24 35P�1;
if m� k ¼ 1; then : D ¼

�a

�b1

� �
P�1:

It is easily verified that U12G [with V :¼ In, the first n rows of D constituting K, etc.].
Apparently, we have:

U1NUT
1 ¼ N; U1c ¼ n; where n is specified as in row ‘ ¼ 1 of Table 2:

Redefining U :¼U1(2G) yields, in view of Lemma 1: �U;1½N
..
.
c� ¼ ½N ..

.
n� 2 V

ð1Þ
�;k;½��.

½N ..
.
c� 2 V

ð2Þ
�;k;½�� : Due to the structure of N and the characteristics of V

ð2Þ
�;k;½�� we have:

b1 6¼ 0; b2 ¼ 0; �0 4 0; and a�0 6¼ 0:

The vector b1(6¼ 0) can be completed to a basis for R
k. Let P be the (regular) k� k-

matrix with this basis as rows, and put e¼ (1, 0, . . . , 0)T2R
k. Then, PTe¼ b1 and thus

P�Tb1¼ e. With respect to this P, we choose U12G according to Lemma 4. We find:

U1NUT
1 ¼ N; U1c ¼ ððPa1Þ

T; aT2 ; e
T; 0TÞT:

Now, we are going to apply Lemma 6 with

H ¼
Ir L

O E

� �
; r ¼ �þ þ ��; L ¼

�a�þ
..
.

..

.
Or;�0�1

�a��
..
.

266664
377775E;

where E is a regular �0� �0-matrix with Ea�0 ¼ e 2 R
�0 . (Note: such E exists because

a�0 6¼ 0; compare the construction of matrix P in the preceding case ‘¼ 1.) For this

choice of H, we have HJ� HT
¼ J�. So, Lemma 6 yields a matrix U22G with

U2NUT
2 ¼ N, and

U2ððPa1Þ
T; aT2 ; e

T; 0TÞT ¼ ððPa1Þ
T; nT2 ; e

T; 0TÞT;with n2 ¼

0

0

e

264
375 2 R

�þ
�R

��
� R

�0 :
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Next, we consider a k� (n� k)-matrix, say F, with as first (�þþ ��) columns 0, as

(�þþ ��þ 1)th-column the vector �Pa1 and all (possible) other columns arbitrarily

chosen; note that, since �0� 1, such matrices do exist. Apparently, we have J�F
T
¼O.

We apply Lemma 5, with P¼F, R¼O and L¼O, and obtain a matrix U32G for

which:

U3NUT
3 ¼ N; U3ððPa1Þ

T; nT2 ; e
T; 0TÞT ¼ ð0T; nT2 ; e

T; 0TÞT:

Finally, we put U :¼U3U2U1. Due to Lemma 1, we find

�U;1½N
..
.
c� ¼ ½N ..

.
n� 2 V

ð2Þ
�;k;½��:

½N ..
.
c� 2 V

ð3Þ
�;k;½�� :

Due to the structure of N and the characteristics of V
ð3Þ
�;k;½��, we have:

b1 6¼ 0; b2 ¼ 0:

As in the preceding case (‘¼ 2), the condition b1 6¼ 0 yields a matrix U12G such that:

U1NUT
1 ¼ N; U1c ¼ ððPa1Þ

T; aT2 ; e
T; 0TÞT:

We proceed by proving:

J2�a2 ¼ a2:

First, we note: a2 ¼ ða
T
�þ ; a

T
�� ; a

T
�0 Þ

T with a�0 ¼ 0 [if �0¼ 0, this is trivial (‘a�0 empty’);

if �04 0, it follows from ‘rank½N ..
.
c� ¼ rankðNÞ’]. Moreover, it is easily verified that:

J2� ¼
Ir O

O O

� �
; r ¼ �þ þ ��; ½if �0 ¼ 0 then J2� ¼ In�k; if �0 ¼ n� k; then a2 ¼ 0 �:

So, we may conclude that J2�a2 ¼ a2.
Now, we apply Lemma 5: Let P be a k� (n� k)-matrix with as 1st row [J� a2]

T,

R :¼�J�P
T, and L :¼ �ð1=2ÞPJ�P

T. This yields a matrix, say U42G, such that:

U4NUT
4 ¼ N, and

U4ððPa1Þ
T; aT2 ; e

T; 0TÞT ¼ ðða01Þ
T; 0T; eT; 0TÞT 2 R

k
�R

n�k
�R

k
�R

m�k

(because a2 þRe ¼ a2 � J�P
Te ¼ a2 � J2�a2 ¼ a2 � a2 ¼ 0).

Put c0 :¼ ((a01)
T, 0T,eT,0T)T. Apparently, vector y :¼ (�eT, 0T,�(a01)

T, 0T)T

belongs to the KKT-set of the optimization problem represented by ½N ..
.
c0�, and

yTc0 ¼ �2eTa01. If q ¼ �e
Ta01, then – due to Lemma 2 – we have

�ð¼ sign½N ..
.
c0�Þ ¼ signðqÞ:

We distinguish between the cases q 6¼ 0 and q¼ 0.

If q 6¼ 0:
Apply Lemma 4 again, but now with P :¼ ð1=

ffiffiffiffiffiffi
jqj
p
Þ½e ..

.
P��T, where P� is a

k� (k� 1)-matrix with as columns a basis for the orthogonal complement of a01, and
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put � :¼ �5 ¼ 1=
ffiffiffiffiffiffi
jqj
p

. Note that P is regular, then:

�Pa01 ¼
�q

jqj
e ¼ ��e; �P�Te ¼ e:

With these choices of P and � [if k¼ 1, put P :¼ ½1=
ffiffiffiffiffiffi
jqj
p
� and q¼�a01], Lemma 4

yields a pair (U5, �5)2G�R\{0} such that:

U5NUT
5 ¼ N; and �5U5ðc

0Þ ¼ n;

where n is the normal form as indicated in Table 2, ‘¼ 3,�¼�1.

If q¼ 0:
From the very definition of q it follows that the 1st component of a01 vanishes.
So, if k¼ 1, we are done.
In case k4 1, we write a01 ¼ ð0; d

TÞ
T, with d2R

k� 1. Then Lemma 5, with

P :¼ Ok;n�k;R :¼ On�k;k; and L :¼
0 ..

.
dT

�d ..
.
Ok�1;k�1

24 35 ðhence;Lþ LT ¼ OÞ;

yields a matrix in G, again denoted by U5, such that

U5NUT
5 ¼ N; and U5ðc

0Þ ¼ n

where n is the normal form as in Table 2, case ‘¼ 3,�¼ 0.
Altogether, if we redefine U :¼U5U4U1 and put � :¼ �5 (if q 6¼ 0) or � :¼ 1 (if

q¼ 0), then the maps �U,� meet our objectives.
½N ..

.
c� 2 V

ð4Þ
�;k;½�� :

Due to the structure of N and the characteristics of V
ð4Þ
�;k;½��, we have:

b ¼ 0; �0 4 0; and a�0 6¼ 0:

As in the case ‘¼ 2, the conditions ‘�04 0’, and ‘a�0 6¼ 0’ give rise (by Lemma 6)

to a matrix in G, again denoted by U2, such that

U2NUT
2 ¼ N; and U2c ¼ ða

0
1; n

T
2 ; 0

T; 0TÞT;

with n2 ¼

0

0

e

264
375 2 R

�þ
� R

��
�R

�0 :

Next, we apply Lemma 5 to ½N ..
.
U2c�, by choosing for P a k� (n� k)-matrix with

�a01 as its (rþ 1)th column, and all other columns arbitrary,11 R :¼�J�P
T, and

L :¼ �ð1=2ÞPJ�P
T. We obtain a matrix, say U52G, such that

U5NUT
5 ¼ N; and U5ðU2cÞ ¼ n;

where n is the normal form as in Table 2, ‘¼ 4.

Redefining U :¼U5U2, we find: �U,1 is the map we are looking for.

½N ..
.
c� 2 V

ð5Þ
�;k;½�� :
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Due to the structure of N and the characteristics of V
ð5Þ
�;k;½�� we have:

a1 6¼ 0; and a2 ¼ b1 ¼ b2 ¼ 0:

We extend a1 to a basis for R
k. Let P�1 be the k� k-matrix with as columns this

basis. Then, P�1e¼ a1, and thus Pa1¼ e. Now, Lemma 4, with this P, yields a matrix

U2G, such that

�U;1½N
..
.
c� ¼ ½N ..

.
n�;

where n is as indicated in Table 2, ‘¼ 5.

½N ..
.
c� 2 V

ð6Þ
�;k;½�� :

Due to the structure of N and the characteristics of V
ð6Þ
�;k;½��, we have:

b1 ¼ b2 ¼ 0; and a2 6¼ 0:

Moreover, the condition ‘rank½N ..
.
c� ¼ rank½N�’ yields:12

�0 5 n� k and; if �0 4 0;we have a�0 ¼ 0:

We are going to apply Lemma 5. From a2 6¼ 0, it follows that at least one component

of a2, say the jth component, has a value q 6¼ 0. Choose for P a k� (n� k)-matrix

with as its jth column �(1/q)a1, and all other columns zero. Moreover we put

R :¼�J�P
T, and L :¼ �ð1=2ÞPJ�P

T. With these choices we obtain, by Lemma 5, a

matrix U62G, such that

U6NUT
6 ¼ N; and c0ð:¼ U6cÞ ¼ ð0

T; aT2 ; 0
T; 0TÞT;

a2 ¼

a�þ

a��

0

264
375 2 R

�þ
�R

��
� R

�0 :

Apparently, the vector y ¼ ð0T; yT2 ; 0
T; 0TÞT, with yT2 ¼ ð�a

T
�þ ; a

T
�� ; 0

TÞ
T, belongs to

the KKT-set of the optimization problem represented by ½N ..
.
c0�. Hence,

�ð¼ signð½N ..
.
c0�Þ ¼ signð�ka�þk

2 þ ka��k
2Þ;

where k � k, stands for Euclidean norm.13

Write �þ ¼ ka�þk (if �
þ
¼ 0, then �þ¼ 0), �� ¼ ka��k (if �

�
¼ 0, then ��¼ 0), and

note: �þþ ��4 0.
In order to apply Lemma 6, let H be a block matrix of the following structure:

H :¼

H�þ O O

O H�� O

O O I�0

264
375

where H. stands for orthogonal matrices, with dimensions as indicated in the

subscript, and O for zero matrices with appropriate dimensions; some of these blocks
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may be empty, e.g. if �þ¼ 0, or ��¼ 0. Note that H is regular. By the special form of

J� we have:

HJ�H
T ¼ J�:

We make suitable choices for H�þ and H�� :

If a�þ 6¼ 0, we extent ð1=�þÞa�þ to an orthonormal basis of R
�þ , with this vector in

first position. Now, H�þ is the matrix with this basis as rows. If a�þ ¼ 0, we put

H�þ ¼ I�þ . We obviously have: H�þa�þ ¼ �þe, with e in R
�þ .

With respect to a�� , matrix H�� is defined similarly, and H��a�� ¼ ��e, with e in

R
�� .
With this choice of H, Lemma 6 gives rise to a matrix U72G, such that:

U7NUT
7 ¼ N; and U7c

0 ¼ ð0T; a
0T
2 ; 0

T; 0TÞT;

a02 ¼

�þe

��e

0

264
375 2 R

�þ
�R

��
�R

�0 :

We distinguish between the cases �¼ 0, �¼ 1, and �¼�1.

Case �¼ 0 In this case we have (�þ)
2
¼ (�� )

2, and thus �þ¼��4 0 (use

�þþ��4 0, and �þ,��� 0). So, if we choose � :¼ (1/�þ), and redefine U :¼U7U6,

the desired map is �U,�.

Case �¼�1 In this case we have �þ4��, and thus �þ4 0.
If ��¼ 0, we may proceed as in Case �¼ 0; with � :¼ (1/�þ), we find the normal

form described in Table 2, ‘¼ 6, �¼�1.
If �þ4��4 0, we apply Lemma 6 once again, but now with a matrix H of

the form:

H :¼

cosh ’ 0T sinh ’ 0T

0 Ið�þÞ�1 0 O

sinh ’ 0T cosh ’ 0T

O O 0 Ið��Þþð�0Þ�1

26664
37775

where cosh(�) stands for hyperbolic cosine, etc. and 0(O) are zero vectors (matrices)

of appropriate dimensions.

It is easily verified that H is regular, and HJ�H
T
¼ J�. Thus, Lemma 6 yields a

U82G, such that

U8NUT
8 ¼ N; and U8U7c

0 ¼ ð0T; a00T2 ; 0
T; 0TÞT;

a002 ¼

ð�þ cosh ’þ �� sinh’Þe

ð�þ sinh ’þ �� cosh ’Þe

0

264
375

We choose14 a ’, say ’0, with (�þsinh ’0þ ��cosh ’0)¼ 0, and thus:

a
00

2 ¼ ðð�
2
þ � �

2
�Þ
ð1=2ÞeT; 0T; 0TÞT. Finally, by choosing � :¼ 1=ð�2þ � �

2
�Þ
ð1=2Þ and

U :¼U8U7U6, we find the desired normal form.
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Case �¼ þ 1:

Similar to the preceding Case �¼�1.
½N ..

.
c� 2 V

ð7Þ
�;k;½�� :

Trivial. g

5. Proof of Theorem 2 (Manifolds)

5.1. Smooth manifold; defining system

The subset M of Mn,m(	R
N) is called a smooth manifold of dimension q, if each

Z2M has an open15 neighbourhood in M, which is diffeomorphic to an open

subset of R
q.

Now, let V
ð‘Þ
�;k;½�� be one of the non-void strata ofMn,m, and Z¼ [M ..

.
c] a matrix in

this stratum. Then, due to Lemmas 1, 2 and Theorem 1, an open neighbourhood in

V
ð‘Þ
�;k;½�� around Z, may be diffeomorpically mapped (by suitably chosen �U,�) onto an

open V
ð‘Þ
�;k;½��–neighbourhood, sayM0, of the normal form ½N ..

.
n� in V

ð‘Þ
�;k;½��. So, we are

done if we are able to show the existence of suchM0, which is diffeomorphic to an

open set in R
q. Due to the Implicit Function Theorem, the latter assertion is

equivalent to the existence of a so called defining system around ½N ..
.
n�, i.e. a set of

smooth functions, say hi, i¼ 1, . . . ,N� q(¼ ‘codimension’), on an R
N-open

neighbourhoodM1 of ½N
..
.
n� such that:

. V
ð‘Þ
�;k;½�� \M1 ¼ fZ 2 M1 j h1ðZÞ ¼ 0; . . . ; hN�qðZÞ ¼ 0g

. OnV
ð‘Þ
�;k;½�� \M1 the gradients of hi, i¼ 1, . . . ,N� q, are linearly independent.

In the sequel, we shall need the following technical lemma:

LEMMA 7 Let H be a matrix with the following 2� 2-block structure:

H ¼
H1 H2

H3 H4

� �
;

where H1 is a regular p� p-matrix. Then:

RankðHÞ ¼ p iff H4 ¼ H3ðH1Þ
�1H2:

Proof See e.g. [10]. g

Now we are ready to present:

Proof of Theorem 2 From the observations above, we know that all we have to do,

is to find defining systems for V
ð‘Þ
�;k;½�� around its normal form ½N ..

.
n�. Later on, we

shall distinguish between the various values for ‘. However, since the conditions

rank(B)¼ k, and In(AjkerB)¼ � do not depend on a specific value of ‘, we start with
deriving equations which characterize these two conditions. Let A and B be the sub

matrices of M as introduced in Section 1. We provide these matrices with the

following block structures:

A ¼

A11 AT
21 AT

31

A21 A22 AT
32

A31 A32 A33

264
375; B ¼

B11 B12 B13

B21 B22 B23

� �
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Here,16 the symmetric matrices A11, A22, and A33 have dimensions (k� k), (r� r)

with r¼ �þþ ��, and (�0� �0) respectively (inducing the dimensions of the other

blocks in A); B11 is a k� k-matrix, B21 a (m-k)� k-matrix and B12 is of dimension

(k� r), etc.
Now, we choose M close to the normal form N, i.e.

A22 �
I�þ O

O �I��

� �
; B11 � Ik; and all other blocks of A and B � O

In particular, we have: A22, and B11 are regular.
Due to Lemma 7, we have: (for any B close enough to the normal form B)

rankðBÞ ¼ k iff ½B22B23� ¼ B21B
�1
11 ½B12B13�; i:e:

B22 ¼ B21B
�1
11 B12

B23 ¼ B21B
�1
11 B13

ð4Þ

Next, we consider the n� (n� k)-matrix S, with the following block structure:

S ¼

�B�111 B12 �B
�1
11 B13

Ir O

O In�k�r

264
375:

Obviously, we have: rank(S)¼ n� k and –under condition (4)– BS¼O. Thus the

columns of S form a basis for ker(B). By straightforward calculation:

STAS ¼
D11 DT

21

D21 D22

� �
;

with

D11 ¼ A22 þ BT
12B
�T
11 A11B

�1
11 B12 � BT

12B
�T
11 A

T
21 � A21B

�1
11 B12

D21 ¼ A32 þ BT
13B
�T
11 A11B

�1
11 B12 � BT

13B
�T
11 A

T
21 � A31B

�1
11 B12

D22 ¼ A33 þ BT
13B
�T
11 A11B

�1
11 B13 � BT

13B
�T
11 A

T
31 � A31B

�1
11 B13

9>>=>>;ðyÞ
So, by choosing M close enough to N, we have: D11�A22, thus D11 is regular, and

D21, D22�O. From Lemma 7, it follows:

rankðSTASÞ ¼ rð¼ �þ þ ��Þ iff D22 ¼ D21D
�1
11 D

T
21 :

The latter condition, combined with the above expressions (y) yields:

A33 ¼ �B
T
13B
�T
11 A11B

�1
11 B13 þ BT

13B
�T
11 A

T
31 þ A31B

�1
11 B13 þD21D

�1
11 D

T
21 ð5Þ

Altogether, we have shown for matrices M close enough17 to N:

rankðBÞ ¼ k ^ ðInAjkerBÞ ¼ � iff ð4Þ ^ ð5Þ holds:

Taking into account the symmetry of A11, the combined Condition (4) ^ (5) gives rise

to a set of ðn� kÞðm� kÞ þ ð1=2Þ�0ð�0 þ 1Þ scalar equations, with on the left hand

sides only variables corresponding to the (independent) entries of B22, B23 and A33,

whereas the right hand sides may be considered – due to (y) – as smooth functions on

702 P. Jonker et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
T
w
e
n
t
e
]
 
A
t
:
 
0
7
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
0



the entries of the other sub matrices of M. Clearly, the gradients of these equations
w.r.t. the (independent) entries of B22, B23, A33 are linearly independent. Hence,18

ð4Þ ^ ð5Þ is a defining system of fMjrankðBÞ ¼ k; InðAjkerBÞ ¼ �g around N ð
Þ

By the Implicit Function Theorem, there exists an open neighbourhood, say N , in
{Mj rank(B)¼ k, In(AjkerB)¼ �} around N, such that on N the condition (4) ^ (5)
holds (as an independent set of equations).

In the sequel, we consider open neighbourhoods in N � R
nþm around ½N ..

.
n�,

denoted V(‘), where ‘ refers to the fact that ½N ..
.
n� is supposed to be the normal form

of V
ð‘Þ
�;k;½��.
We are looking for necessary and sufficient conditions in order that matrices

[M ..
.
c] in V(‘), and close to ½N ..

.
n�, are contained in the stratum V

ð‘Þ
�;k;½��. Doing so, we

assume:19 05 k5m5 n; 05 r(¼ �þþ��) 5 n�k.
We proceed by distinguishing between the various ‘-values.

If ‘¼ 1:
Apart from the features assured on V(1) by (4)^ (5), only one additional condition

is needed to characterize V
ð1Þ
�;k;½�� : rank½B

..

.
b� ¼ kþ 1; cf Table 1.

From rank [B ..
.
b� ¼ kþ 1 and by a continuity argument it follows:

For [M ..
.
c]2V(1) close enough to ½N ..

.
n�, and thus [B ..

.
b] close enough to ½B ..

.
b�, we

have: rank [B ..
.
b]¼ kþ 1. So, apart from (4) and (5), no other equations are needed to

give a local characterization of V
ð1Þ
�;k;½�� around ½N

..

.
n�. Hence, see (*), we find that (4)

^ (5) gives rise to a defining system for V
ð1Þ
�;k;½�� around ½N

..

.
n�. Thus V

ð1Þ
�;k;½�� is a smooth

manifold with codimension as indicated in Table 3.

If ‘¼ 2:
Apart from the features assured on V(2) by (4) ^ (5), three additional conditions

are used to characterize V
ð2Þ
�;k;½��: b 6¼ 0, rank[M ..

.
c]¼ rank(M)þ 1 and rank[B ..

.
b]¼ k;

cf Table 1.
For [M ..

.
c]2V(2) close enough to ½N ..

.
n� the first two conditions remain

automatically valid (and therefore, they do not contribute to the defining system
we are looking for). The persistency of the inequality b 6¼ 0 follows directly from a
continuity argument. In case of the second condition, we use Corollary 2:
rank(M)¼ 2[rank(B)]þr. Due to (4)^ (5), rank(B)(¼ k) and �þþ ��(¼ r) remain
constant on V(2). Since rank½N ..

.
n� ¼ 2kþ rþ 1, the persistency of

‘rank[M ..
.
c]4 rank(M)’ follows from a continuity argument applied to [M ..

.
c].

So, we focus on the third additional condition: rank[B ..
.
b]¼ k. With the notations

as introduced before, we consider the condition

rank½B ..
.
b� ¼ rank

B11 B12 B13
..
.

b1

B21 B22 B23
..
.

b2

24 35 ¼ k:

Put [B ..
.
b] sufficiently close to ½B ..

.
b�. Then: B11� Ik, b1� e( 6¼ 0), and all other blocks

of B�O.
In view of Lemma 7: ‘rank [B ..

.
b]¼ k’ iff ‘½B22B23

..

.
b2� ¼ B21B

�1
11 ½B12B13

..

.
b1�’.

Since (4) is already fulfilled on V(2), the right hand side of this equivalency
reduces to:

b2 ¼ B21B
�1
11 b1 ð6Þ

Optimization 703

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
T
w
e
n
t
e
]
 
A
t
:
 
0
7
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
0



Note that (6) gives rise to (m� k) scalar equations. Moreover, on its left hand side,

only the entries of b2 occur, showing up neither in the right-hand side of (6), nor in

(4) ^ (5). From this, it follows that (4) ^ (5) ^ (6) forms an independent system;

compare also the (similar) proof of (*). Altogether (4) ^ (5) ^ (6) yields a defining

system for V
ð2Þ
�;k;½�� around ½N

..

.
n�.

So, V
ð2Þ
�;k;½�� is a smooth manifold of codimension as specified in Table 3.

If ‘¼ 3:

Apart from the features assured on V(3) by (4) and (5), three additional conditions

are needed to characterize V
ð3Þ
�;k;½��: b 6¼ 0, rank [M ..

.
c]¼ rank(M), sign[M ..

.
c]¼ �;

cf¼Table 3.
The persistency of the inequality b 6¼ 0, for [M ..

.
c] sufficiently near to ½N ..

.
n�,

follows (again) by a continuity argument.
In order to treat the condition rank[M ..

.
c]¼ rank(M), we partition c into sub

vectors a1; a
�
2 ; a

0
2; b1; b2, according to the block structures of A and B. We consider

the matrices

½M ..
.
c� ¼

A11 AT
21 AT

31 BT
11 BT

21
..
.

a1

A21 A22 AT
32 BT

12 BT
22

..

.
a�2

A31 A32 A33 BT
13 BT

23
..
.

a02

B11 B12 B13 O O ..
.

b1

B21 B22 B23 O O ..
.

b2

26666666664

37777777775
and

½F ..
.
c0� ¼

A11 AT
21 BT

11 AT
31 BT

21
..
.

a1

A21 A22 BT
12 AT

32 BT
22

..

.
a�2

B11 B12 O B13 O ..
.

b1

A31 A32 BT
13 A33 BT

23
..
.

a02

B21 B22 O B23 O ..
.

b2

26666666664

37777777775
where the latter matrix is obtained from the first one, by interchanging the 3rd and

4th block columns, and subsequently the 3rd and 4th block rows.
We put:

Z ¼

A11 AT
21 BT

11

A21 A22 BT
12

B11 B12 O

2664
3775 and I� ¼

O O Ik

O J� O

Ik O O

2664
3775; where J� ¼

I�þ O

O �I��

" #
:

Let [M ..
.
c] be sufficiently near to ½N ..

.
n�. Then: Z(� I�) is a regular (2kþr)� (2kþ r)-

matrix. By construction of V(3), and using Corollary 2, we find: rank(M) (¼ rank

(F))¼ 2kþ r, and thus rank [M ..
.
c] (¼ rank [F ..

.
c0])¼ 2kþ r. Now, applying Lemma 7
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to [F ..
.
c0], with Z in the role of H1, yields the following necessary & sufficient

condition for rank[M ..
.
c]¼ rank(M):

A33 BT
23

..

.
a02

B23 O ..
.

b2

264
375 ¼ A31 A32 BT

13

B21 B22 O

" #
Z�1

AT
31 BT

21
..
.

a1

AT
32 BT

22
..
.

a�2

B13 O ..
.

b1

266664
377775:

In principle, this gives rise to six matrix equations. However, the equations

corresponding with the blocks A33;B
T
23;B23, and O on the left-hand side are already

fulfilled. This follows from Lemma 7, applied to matrix F with Z in the role of H1.

So, the above equations reduce to:

a02 ¼ ½A31 A32 B
T
13�Z

�1ðaT1 ; ða
�
2 Þ

T; bT1 Þ
T

ð7Þ

b2 ¼ ½B21 B22 O�Z
�1ðaT1 ; ða

�
2 Þ

T; bT1 Þ
T

ð8Þ

The latter relation is nothing else than Relation (6). In fact, we note that if again

½M ..
.
c� � ½N ..

.
n�, thus rank(Z)¼ 2kþ r, a unique triple (u, v,w)2R

k
�R

r
�R

k exists

such that:

A11 AT
21 BT

11

A21 A22 BT
12

B11 B12 O

2664
3775

u

v

w

2664
3775 ¼

a1

a�2

b1

2664
3775; or

u

v

w

2664
3775 ¼ Z�1

a1

a�2

b1

2664
3775 ð

Þ

Hence, by substituting (**) in (8) and using (4):

b2 ¼ B21uþ B22v ¼ B21B
�1
11 ½B11uþ B12v� ¼ B21B

�1
11 b1:

Altogether, for [M ..
.
c]2V(3) close enough to ½N ..

.
n�:

rank½M ..
.
c� ¼ rankðMÞ iff ð6Þ ^ ð7Þ holds:

Note that in the left-hand side of (6) ^ (7) only entries appear, which are neither

present in its right hand side, nor in (4)^ (5).
In order to analyze the last additional condition (sign[M ..

.
c]¼ �), we note that

(6)^ (7) and (**) imply that y¼�(uT, vT, 0T, wT, 0T)T is a solution for Myþc¼ 0.

Hence,

cTy ¼ �ðaT1 ; ða
�
2 Þ

T; bT1 ÞZ
�1ðaT1 ; ða

�
2 Þ

T; bT1 Þ
T:

Suppose �¼� 1:

Then, at ½N ..
.
n� we have cT y 6¼ 0. This inequality remains valid for [M ..

.
c] close

enough to ½N ..
.
n� (continuity argument). So, in these cases no additional conditions

are needed.
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Suppose �¼ 0:

Then, at ½N ..
.
n� we have cT y¼ 0. In this case, we have to cope with an additional

condition:

ðaT1 ; ða
�
2 Þ

T; bT1 ÞZ
�1ðaT1 ; ða

�
2 Þ

T; bT1 Þ
T
¼ 0: ð9Þ

For ½M ..
.
c� � ½N ..

.
n�, the left-hand side of (9) is a smooth function on entries of [M ..

.
c],

but not on the entries of B22;B23;A33; a
0
2, and b2, cf. (4), (5), (6), (7).

If �¼� 1, the independency of (4) ^ (5) ^ (6) ^ (7) is proved as for (4) ^ (5) in

(*).
If �¼ 0, the extension to a system (4) ^ (5) ^ (6) ^ (7) ^ (9) does not hurt the

independency. This is so, because the partial derivative at ½N ..
.
n�, cf. Table 2, ‘¼ 3,

�¼ 0, of the left-hand side of (9) with respect to the first component of ðaT1 ; ða
�
2 Þ

T; bT1 Þ
does not vanish. In fact, for this partial derivative we find:

2½1; 0; . . . ; 0�

O O Ik

O J� O

Ik O O

264
375 0

0

e

264
375 ¼ 2

Summarizing, the defining systems that, we seek, are (4) ^ (5) ^ (6) ^ (7) [if �¼�1],
and (4) ^ (5) ^ (6) ^ (7) ^ (9) [if �¼ 0]. Taking the dimensions of B22, B23 , A33

[symmetric!], a02, and b2 into account, we find the codimensions as indicated in Table

2, ‘¼ 3.

If ‘¼ 4:

Apart from the features, assured on V(4) by (4) and (5), two additional conditions

are needed to characterize V
ð4Þ
�;k;½�� : rank½M

..

.
c� ¼ rankðMÞ þ 1; b ¼ 0, cf Table 1. The

first (rank) condition does not contribute to a (possible) defining system; see case

‘¼ 2 where we encountered a similar situation.
The second additional condition yields:

b1 ¼ 0; b2 ¼ 0 ð10Þ

The entries of the left-hand side of (10) do not occur in (4) ^ (5). So, as in the

situation described in (*), the conditions (4) ^ (5) ^ (10) constitute a defining system

for V
ð4Þ
�;k;½�� around ½N

..

.
n�, with co-dimension as indicated in Table 3.

If ‘¼ 5:

Apart from the conditions assured on V(5) by (4) and (5) three additional

conditions are needed to characterize

V
ð5Þ
�;k;½�� : rank½B

T ..
.
a� ¼ rankðBTÞð¼ kÞ; b ¼ 0; a 6¼ 0; cf. Table 1. For [M ..

.
c] suffi-

ciently near to ½N ..
.
n�, we have: BT

11ð� IkÞ is regular. Applying Lemma 7 to

½BT ..
.
a�ð� ½B

T ..
.
a�Þ, with BT

11 in the role of H1, and taking (4) into account, we find the

following necessary & sufficient condition for rank[BT ..
.
a]¼ rank(BT):

a�2 ¼ BT
12B
�T
11 a1

a02 ¼ BT
13B
�T
11 a1 ð11Þ
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The second additional condition is just (10), whereas the last condition does not

affect a defining system (since, by a continuity argument, a 6¼ 0 remains valid if

½M ..
.
c� � ½N ..

.
n�). Similar to the preceding cases, we find as a desired defining system:

(4) ^ (5) ^ (10) ^ (11), with codimension according to Table 3, ‘¼ 5.

If ‘¼ 6:

Now, in addition to the features assured on V(6) by (4) and (5), four extra

conditions must be fulfilled in order to characterize V
ð6Þ
�;k;½��:

rank½BT ..
.
a� ¼ kþ 1; b ¼ 0; rank½M ..

.
c� ¼ rankðMÞ; sign½M ..

.
c� ¼ �:

The inequality rank[BT ..
.
a]4 k remaining valid for all [M ..

.
c]2V(6) sufficiently close

to ½N ..
.
n� – cf the preceding cases – we focus on the latter three conditions. We adopt

the notations, used in case ‘¼ 3.
Again the second additional condition is just (10). Due to (10), we find for

½M ..
.
c�ð� ½N ..

.
n�Þ in V(6) as necessary & sufficient condition for rank[M ..

.
c]¼ rank(M):

(compare case ‘¼ 3).

a02 ¼ ½A31 A32 B
T
13�Z

�1ðaT1 ; ða
�
2 Þ

T; 0TÞT ð12Þ

Now, we turn over to the last additional condition (sign [M ..
.
c]¼ �).

As in case ‘¼ 3, we have for ½M ..
.
c�ð� ½N ..

.
n�Þ in V(6):

sign½M ..
.
c� ¼ �signððaT1 ; ða

�
2 Þ

T; 0TÞTZ�1ðaT1 ; ða
�
2 Þ

T; 0TÞTÞ:

If �¼�1, then sign [M ..
.
c] 6¼ 0 remains valid for [M ..

.
c] close enough to ½N ..

.
n�, and no

extra equations in the desired defining system are needed.
If �¼ 0, we introduce:

ðaT1 ; ða
�
2 Þ

T; 0TÞZ�1ðaT1 ; ða
�
2 Þ

T; 0TÞT ¼ 0 ð13Þ

A straightforward calculation learns:
The partial derivative at ½N ..

.
n�, with n as in Table 1, ‘¼ 6, �¼ 0, of the left hand

side of (13) w.r.t. the jth component of vector ðaT1 ; ða
�
2 Þ

T
Þ, equals� 2 (if j¼ kþ 1)

andþ 2 (if j¼ kþ �þ þ 1). Note that sub vector n�2 ¼ ðe
T; eTÞT is not ‘empty’ if V

ð6Þ
�;k;½0�

is not ‘empty’.
Altogether, we find: The desired defining system is (4) ^ (5) ^ (10) ^ (12) , if

�¼� 1, and (4) ^ (5) ^ (10) ^ (12) ^ (13), if �¼ 0. The proof of the independency

(being similar to the proof given in case ‘¼ 3, see also (*)), will be deleted.
If ‘¼ 7: Similar to the preceding cases, we find as a defining system: (4) ^ (5) ^

a¼ 0 ^ b¼ 0. See also endnote 13. g

6. Proof of Theorem 3 (Whitney regular stratification)

The proof of Theorem 3 relies upon some well-known results from Algebraic

Geometry / Stratification Theory:

A subset of R
N is called semi-algebraic if it is generated – in the Boolean sense – by
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finitely many polynomial equalities and inequalities. Consider a partition of R
N into

semi algebraic strata. Moreover, let us assume that this partition fulfils the so-called

homogeneity property (cf. Section 2, endnote 6). Then this partition is a Whitney

regular stratification. (Compare the comment at the end of Section 2).
In the present situation, Lemma 1, Lemma 2 and (the proof of) Theorem 1

obviously assure the homogeneity property. So, we are done if we are able to prove

that our partition of Mn,m into the strata V
ð‘Þ
�;k;½�� is a semi-algebraic stratification. In

fact, this can be shown. See forthcoming Corollary 3. In proving Corollary 3, the

following complication arises: All conditions for V
ð‘Þ
�;k;½�� see Table 1, take the form of

polynomial (in-)equalities [‘rank conditions’], with the exception of ‘�¼� 1, 0’ and

‘In(Ajker B)¼ �’ which are – at first sight – not of polynomialnature.20 In case ‘�¼�
1, 0’, we overcome this problem by introducing an equivalent global condition which

is polynomial (see forthcoming Lemma 8).
For ‘In(Ajker B)¼ �’, we will use (see forthcoming Corollary 3) another basic

result from Algebraic Geometry, namely: The stratification induced by the connected

components of a semi algebraic set is again semi algebraic (cf [2]). g

We finish this section by presenting the missing links in the above proof

of Theorem 3.

LEMMA 8 Let kþ �þþ � �� 0. Then there exists a polynomial on R
N, say ��,k, such

that:

sign½M ..
.
c� ¼ sign��;kð½M

..

.
c�Þ:

for all21 ½M ..
.
c� 2 V

ð‘Þ
�;k;½��; ‘ ¼ 3; 6:

Proof We put p¼ 2kþ �þþ �� and thus 05 p� nþ k� nþm.
Let !¼mj1, . . . ,mjp}, 1� j15 � � �5 jp� nþm be an ordered set of columns ofM.
For any vector d in R

nþm, we introduce !ðdÞ :¼ ðdTmj1 ; . . . ; dTmjp Þ
T
2 R

p.

The determinant of the matrix [!(mji)] is just the Gramian of !, denoted G!. As it is

well-known, the Gramian of a set of vectors is always non-negative and only

vanishes in the case of linear dependency (cf [1]). Define G!(i) as the determinant of

the matrix obtained from [!ji)] by changing the ith column of the latter matrix into

!(c). Then, the desired polynomial is:

��;kð½M
..
.
c�Þ ¼

X
!

�G!
Xp
i¼1

cjiG!ðiÞ;

where the summation takes place over all possible sets ! of p columns in M.
To see this, let ½M ..

.
c� 2 V

ð‘Þ
�;k;½��, ‘¼ 3,6. Note that rank (M)¼ rank[M ..

.
c]. Due to

Corollary 2 we have p¼ rank(M). Thus among the sets ! of columns of M, there

exist !’s which are linearly independent. Given any such !, we obviously have:

c ¼
Xp
i¼1

�imji ; ð14Þ

where the �i’s are uniquely determined. Now, let y be a vector in R
nþm with the jith

components equal to ��i, and the other components equal to zero. ThenMyþ c¼ 0,

708 P. Jonker et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
e
i
t
 
T
w
e
n
t
e
]
 
A
t
:
 
0
7
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
0



and thus � (¼ sign [M ..
.
c])¼ sign(yTc). Moreover, we find:

yTc ¼ �
Xp
i¼1

�icji ; ð15Þ

where cji stands for the jith component of c. From (14), it follows:

!ðcÞ ¼
Xp
i¼1

�i!ðmjiÞ:

The latter relation may be viewed to as to a system of linear equations in the

p unknown’s �i. Applying Cramer’s rule yields:

�i ¼
G!ðiÞ

G!
; i ¼ 1; . . . ; p;

Substituting this result into (15) gives:

yTc ¼ �
Xp
i¼1

G!ðiÞ

G!
cji :

Multiplication with (G!)
2 and noting that G!4 0, yields:

� ¼ sign½M ..
.
c� ¼ signðyTcÞ ¼ sign �G!

Xp
i¼1

cjiG!ðiÞ

" #

Summation over all possible22 !’s yields our assertion; use that sign[M ..
.
c] does not

depend on the ambiguity in the choice of y (cf. Section 2). g

LEMMA 9 The set C of all p� p-matrices C, with det (C)4 0, is path wise connected

(and thus C is a connected set in R
p2).

Proof Let C2 C be arbitrary, but fixed. We are done, if we can find a continuous

path, say Ct, t2 [0,1], such that det (Ct)4 0, t2 [0,1], C0¼C, and C1¼ Ip. It is well-

known, cf. [1], that we have the following polar decomposition of C:

C ¼ PY;

where P is a positive-definite, and Y an orthogonal matrix. (In fact, P¼ (CCT)1/2

and, since det(C)4 0, also det(Y)4 0). Moreover, Y being orthogonal, we may

write:

Y ¼ X diagðIs;Rð’1Þ; . . . ;Rð’dÞÞX
�1;

where X is an orthogonal matrix and diag(�) a diagonal block-matrix, with on its

diagonal: Is¼ s� s-identity matrix and R(’) are 2� 2-matrices of the form:

Rð’Þ ¼
cos ’ � sin’

sin’ cos’

� �
; 0 < ’ � �; sþ 2d ¼ p:
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Now, the continuous path, we are seeking, is defined as follows:

Ct ¼

ðð1� 2tÞPþ 2tIpÞY if t 2 0;
1

2

� �
X diagðIs;Rð2ð1� tÞ’1Þ; . . . ;Rð2ð1� tÞ’dÞÞX

�1; if t 2
1

2
; 1

� �
8>>><>>>:

(Note that ((1� 2t)Pþ 2tIp) is positive-definite for all t 2 ½0; 1=2�). g

We consider the setsX
�;k

¼ fM j rankðBÞ ¼ k; InðAjkerBÞ ¼ �g:

Apparently,
P
�,k may be viewed to as to a subset (even a smooth manifold,

cf. endnote 13) of R
N�m� n.

LEMMA 10 All sets
P
�,k, with k5 n, are path wise connected, and thus connected.23

Proof Let M2
P
�,k be arbitrary, but fixed, and N the normal form for M as

introduced in Theorem 1. In Lemma 3 we proved the existence of matrices U2G:

U ¼
V K

O W

� �
; detðVÞ 6¼ 0; detðWÞ 6¼ 0

such that UMUT ¼ N:

9>=>; ð
 
 
Þ

We are done if we are able to prove that we can choose U such that det(V)4 0,

det(W)4 0. For then, due to Lemmas 2, 9, we can define a continuous path UEMUT
E

from N to M in
P
�,k, where

Ut ¼
Vt ð1� tÞK

O Wt

� �
:

Suppose det(W)5 0. We choose a matrix of the form U, sayU0, where U0 is the

diagonal matrix with all diagonal entries equal toþ 1 with the exception of the 1st

and(nþ 1)th ones which are equal to� 1. Then ðU0UÞMðU0UÞT ¼ N (for k4 0 use

Lemma 4), and

U0U ¼
V0 K0

O W0

� �
; detðV0Þ 6¼ 0; detðW0Þ4 0:

If det(V0)4 0, we are done. If not, we choose a matrix of the form U, say U00, as

introduced in Lemma 6 with H a diagonal matrix with all diagonal entries equal

toþ 1, with the exception of the first one which equals� 1 (since k5 n this is

possible). Then ðU00U0UÞMðU00U0UÞT ¼ N, and

U00U0U ¼
V00 K00

O W0

� �
; detðV00Þ4 0; detðW0Þ4 0:

g
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COROLLARY 3 The strata V
ð‘Þ
�;k;½�� constitute a semi algebraic stratification for Mn,m.

Proof For any pair (k, r), with 0� k�min(n,m) and 0� r� n� k we define

Wðk;rÞ ¼ fM j rankðBÞ ¼ k; rankðMÞ ¼ 2kþ rg:

In view of Corollary 2, the set W(k, r) is the union of sets of the type
P
�,k,

�¼ (�þ , �� , �0) with �þ þ �� ¼ r. Here, the union is taken over all (rþ 1) possible

sets of this type. If k¼ n, then r¼ 0 and W(k, r) reduces to W(n, 0)¼ {Mjrank(B)¼ n},

which is semi algebraic. If k5 n, then the sets
P
�,k, �

þ
þ �� ¼ r, are connected [use

Lemma 10], open and closed sets in W(k, r). Hence, the sets
P
�,k, �

þ
þ �� ¼ r, are the

connected components of W(k, r). The set W(k, r) is semi algebraic, and so are its

connected components
P
�,k.

Finally, we emphasize that the (conditions for) the strata V(‘)
�,k,[�] are obtained

from (those for) the sets
P
�,k by taking into account additional conditions, which

(Table 1 and Lemma 8) have the form of polynomial (in-)equalities. Thus, the strata

V
ð‘Þ
�;k;½�� are semi-algebraic subsets of Mn,m. g
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Notes

1. If k¼ n (�m), then S is not defined, but we formally put (�þ, ��, �0)¼ (0, 0, 0) in this case.
In order to focus on the general line of reasoning, here and in the sequel we shall not dwell
on these types of ‘degeneracies’; see, however, the forthcoming Tables 1, 2, 4, 5 and
related comments.

2. Note that ‘rank(B)¼m’(thus 0�m� n) means: the linear independency constraint
qualification (LICQ) holds at all (possible) feasible points for Q. Moreover, if – under
LICQ – we have KQ 6¼ ;, then �

0
¼ 0 yields a well-known second-order non-degeneracy

condition on the ‘restricted Hessian of the Lagrange function’ at a critical point x for Q.
The condition �0¼ 0, together with LICQ, will be referred to as to ND. Note that if
rank(B)¼m and �0¼ 0, we have: rank M¼ nþm and thus, KQ consists of the singleton
ðxT; �

T
Þ
T. See, e.g. the forthcoming Corollary 2 (Inertia Theorem).

3. One could expect that sign[M ..
.
c] not only plays a role in Clusters 3 and 6 but also in

Clusters 5 and 7. This is not the case, because under the features in this clusters, we always
have: sign[M ..

.
c]¼ 0.

4. Two points, say x and y, in a connected component of a stratum are said to ‘have the
same topological type with respect to the stratification’ whenever there exist two
neighbourhoods of x respectively y, and a homeomorphism between these neighbour-
hoods that preserves the local stratification around these points.

5. For a definition of semi-algebraic (partition), see Section 6.
6. That is, given any two points in the same stratum, there exists a diffeomorphism of an R

N-
neighbourhood of one point onto an R

N-neighbourhood of the other point which
preserves strata.

7. That is, locally around such a regular point the semi algebraic set is a smooth
submanifold.

8. That is, restricted to the C1-open and-dense set of mappings Q(�), which are transversal to
each stratum Vð‘Þ�;k;½��.

9. Thus, the gradients at x of the object function for Q, together with the gradients of the
(active) constraint functions form a linear dependent set. See e.g., [7,11].
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10. In fact, up till now, only an informal, hand written manuscript with these proofs is
available.

11. Note that such P exists since �0� 1 and �þþ ��¼ r implies: (rþ 1)� (n� k).
12. So, �k¼ ��¼ 0 does not occur (cf. list of empty strata in Table 1).
13. As a consequence of this expression for � we have: combinations ‘��¼ 0, with either �¼ 0

or �¼ 1’ and ‘�þ¼ 0, with either �¼ 0 or �¼�1’ do not occur; compare also the list of
empty strata in Table 1.

14. Such ’0 exists and is uniquely determined, in fact: ’0¼ tanh�1(���/�þ); note that |���/
�þ|5 1.

15. Open with respect to the relative topology onM, induced by the standard topology on
R

N.
16. In contradistinction to Section 4, here a pair of sub indices of a block does not indicate its

dimension.
17. Use alo the continuous dependency of the eigenvalues of a symmetric matrix on its

entries.
18. In fact, due to Lemmas 1–3, this proves that the set {Mjrank(B)¼ k, In (Ajker B)¼ �} is a

smooth manifold in R
N�n�m of codimension ðn� kÞðm� kÞ þ ð1=2Þ�0ð�0 þ 1Þ.

19. This assumption does not imply a restriction to our final results.
20. Note that in the proof of Theorem 2 (cases ‘¼ 3,6) we characterized these conditions –

essentially – by means of polynomials. However these characterizations are of a ‘local
nature’, whereas for our present aim global characterizations are needed.

21. Note that violation of the condition kþ �þ þ ��4 0 yields in the cases ‘¼ 3,6 empty
strata, cf Table 1.

22. Here it is not necessary to restrict ourselves to sets ! which are linearly independent since
in case of linear dependency of ! we have G!¼ 0.

23. It is not difficult to show that this also holds for all other sets
P
�,k with the exception ofP

0,k¼m¼ n, which admits precisely two connected components.
24. With respect to relative topology on W(k, r).
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