
ORIGINAL ARTICLE

A study on automatic recognition of object use exploiting motion
correlation of wireless sensors

Stephan Bosch • Raluca Marin-Perianu •

Paul Havinga • Arie Horst • Mihai Marin-Perianu •

Andrei Vasilescu

Received: 7 March 2011 / Accepted: 19 August 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract An essential component in the ubiquitous

computing vision is the ability of detecting with which

objects the user is interacting during his or her activities.

We explore in this paper a solution to this problem based

on wireless motion and orientation sensors (accelerometer

and compass) worn by the user and attached to objects. We

evaluate the performance in realistic conditions, charac-

terized by limited hardware resources, measurement noise

due to motion artifacts and unreliable wireless communi-

cation. We describe the complete solution, from the theo-

retical design, going through simulation and tuning, to the

full implementation and testing on wireless sensor nodes.

The implementation on sensor nodes is lightweight, with

low communication bandwidth and processing needs.

Compared to existing work, our approach achieves better

performance (higher detection accuracy and faster response

times), while being much more computationally efficient.

The potential of the concept is further illustrated by means

of an interactive multi-user game. We also provide a

thorough discussion of the advantages, limitations and

trade-offs of the proposed solution.

1 Introduction

Ubiquitous computing imagines an instrumented environ-

ment surrounding the user, capable to recognize, interpret

and react to the user’s activities. An essential component in

this vision is the ability of detecting which objects are

being used at any moment, in a non-intrusive manner. A

number of solutions have already been proposed in the

literature: RFID [4, 21, 22, 31], contact switches [26, 27]

and power consumption monitoring of electrical appliances

in the home [3]. Each of these has its own limitations.

RFID systems may erroneously mark an object as being

held by the user just because it is in close proximity or,

conversely, the user’s interaction may be missed when the

object is grabbed at a great distance from the RFID tag

[31]. The techniques using contact switches and monitoring

the power consumption of appliances in the home provide

no information on the user’s identity and therefore those

only provide a suitable solution when the identity of the

user either is known implicitly or not important. Further-

more, the use of contact switches requires that there is an

actual contact involved in the user action, for example

when the object has a knob. Monitoring an appliance’s

power consumption gives solely an indirect estimate of the

usage and is restricted to electrical appliances.

More recently, benefiting from the rapid progress in

MEMS manufacturing, inertial and magnetic motion sen-

sors became an alternative technology to be considered. If

worn by the user and attached to objects, such sensors can

detect that an object is being used by a particular user by

correlating their movements. This approach has two

important advantages over the previous alternatives: (1) it

gives a direct measure based on the actual object use

(and not based on proximity to the object, for example) and

(2) it provides much more and finer-grained sensor

This work is an extension of earlier work presented at the fourteenth

annual IEEE International Symposium on Wearable Computers

(ISWC 2010) [5].

S. Bosch (&) � R. Marin-Perianu � P. Havinga � A. Horst

University of Twente, Enschede, The Netherlands

e-mail: s.bosch@utwente.nl

M. Marin-Perianu

Inertia Technology B.V., Enschede, The Netherlands

e-mail: mihai@inertia-technology.com

A. Vasilescu

PROSYS PC SRL, Bucharest, Romania

e-mail: andrei.vasilescu@prosyspc.ro

123

Pers Ubiquit Comput

DOI 10.1007/s00779-011-0451-8

information, thus making possible to also detect how the

user is interacting with the objects (which can lead, for

example, to inferring the user’s activities). The main lim-

itation of this approach is that it assumes some dynamics

involved in the interaction, i.e., the user is supposed to

actually handle and move the objects.

This study explores therefore a solution for automatic

detection of object use based on wireless sensor nodes

outfitted with three-dimensional accelerometer and com-

pass sensors. We equip the objects of interest and the user’s

arm with sensor nodes that correlate their relevant motion

features. The feature extraction, communication and cor-

relation are performed online and cooperatively by the

sensor nodes, which guarantees a fast response time to the

user. Through detailed simulations and practical experi-

ments, we seek to answer the following questions:

1. What are the signal features that express well and

compact the motion information, while remaining

computationally simple enough to be implemented

on resource-constrained hardware?

2. How can the correlation be done efficiently among the

sensor nodes?

3. What are the relevant parameters and trade-offs? How

to choose the optimal values?

4. How does our solution compare to existing work?

5. How do we implement the overall system on sensor

nodes?

6. What is the performance in practice, and how does it

compare to simulations?

7. What are the main problems, limitations and ideas for

further improvement?

The remainder of this paper is organized as follows.

Section 2 surveys previous work on detecting object use.

Section 3 provides the solution overview, covering aspects

related to feature extraction, correlation, communication

and synchronization. The system performance and trade-

offs are analyzed through simulation in Sect. 4. In Sect. 5,

our algorithms are compared with existing work in terms of

performance and computational effort. Next, Sects. 6–8

successively present all the practical details, from imple-

mentation on sensor nodes to practical experiments with

user activities and an interactive game. Finally, Sect. 9

discusses the results and formulates the conclusions.

2 Related work

Performing or enhancing activity recognition using infor-

mation on what objects the user is currently manipulating is

already a well-established concept [21, 22]. The actual

detection of a user’s interaction with a particular object is

one of the key problems that needs to be solved.

For situations in which only the interaction itself is

interesting or in which the identity of the user is known

implicitly, e.g., in a single-user environment, the detection

of a user’s interaction with objects can be implemented in a

relatively straightforward manner by adding switches or

other simple sensors to the points of interaction, such as

doors, knobs, handles and levers [26, 27]. A more complex

method is employed by Bauer et al. [3], who infer the use

of kitchen appliances by analyzing the electrical current on

the power line.

However, in the general sense, e.g., for a multi-user

environment, it is often necessary to find out who is using a

particular object by establishing an association between the

object and the user. Therefore, it is not sufficient to use a

simple switch or contact sensor. Moreover, the use of an

infrastructure becomes less practical, as this would tie the

object to an instrumented environment.

A common solution is to detect whether a particular

user, or rather his arm, is in close proximity to an object by

employing the RFID [4, 8, 31] technology or other RF-

based solutions [6]. Each object is equipped with an RFID

tag, while the user wears a reader on his hand or lower arm.

Once the reader is in close proximity to the object, the

system assumes that the object is being used. Important

advantages of RFID tags are that they are cheap and small

and that no batteries are required. Unfortunately, spatial

proximity information alone is often not enough to reliably

detect the use of an object by a particular user, mainly

because other nearby objects can also be detected [31], e.g.,

when the user moves in their proximity [10]. This problem

is most prevalent when the communication range is large

relative to the density of objects in the environment.

However, limiting the communication range to alleviate

this problem can affect performance. Therefore, a trade-off

between range and reliability needs to be found [8].

Another problem is that RFID readers need a relatively

large antenna to attain sufficient range while limiting

power consumption, which makes the design of a suitable

bracelet or glove difficult according to Berlin et al. [4]. The

work by Berlin et al. compares several RFID systems used

in context recognition research and, even with their own

well-tuned antenna, the range is still limited to about

14 cm. This may be problematic when the object is large

and handled at an unexpected position [8].

A problem that cannot be solved with the RFID tech-

nology is the detection of how the object is being manip-

ulated by the user [30]. For example, with a claw hammer,

one can drive nails into a wooden board but also pull them

out again. This can be distinguished using sensors on the

user, but the object itself can also provide vital information

about the activity it is involved in. To exploit this, objects

can be equipped with sensing, processing and communi-

cation capabilities. Such objects are called smart objects

Pers Ubiquit Comput

123

[16], sentient artifacts [9, 15], smart artifacts [13] or

cooperative artifacts [25].

We use this technology for the detection of object

handling by exploiting the fact that typically the user is

holding the object in his hand and the performed activity

involves at least some movement. For such scenarios, we

investigate the detection of the simultaneous motion of the

object and the user’s arm. We use hardware that is directly

suitable to build a smart object, allowing it to not only

detect that it is being used by someone, but also in what

manner. We attach to objects and users wireless sensor

nodes equipped with motion sensors. By matching the

movement of the object and the movement of the user’s

arm, we can assess whether the object is being used by that

user, thereby establishing an implicit connection based on

the context proximity [13] between the user and the object.

The concept of associating two entities based on their

common movement has been explored in a couple of appli-

cation scenarios. For example, for a transport and logistics

application, Marin-Perianu et al. [19] describe a method to

determine whether wireless sensor nodes attached to trans-

portation items are moving together based on raw acceler-

ometer data. Our application, however, has different

requirements and challenges, because it involves human

motion. The characteristics of human motion are different

compared to motion of transportation items, mainly because

the sensors can rotate freely in any direction.

Aylward et al. describe Sensemble [1], a system of

compact, wireless sensor nodes meant to capture expres-

sive motion when worn at the wrists and ankles of a dancer.

The research uses inertial sensors, i.e., both accelerometers

and gyroscopes, and time-domain covariance calculation to

obtain a measure for the movement correlation between

different sensor modules. The raw sensor data of the Sen-

semble nodes are streamed to a central processing unit

through a high-bandwidth radio. Unfortunately, the details

of the performed processing are omitted. Also, the use of

infrastructure is less desirable and practical for our appli-

cation, as this would tie the objects to an instrumented

environment. We aim to implement the correlation algo-

rithm on the nodes themselves with only limited commu-

nication needs.

The work by Lester et al. [17] uses motion sensors to

determine whether two objects are carried by the same

person by exploiting the periodic nature of human walking.

This makes correlation in the frequency domain possible,

reducing the effect of communication latencies and

avoiding the need for precise synchronization. Also using

frequency-domain analysis, Mayrhofer et al. [20] exploit

shared movement patterns to authenticate communication

between wireless devices. The user can pair the devices for

secure communication simply by shaking them together.

However, such frequency-domain methods are less likely

to perform well with generic non-repetitive movement,

such as for a human arm manipulating an object.

The idea of establishing a connection between devices

by—for example—shaking them together was coined ear-

lier in the Smart-Its project [13]. Although the details of the

employed algorithm and parameters are not described, the

authors briefly mention the use of time-domain correlation

of accelerometer data to decide whether objects are moving

together [23].

Hinckley et al. [12] also use motion sensing to establish

device association, in this case between tablet computers.

By bumping the devices against each other, a relation is

established. Unlike the other time-domain solutions dis-

cussed above, this work does not use correlation of the full

sensor signals. Rather, the individual devices detect ‘bump’

events in their accelerometer’s signal and wirelessly try to

match the time-wise occurrence of these among each other.

Human activity involving object use does not necessarily

involve bumps or other sharp impact events, making this

less suitable as a generic solution to our problem. However,

the detection and matching of such impact events could be

employed to improve the reliability of our solution.

Buettner et al. [7] use movement data to determine that

objects are used and how these are used. The movement

data are collected by means of RFID technology, but unlike

the normal RFID tags, these so-called Wireless Identifi-

cation and Sensing Platforms (WISPs) [24] include pro-

cessing and sensing capabilities, such as an accelerometer.

This alleviates the battery problems incurred in normal

wireless sensor network designs. However, the described

solution omits determining who is using the objects in the

room; the RFID readers are mounted in the ceiling and not

on the users. When using an RFID bracelet with inertial

sensors [4, 8], this WISP technology could be used to

combine the advantages of RFID and proximity-based

solutions with our movement-based approach.

The work by Fujinami et al. [10, 11] explores using the

correlation of raw accelerometer signals for object–user

association. Much like our solution, Fujinami et al. use the

statistical correlation coefficient to establish an association

between an object and a particular user. However, our

experiments indicate that significant rotation can make the

accelerometer-only solution less accurate, mostly through

the influence of gravity on the accelerometer. Therefore,

we base our solution on the fusion between the acceler-

ometer and compass sensor data, thereby also involving

rotation information. Additionally, we use correlation of

motion features instead of raw sensor data, thus reducing

significantly the overall processing and communication

requirements. In Sect. 5, we compare two of the algorithms

by Fujinami et al. with our own.

Table 1 summarizes the related work along the follow-

ing lines: the technological solution, the method for

Pers Ubiquit Comput

123

detecting the object use and whether it gives a direct or

indirect estimate of the actual use, the main limitations or

issues, the ability of distinguishing multi-user, multi-object

cases, the feasibility of implementation on resource-con-

strained hardware and the possibility of inferring how the

objects are used. Our proposed solution (motion feature

correlation) is also represented in this overview table for

comparison. The main benefits are that with less compu-

tational effort (due to the feature extraction), we can

achieve high detection accuracy and fast response times.

Additionally, our solution can facilitate complex activity

recognition by providing information on how the object is

being used.

3 Solution overview

Our solution is based on smart objects (also called smart

artifacts, sentient artifacts or cooperative artifacts [13, 15,

25]), which envelop sensing, processing and communica-

tion capabilities. Each object is equipped with a wireless

sensor node with three-dimensional accelerometer and

compass sensors. For a pair of sensor nodes under con-

sideration, movement measurements are correlated in the

time domain using the Pearson product-moment correlation

coefficient. The accelerometer is used to measure linear

motion, whereas the compass sensor is used to measure

rotary motion. A node performs the correlation calculation

using its local measurements and those communicated

wirelessly from the peer node. To reduce communication

and processing efforts and to improve the correlation per-

formance, the raw sensor signals are first processed into

concise feature values before being communicated and

used in the correlation. Unlike actual activity recognition,

temporal segmentation of the sensor data is not necessary

to perform the correlation. For this application, we are not

so much interested in the composition of the movement,

but rather in the correlation between the movements of the

sensors.

In the following, we present our solution in detail. We

first describe how we avoid relative orientation depen-

dencies in the motion correlation process and why a

compass sensor is employed. Thereafter, we describe the

used signal features and how these are extracted from the

sensor signals. Subsequently, we outline the synchroniza-

tion of feature extraction, the communication details, how

our solution deals with the lack of movement and finally

the correlation algorithm itself. We finish this section by

summarizing the parameters involved and the associated

trade-offs.

3.1 Orientation dependencies

An important problem that needs to be solved is that the

orientation of the sensors is likely to differ, which means

that the individual axis signals of the 3-D sensors cannot be

correlated directly. Therefore, the sensor signals need to

be preprocessed to remove the orientation dependency.

Only then, the correlation coefficient will produce reliable

and accurate results for sensors with unknown relative

orientation.

One of the solutions proposed by Fujinami et al. [10] to

solve this problem is by taking the magnitude of the raw

accelerometer signal. This way, only the intensity of the

Table 1 Overview of related work

Solution Method

(direct/indirect)

Main limitations/

problems

Multi-user,

multi-object

environments

Feasible on

constrained

hardware

Use-

mode

detection

possible

Simple contact switches [26, 27] Contact (direct) Limited to binary actions No multi-user Yes Limited

Electrical appliances [3] Current

consumption

(indirect)

Limited to electrical

appliances

No multi-user Yes Limited

RFID [4, 8, 31] Spatial proximity

(indirect)

False positives/range

problems

Yes Tags—yes,

readers—no

Limited

Motion: time-domain correlation of

raw data [1, 10, 11, 19, 23]

Correlated motion

(direct)

Rotation for

accelerometer-only

solutions

Limited due to

computational effort

Yes Yes

Motion: frequency correlation [17, 20] Similar motion

frequency (direct)

Periodic motion needed Very limited due to

computational effort

No Yes

Motion: impact correlation [12] Impact/bumping

(direct)

Impacts with/of objects

needed

Yes, with significant

loss of accuracy

Yes No

Motion: feature correlation [5] Correlation motion

(direct)

At least some motion

needed

Yes Yes Yes

Pers Ubiquit Comput

123

motion is fed to the correlation algorithm and the relative

orientation of the sensors should have no influence. How-

ever, rotary motion can significantly influence the perfor-

mance of this design, because the accelerometer measures

the vector sum of acceleration and gravity (also known as

specific force). Figure 1a schematically shows an extreme

example of the problem. Two accelerometers are rigidly

mounted on the opposite ends of a movable beam. Clearly,

the movement of the two sensors is always physically

correlated. The solution using correlation of the accelera-

tion magnitudes works fine when both sensors have the

same approximate movement direction relative to gravity,

i.e., the beam moves such that both are moving up or both

are moving down. However, when the beam rotates such

that one sensor moves up and the other sensor moves down,

i.e., with the pivot point between them, the problem

emerges: one sensor experiences an acceleration a pointing

in the general direction of gravity g, while the other

experiences an acceleration that has a direction opposite to

g. When a is small relative to g, the magnitude of the

measured acceleration |am| will in that case rise above |g|

for one sensor and drop below |g| for the other. Only if the

acceleration a caused by the rotation is large enough, the

acceleration magnitude |am| will rise above |g| for both

sensors.

Rotary motion can therefore severely impede the per-

formance of accelerometer correlation. Figure 2 shows the

accelerometer magnitudes from the experiment described

above. The beam is rotated back and forth with around 90

degrees. As expected, the signals look anti-correlated.

Because magnitude signals (movement intensities) are

compared, anti-correlation has no specific meaning due to

the lack of directional information and is therefore inter-

preted as no correlation at all. Overall, the correlation of

the signals in Fig. 2 is very low.

In practice, this situation can arise quite easily, for

instance, when the user is rotating his wrist as shown in

Fig. 1(b): The pivot point is the user’s wrist, the bracelet is

on top of the user’s wrist and the object is in the user’s

hand and thereby below the pivot point. Rotating the arm

as indicated in the figure triggers the issue. As a partial

workaround, we coarsely compensate for gravity, as

explained in Sect. 3.2. Because the compensation is not

perfect, this does not solve the gravity problem completely,

and significant rotation can still reduce performance.

When the sensor is subjected to much rotary motion, the

accelerometer correlation becomes less reliable. Therefore,

we need (1) a means to detect this situation and (2) a sensor

modality that provides a means to reliably correlate rotary

motion. As a solution, we add a compass sensor, which

measures its three-dimensional orientation relative to the

Earth’s magnetic field. Much like the accelerometer, we

process the compass signal into a series of feature values

that correspond to the motion intensity in an effort to lose

its orientation dependency. To achieve this, we determine

the angle between successive compass orientation mea-

surements, thereby obtaining a measure for the angular

speed. This feature value is useful both as a means to detect

situations with significant rotary motion and as means to

correlate rotary motion between sensors. To solve the

accelerometer issue, we combine the accelerometer and

compass correlations into a single assessment value, in

which the accelerometer correlation gets less weight when

there is much rotary motion. This is explained further in

Sect. 3.4.

3.2 Feature extraction

The feature values are extracted from the raw signal at

regular non-overlapping intervals called windows. A new

(a) (b)

Fig. 1 Gravity influence on

accelerometer correlation

performance

Pers Ubiquit Comput

123

feature is computed at the end of such an interval, which

means that the length of the windows, i.e., the window size

W, determines the rate at which features are generated with

a given sample frequency fs, i.e., the feature frequency

(ff = fs/W). The window size thereby also determines how

many sensor samples are combined into a single feature

value.

For our application, the extracted features need to meet

the following requirements:

• Good feature quality The extracted features must

adequately retain the overall motion characteristics,

such that the correlation algorithm can reliably assess

both the presence and absence of correlated motion.

• Low processing requirements The resource limits of

sensor node hardware dictate that the processing

requirements need to be as low as possible. This means

that simplicity is key and that simple features that can

be computed with little effort have preference.

• Low feature size and rate The extracted features must

be small and produced at a low rate to keep bandwidth

and processing requirements low. However, a certain

minimum level is needed to achieve adequate

performance.

• No orientation dependencies The features must be

computed such that the absolute orientation of the

sensor has little or no influence on the produced feature

result, as explained in Sect. 3.1.

To meet these requirements, we define a feature vector

composed of two features that describe the intensity of

linear and rotary motion. They are orientation-independent

and relatively easy to calculate from the sensor data:

– Compass rotation angle: We infer the intensity of

rotation during a given time interval by calculating the

angle between vectors measured at the beginning and

the end of a feature window through the dot product. The

compass rotation angle fcra feature is calculated from the

compass measurements mðtÞ ¼ hmxðtÞ;myðtÞ;mzðtÞi in

the window interval t ¼ 1. . .W as follows:

fcra ¼
mð1Þ �mðWÞ
jmð1ÞjjmðWÞj ð1Þ

The feature value is normalized to yield a cosine angle

value in the interval [-1; 1]. When there is no rotation,

fcra = 1. The compass sensor needs to be calibrated for

offset and scale differences between the sensor’s own axes.

– Mean acceleration magnitude: To make the acceler-

ometer data insensitive to the current orientation of the

sensor, two important steps are taken within a window

interval t ¼ 1. . .W :

1. The raw accelerometer signal arðtÞ ¼ har;xðtÞ;
ar,y(t), ar,z(t)i is stripped from its offset by sub-

tracting the mean value in the window interval.

This coarsely compensates for the gravity compo-

nent, which depends on the sensor orientation and

usually changes slower than the actual acceleration

the sensor is subjected to through human motion.

Additionally, this step compensates for the effect

of offset miscalibration, avoiding the need to

calibrate the individual accelerometers.

2. The sum of the absolute vector components is

calculated from the three axis components. This

has a similar response to the more computation-

intensive acceleration magnitude. This discards the

vector’s direction and retains only its length,

resulting in one value per sample that describes

the desired intensity.

Summarizing, this mean acceleration magnitude fmam

feature is calculated from the raw acceleration samples

ar(t) in the window interval t = 1…W as follows:

axðtÞ ¼ ar;xðtÞ � ar;x

ayðtÞ ¼ ar;yðtÞ � ar;y

azðtÞ ¼ ar;zðtÞ � ar;z

fmam ¼
1

W

XW

t¼1

jaxðtÞj þ jayðtÞj þ jazðtÞj

ð2Þ

0 5 10 15
0.8

0.9

1

1.1

1.2

1.3

Time (s)
A

cc
el

er
at

io
n

M
ag

ni
tu

de
 (

g)

node 1
node 2

Fig. 2 Example of gravity and

rotation affecting accelerometer

correlation

Pers Ubiquit Comput

123

3.3 Communication and synchronization

To assess the motion correlation, at least one of the nodes

needs to have the feature values of both sides available.

Therefore, these values are continuously communicated

wirelessly to the peer at the instant they become available in a

feature message. When a feature message is lost on the wire-

less channel, the corresponding feature on the receiving end is

also discarded so that the correlation result is not affected. As

long as no new messages arrive, the correlation result is not

updated meaning that the detection state is retained.

For a good correlation performance, it is important that

the involved sensor nodes sample and generate the features

at approximately the same time. If there is too much time

skew between the nodes, no correlation is detected even

though correlated motion may exist. However, the syn-

chronization demands are not high: If the skew is small

enough relative to the feature window size, the perfor-

mance is not much affected, since the features are calcu-

lated from roughly the same time span. Although better

synchronization improves the performance, it requires

more processing and communication resources. Therefore,

we aim for only coarse sampling synchronization between

the nodes in real usage.

3.4 Correlation algorithm

The correlation of the two motion features in the feature

vector between two nodes is done in the time domain using

the Pearson product-moment correlation coefficient:

qA;B ¼
covðA;BÞ

rArB
ð3Þ

We use the following formula (the sample correlation

coefficient corrs) to approximate qA,B for the last H values

from sources A and B:

qA;B � corrsðA;B;HÞ ¼
PH

n¼1 ðAn�AÞðBn�BÞffiPH
n¼1 ðAn�AÞ2

PH
n¼1 ðBn�BÞ2

q

A¼ 1

H

XH

n¼1

An

B¼ 1

H

XH

n¼1

Bn ð4Þ

In our case, the correlation is calculated over the last H

(correlation history length) features produced at a pair of

nodes. The result qA,B lies in the range [-1; 1], for which

the following situations are distinguished:

• qA,B = 1: The signals are fully correlated.

• qA,B = 0: The signals are not correlated.

• qA,B = -1: The signals are fully anti-correlated.

It should be noted that since both features are vector

magnitudes, which have no direction, anti-correlation is not

interpreted as correlation. Therefore, in our case, correla-

tion values B0 mean that the movements are not correlated

at all.

Using Eq. 4, separate correlation values are calculated

for the two feature values fcra and fmam. These results have

to be combined into a single value that indicates how well

the motion of the two nodes correlates. As explained in

Sect. 3.1, the reliability of the accelerometer correlation is

sensitive to rotational motion. Therefore, we involve the

current compass rotation (fcra) features from both sensors to

produce a weighted average of the accelerometer correla-

tion qmam and the compass correlation qcra. This is done

using the following heuristic formula:

a ¼ 1

4
þ 1

8
ðfcra;1 þ fcra;2Þ

qcombined ¼ aqmam þ ð1� aÞqcra

ð5Þ

The combined correlation result q is the average of both

correlations when there is no instantaneous rotation

(fcra, 1, fcra, 2 = 1), and it is the compass correlation alone

when both fcra features are at their extreme value

(fcra, 1, fcra, 2 = -1).

The correlation value produced by our algorithm lies in

the range [-1; 1]. To obtain a discrete decision on whe-

ther an object is being held and used by the user, we need

to define the thresholds for when the detector status

changes from not used to used and vice versa. These

thresholds are not necessarily equal in both directions,

yielding hysteresis between the two states.

3.5 Motion detection

If one sensor node is stationary while another sensor node

is moving, these nodes obviously cannot be moving toge-

ther. Communicating feature values and calculating the

correlation coefficient is then a waste of resources. More-

over, when sensors are stationary or barely moving, the

correlation coefficient becomes sensitive to noise and

vibration in the motion signals, and thus less reliable. It is

therefore more efficient and reliable to first compare the

variance of the movement signals; the correlation coeffi-

cient is only calculated when both sensor nodes are actually

moving.

It should be noted that because correlation calculation

only starts at the moment both nodes are moving, there is a

setup phase in which less than the correlation history (H)

feature values are available for correlation. This, in effect,

reduces the response time of the algorithm when an object

is for instance first picked from a table. This may also

cause a brief false correlation.

Pers Ubiquit Comput

123

3.6 Algorithm parameters and trade-offs

The operation of the correlation algorithm depends on a set

of parameters that directly influence its performance:

• Sensor sampling rate (fs in Hz): A minimum sample

frequency is necessary to capture movements with

sufficient temporal resolution to prevent aliasing effects

and for the correlation to work. Nevertheless, an

unnecessary high sample frequency wastes resources

on sampling and data processing.

• Feature frequency (ff in Hz): If more features are

produced per unit of time, more detail is retained in

the data. Also, the response time of the algorithm may

improve as changes in the sensor data lead to

changes in the feature data more quickly. However,

a higher feature frequency increases the communica-

tion bandwidth and the processing cost of movement

correlation.

• Correlation history length (H in features): The corre-

lation history length determines the correlation time

interval TH ¼ H
ff

in seconds
� �

in seconds). On the one

hand, a longer interval results in a more reliable and

stable correlation, i.e., less sensitive to brief coinci-

dental correlation. On the other hand, a longer interval

significantly increases the response time of the algo-

rithm and the processing requirements.

• Decision thresholds: The decision thresholds deter-

mine when the detector state makes a transition from

correlating to non-correlating and vice versa. These

thresholds directly affect the accuracy of the assess-

ment. If not chosen carefully, the reliability is

decreased with frequent erroneous output. The thresh-

olds also affect the response time of the detector,

since the correlation output value exhibits a non-

instantaneous (sloping) response.

4 Simulation

To evaluate the trade-offs that exist among performance

metrics such as accuracy, response time and resource

usage, we perform an off-line evaluation using MatLab

before implementing our solution on the actual hardware.

The simulation uses raw data from the actual sensors and

allows us to freely adjust the algorithm parameters, thus

automating the analysis of the trade-offs. We perform

numerous experiments with users handling objects equip-

ped with sensors. Using a fast custom TDMA protocol, we

collect all raw data at 100 Hz with a synchronization pre-

cision better than 10 ls.

4.1 Performance evaluation

In order to analyze the trade-offs, we vary each algorithm

parameter individually while each of the other parameters

is held constant at a sensible value that will not negatively

influence the results. Each constant parameter is chosen

such that the effect of the varied parameter is expected to

be most apparent. This is not necessarily equal to the

optimum value found in an earlier simulation. For example,

to make sure that the sample frequency fs is always high

enough to envelop the bandwidth of human motion (mostly

below 20 Hz), the feature frequency ff and correlation

history H are evaluated at a relatively high sample fre-

quency of 40 Hz, even though simulations show that it does

not necessarily need to be that high for adequate correlation

performance.

We explore sampling frequencies ranging from 1 to

100 Hz, feature frequencies ranging from 0.5 to 20 Hz and

correlation history sizes ranging from 0.5 to 20 s. The

performance is measured in terms of the detection accuracy

and response time:

• Accuracy is assessed by determining the mean and

variance of the correlation value produced for corre-

lated and uncorrelated motion. The mean must lie close

to the optimum value, which is 1 for correlated

movement and 0 for uncorrelated movement, and the

variance should be ideally close to zero.

• Response time is the time the algorithm needs to detect

a change in the interaction state, i.e., the onset or the end

of movement correlation. We assess the response time for

the onset and the end of the correlation separately.

4.2 Experiments

The purpose of the first set of experiments is to evaluate the

accuracy of the algorithm. In these experiments, three

sensors are placed on the user’s arm, so that there is con-

tinuous correlation among them. Each experiment lasts for

one minute. Four different types of movement are con-

sidered: lifting a dumbbell weight, moving a ball up and

down above the shoulder, making a rowing motion with a

wooden stick and making random movements. For each

type of movement, five separate experiments are per-

formed. To evaluate the accuracy for correlated movement,

we run our algorithm on data from different nodes in the

same experiment. To evaluate the accuracy for uncorre-

lated movement, the data from different experiments are

cross-matched.

The second set of experiments assesses the response

time of the algorithm. In these experiments, one sensor

node is attached to the user’s arm and two nodes are

attached to objects handled by the user. The user

Pers Ubiquit Comput

123

successively interacts with one of the two objects. The

objects are equipped with a push button that is pressed by

the user when he is holding the object. This method

establishes the ground truth for the object usage by inter-

preting the state of the buttons. Each experiment lasts two

and a half minutes. We perform five experiments in which

the objects are handled solely by the user and five other

experiments in which the objects are constantly kept

moving by a second person when the user is not interacting

with them.

4.3 Results

4.3.1 Impact of sampling rate

The simulation results presented in Fig. 3 show that

increasing the sampling rate up to about 24 Hz has a sig-

nificant positive influence on the accuracy of detecting

correlated motion (ff = 4 Hz and H = 2 s). Beyond 24 Hz,

the impact is insignificant as shown in the top plot. The

bottom plot shows that the sample frequency has no visible

influence on the accuracy of detecting uncorrelated motion.

Furthermore, the simulations show that the influence of the

sampling frequency on the response time is negligible.

4.3.2 Impact of feature frequency

Figure 4 shows the performance results at varying feature

frequencies for both correlated and uncorrelated movement

(fs = 40 Hz and H = 5 s). Beyond 4 Hz, the variances do

not improve much anymore and the mean correlation value

of correlated motion starts decreasing. We assume that this

is caused by the fact that more high-frequency motion

components are involved in the correlation when the fea-

ture frequency is higher, increasing the chances of mis-

matches between the signals.

4.3.3 Impact of correlation history

The top plot of Fig. 5 shows the accuracy variation with the

correlation history length (fs = 40 Hz and ff = 4 Hz). For

correlated movement, the optimum mean and variance are

reached for a history length of 2 s. The performance for

uncorrelated movement is more dependent on the history

length, however, as the variance keeps decreasing until a

history length of 8 s. This asymmetrical behavior is to be

expected since uncorrelated movement usually has short

coincidental periods in which the movement correlates,

briefly producing a high correlation value when this period

is shorter than the history length. A higher history length

thus considerably reduces the chances of false positives.

The impact of the correlation history length on the

response time is shown in the bottom plot of Fig. 5. Up to

about 3.7 s, the response time for correlated and uncorre-

lated movement is very similar, but after that, a difference

between the response time slopes is noticeable. As

expected, the plot shows that faster response times can be

achieved with a shorter correlation history. However, this

will negatively impact in the accuracy, as explained above.

4.3.4 Impact of correlation thresholds

The decision of whether the sensors are moving together or

not is based on comparing the correlation value to prede-

fined thresholds. We use the simulation results to analyze

the impact of the thresholds on the overall performance.

0 10 20 30 40 50 60 70 80 90 100
0.7

0.8

0.9

1

Correlated Movement

C
or

re
la

tio
n

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0

0.2

0.4
Uncorrelated Movement

C
or

re
la

tio
n

Sample Frequency (Hz)

Fig. 3 Correlation output statistics at varying sample frequency

Pers Ubiquit Comput

123

The results are illustrated in Table 2 (fs = 24 Hz, ff = 4 Hz

and H = 3 s). The error percentages are obtained by

counting the fraction of time the detector produces false

correlation and false non-correlation results with the given

thresholds. We notice the merit of using different thresh-

olds for the transitions from and to correlation, yielding a

hysteresis between the two assessments. The configuration

with thresholds 0.65/0.45 provides the best trade-off

between response time and accuracy.

4.3.5 Conclusion of simulation results

Given the presented simulation results and the identified

trade-offs, we choose to set the sampling rate to 24 Hz, the

feature frequency to 4 Hz, the correlation history length to

3 s and the correlation thresholds to 0.65/0.45. With these

settings, the accuracy is close to optimal, and the upper

limit of 2 s we set for the typical response time is still

feasible. These are the settings we use for the hardware

experiments outlined in Sect. 7.

5 Comparison of algorithms

In this section, we compare the performance of several

alternative motion correlation algorithms, including two

described in the work by Fujinami et al. [10, 11]. We first

compare the performance in terms of accuracy and

response time, and we conclude this section with a com-

parison of the required computational effort for these

algorithms.

From our work, we include in this comparison the

correlation qmam of the acceleration-based fmam feature

(Equation 2), the correlation qcra of the compass-based fcra

feature (Equation 1) and the combination qcombined of these

correlations as described in Sect. 3.4. The performance of

qmam and qcra is assessed separately to determine to what

extent the combination qcombined is better than the corre-

lation of one of these features alone.

Several accelerometer-based algorithms are discussed in

the initial paper by Fujinami et al. [10], but we limit our-

selves to the two most successful in this comparison: raw-

compo and raw-max. Also, the work by Fujinami et al.

describes using multiple sensors spread over the body and

choosing the best one to correlate with the artifact used.

For this comparison, we assume that this step is already

taken and that the potentially associated pairs are known.

The work by Fujinami et al. gives no indication that any

kind of gravity compensation is performed for the raw-

compo or raw-max algorithms, so we will use the raw

accelerometer data for these. Also, these algorithms use no

feature extraction and are thus calculated for each indi-

vidual sample: the window shifts one sample each time,

meaning that the overlap is at its maximum. The correla-

tion result is obtained by calculating the correlation directly

over all the recent samples within the defined window size

W. Contrary to our work, the absolute value of the corre-

lation result is used. According to the initial publication

[10], this is done to account for situations in which the

nodes have opposing orientations and thus yield anti-cor-

related motion signals. This is thus part of their approach to

address the orientation dependencies we discussed in Sect.

3.1.

The raw-compo algorithm uses the magnitude |a| of the

acceleration signals aA and aB to correlate the movements

between the nodes A and B in the sample window W. Much

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.4

0.6

0.8

1

1.2
Correlated Movement

C
or

re
la

tio
n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Uncorrelated Movement

C
or

re
la

tio
n

Feature Frequency (Hz)

Fig. 4 Correlation output statistics at varying feature frequency

Pers Ubiquit Comput

123

like our qmam algorithm, the magnitude is used to obtain a

scalar signal that retains only the intensity of the motion,

thereby reducing the effects of differences in sensor ori-

entation. We have implemented the raw-compo algorithm

as follows using the sample correlation coefficient from

Eq. 4:

jaj ¼
ffi
a2

x þ a2
y þ a2

z

q

qrcompo ¼ jcorrsðjaAj; jaBj;WÞj
ð6Þ

The raw-max algorithm performs a cross-correlation

over the sample window W for all nine axis pairs between

the two nodes and selects the highest correlation value as

the result. If the movements of the sensors are correlated, it

is very likely that at least one axis pair in the cross-

correlation will have significant (anti-)correlation. This is

an alternative approach to compensate for differences in

accelerometer orientation. We have implemented the raw-

max algorithm as follows:

qi;j ¼ jcorrsðaA;i; aB;j;WÞj
qrmax ¼ maxfqx;xqx;yqx;zqy;xqy;yqy;zqz;xqz;yqz;zg

ð7Þ

5.1 Accuracy

First, we compare the accuracy of the algorithms. For this

comparison, we need to define how the accuracy of

the discussed algorithms is to be assessed. The work by

Fujinami et al. assesses the accuracy in terms of correct

association with one of two [10] or more [11] persons. In

real situations, however, a second person to compare the

correlation to is not always (if not rarely) present. In the

more recent publication [11], the single-user situation is

addressed by first matching the object’s use state and the

user’s activity. This allows skipping the correlation cal-

culation entirely, if only one user is engaged in an activity

that matches the object’s current state. The user is then

assumed to be the one interacting with the object. Unfor-

tunately, this fails to address the situation in which the

object may not be actively moved by a user at all, e.g., it

can be moved by some other person not involved in the

system. Also, the object’s status may not explicitly be part

of the user’s activity state, as Fujinami et al. [11] explain

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Correlation Value

C
or

re
la

tio
n

correlated movement
uncorrelated movement

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12
Response Time

R
es

po
ns

e
T

im
e

(s
)

Correlation History (s)

correlation response time
non−correlation response time

Fig. 5 Correlation output and response time statistics at varying correlation history lengths

Table 2 Correlation threshold statistics

Thresholds Response time (s) Errors (%)

Corr. Uncorr. Corr. Uncorr. Corr. Uncorr.

0.30 0.30 0.69 0.57 1.56 11.50

0.50 0.50 0.75 0.61 1.76 2.84

0.70 0.70 1.02 0.59 3.83 0.64

0.90 0.10 2.40 0.57 1.54 0.05

0.75 0.25 1.20 0.57 1.55 0.43

0.60 0.40 0.94 0.57 1.59 1.27

0.65 0.45 0.94 0.61 1.64 0.89

Pers Ubiquit Comput

123

with an example involving a coffee cup. Furthermore, this

solution depends on knowledge of the user’s activity and

the object’s use state, which is not always available nor

easy to obtain. Therefore, we deem such relative accuracy

metric inadequate for this comparison.

A good correlation method yields a correlation result

close to the maximum (1.0) for perfectly correlated motion

and a result close to zero for uncorrelated motion. When

this is achieved, the use of a threshold-based method for

the association decision is feasible, avoiding the need for

comparison with other candidates. For optimal perfor-

mance in terms of accuracy and reliability, we need a

correlation method with a high separation between the

values produced for correlated and uncorrelated motion.

The best separation of 1.0 is achieved when correlated

motion consistently yields a value of 1.0 and uncorrelated

motion yields a value of 0.0 or lower. The separation is one

of the accuracy metrics we use in this performance com-

parison, in addition to the mean and variance metrics

explained earlier in Sect. 4.1.

We perform the comparison using the same data set as

used in the performance evaluation simulations discussed

in Sect. 4.2. For the comparison, we use a sample fre-

quency fs of 24 Hz, and for all algorithms, the correlation is

performed over a total window (history) of 3 s. These

values not only match the optimum we determined for our

algorithm in Sect. 4.3, but also closely match the settings

used in the work by Fujinami et al., originally being 17 Hz

and 2.9 s (50 samples), respectively. The feature frequency

used for our algorithm is 4 Hz.

Table 3 shows the statistics gathered from the accuracy

simulations. The mean and the standard deviation of the

produced correlation values are shown for each feature for

correlated and non-correlated motion. Figure 6 provides a

visual overview, with the bars displaying the mean values

and the error bars displaying the standard deviations

around these values. Since the correlation algorithms by

Fujinami et al. use the absolute value of the correlation

coefficient which therefore cannot be negative, the nega-

tive values from our correlation methods are all mapped to

0.0 for proper comparison.

The mean correlation produced by raw-compo is only

0.5 for correlated motion. This is due to the rotary motion

influence discussed in Sect. 3.1. This is apparent when this

result is compared to the statistics of the fmam feature,

which is—apart from coarse gravity compensation—

essentially very similar to raw-compo: It correlates much

better with a mean of 0.88. The separation of the raw-

compo algorithm is very minimal at 0.35, which is by far

the lowest value. When the standard deviation is also

considered, the detection of simultaneous movement

becomes very unreliable. This is apparent from Fig. 6,

where the tips of the error bars for raw-compo are very

close together.

For correlated motion, the raw-max algorithm stands out

with a mean value very close to 1.0 for correlated motion.

When two triaxial accelerometers move together, it is very

likely that at least one pair of their axes will correlate

significantly, explaining this very good result. However,

with uncorrelated motion, raw-max has a mean value that

is significantly higher than 0.0. Taking the standard devi-

ation of 0.16 into account, values produced by raw-max

can easily be as high as 0.44 for uncorrelated motion. The

separation is also much lower than 1.0. Choosing the

maximum correlation value from all axis pairs performs

well for detecting correlated motion, but it performs poorly

for uncorrelated motion, since the largest coincidental

correlations will determine the result.

Table 3 shows very good results for the compass-based

fcra feature. The mean value for both correlated and

uncorrelated motion is better than the accelerometer-based

Table 3 Comparison of movement correlation statistics

Mean SD

Corr. Uncorr. Sep. Corr. Uncorr.

qrcompo 0.50 0.15 0.35 0.13 0.12

qrmax 0.97 0.28 0.69 0.06 0.16

qmam 0.88 0.13 0.75 0.11 0.18

qcra 0.94 0.12 0.82 0.09 0.18

qcombined 0.91 0.10 0.81 0.09 0.14

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

f
rcompo

f
rmax

f
mam

f
cra

f
combined

correlated
uncorrelated

Fig. 6 Visual comparison of

movement correlation statistics

Pers Ubiquit Comput

123

fmam feature. The mean value for correlated motion is even

better than their combination, and the separation is higher

than any other algorithm, suggesting that the compass

sensor alone can perform very well. However, combining

these features does have a clear advantage: The mean value

for uncorrelated motion is lower than both individual fea-

tures, and the standard deviation improves as well.

5.2 Response time

We also evaluate how the algorithms perform for the

response time experiments explained in Sect. 4.2. For these

simulations, it is necessary to define thresholds for the

transitions between correlated and uncorrelated motion (the

association decision). Considering the results of Table 3, it

is not fair to choose these thresholds equal for each algo-

rithm: The mean values for correlated and uncorrelated

motion are not equal, and their standard deviations differ as

well.

To keep matters simple, we use an identical threshold

for both transitions between the correlated and uncorrelated

state. We still need to choose a good threshold for each

algorithm, which should lie somewhere between the mean

values for uncorrelated and correlated motion shown in

Table 3. It is also important to consider the standard

deviations, such that the threshold is proportionally farther

away from the decision with the largest deviation. To

determine the threshold, we assumed the correlation out-

puts for correlated and uncorrelated motion to be of

Gaussian nature with the parameters shown in Table 3, and

we determined the threshold from the intersection point of

the two Gaussian curves using the formula presented in

[18].

Table 4 shows the results. The used threshold is shown

for each algorithm. In addition to the mean response time

measured during these simulations, the fraction of time the

algorithms produced erroneous results is also compared.

No motion detection is performed, so the response time and

error results depend fully on the correlation algorithms

themselves.

The performance of raw-compo is the worst, with the

longest response times and very high error percentages.

This is consistent with what the accuracy experiments show.

The raw-max algorithm performs much better. Particularly,

the error percentage for correlated motion is the lowest of all

algorithms. However, the response time and error percentage

for uncorrelated motion are still relatively high, which is also

consistent with the accuracy experiments.

The accelerometer correlation qmam is in terms of

response time better than the compass correlation qcra for

uncorrelated motion, but worse for correlated motion. The

combination qcombined finds a middle ground between the

two with very good performance. Something similar is true

for the error percentages, but in this case, the combination

is consistently better than both individual features. Our

combined algorithm is also better than the raw-max algo-

rithm by Fujinami et al. except for the error percentage for

correlated motion. With uncorrelated motion, the raw-max

algorithm performs much worse.

5.3 Computational effort

Since we aim for an online system, the correlation algo-

rithm needs to run on the wireless sensor node hardware.

The computational capabilities of sensor node hardware are

usually quite limited. If the required effort is high, the node

may not be able to finish the computations in time. In fact,

the association module should only occupy a small fraction

of the system resources, as this would in practice only be a

subcomponent of an activity recognition system. Also,

since computational effort adds to the energy consumption

of the device and wireless sensor nodes operate on bat-

teries, computational effort directly impacts battery life.

For these reasons, the required computational effort should

be as little as possible.

The algorithms by Fujinami et al. are executed for each

accelerometer sample, meaning that the correlation coef-

ficient is calculated at the sample frequency using raw

samples. In contrast, our methods use signal features which

are produced less frequently. This not only means that less

correlation values need to be calculated per unit of time,

but also that each correlation calculation is computationally

less involved because less values need to be correlated in

the same period of time: The number of values inside the

correlation window/history is smaller. Our algorithms need

to calculate correlation values 4 times per second over a

history of 12 feature values, while the algorithms by Fu-

jinami et al. need to calculate correlation values 24 times

per second over a window of 72 samples. Even though our

combined algorithm needs to calculate separate correlation

values for the compass and accelerometer features, it is still

less computationally intensive than either of the algorithms

by Fujinami et al. The raw-max algorithm by Fujinami

et al. is even worse in this respect, because it needs to

calculate nine cross-correlation values at each instance.

Table 4 Comparison of algorithm response time performance

Threshold Response time (s) Errors (%)

Corr. Uncorr. Corr. Uncorr.

qrcompo 0.32 3.03 2.32 31.39 12.18

qrmax 0.77 2.04 1.18 0.43 4.08

qmam 0.58 2.18 0.82 2.58 3.67

qcra 0.65 1.41 1.03 2.91 2.60

qcombined 0.59 1.68 0.88 1.29 1.47

Pers Ubiquit Comput

123

For a more concrete comparison, Table 5 shows the

number of additions, multiplications and square root

functions that need to be evaluated per second for each

algorithm. These figures not only include the correlation

calculations, but also feature computation and overhead

such as compass calibration.

5.4 Conclusion

The performance of the raw-compo algorithm is very poor

in this comparison. We attribute this mostly to the gravity

effects for which this algorithm has no compensation. The

good results in the original work by Fujinami et al. [10] are

explained by the relative accuracy assessment method used

in those experiments. The raw-max algorithm performs

much better. Choosing the highest absolute correlation

value among all nine axis pairs performs very well for

correlated motion. However, when subjected to uncorre-

lated motion, using the largest (coincidental) correlation

from all nine pairs yields relatively poor results.

It is clear that the correlation of the compass signal is a

very good means to assess simultaneous motion. It per-

forms better than the accelerometer-based algorithms in

most cases, probably mainly because it lacks the gravity

effects that hamper the performance of the accelerometer

correlation. Although the correlation of the compass fea-

ture performs very well on its own, the combination of both

compass and accelerometer is a significant improvement

still. The additional sensor that measures a different aspect

of the motion—the rotation instead of only linear motion—

improves the accuracy and the reliability of the result,

mainly because coincidental correlation is less likely to

occur.

In terms of computational effort, the raw-compo and

raw-max algorithms are significantly more expensive than

the approaches proposed in this paper. We attribute this

mainly to the fact that the raw-compo and raw-max algo-

rithms compute the correlation for each sample, which

means that this computation is performed more frequently

over a longer window of values. In addition, the raw-max

algorithm is more expensive because all nine axis pairs

need to be correlated.

6 Implementation

This section outlines the specifics of our implementation.

6.1 Hardware

We use the ProMove [14] wireless inertial sensor nodes for

this work. The ProMove board (Fig. 7) features a 3-D

accelerometer and a 3-D digital compass. The main CPU of

the sensor node is a low-power MSP430 microcontroller

[29] running at 8 MHz. The nodes can communicate

wirelessly using a CC2430 SoC [28], which combines an

IEEE 802.15.4-compatible radio with an 8051 CPU. The

CC2430 CPU autonomously handles the wireless net-

working. The ProMove architecture thus allows imple-

menting an application in a two-tiered manner: performing

data processing on the MSP430 and wireless networking on

the CC2430.

6.2 Software

Figure 8 shows an overview of the software components

involved in our implementation for a pair of nodes. Both

nodes process the raw signals from their accelerometer and

compass sensors into window intervals and calculate fea-

tures from these intervals. This reduces the data rate and

dimensionality, yielding a feature vector with only two

values, as explained in Sect. 3.2. Subsequently, the

movement correlation between the two nodes is deter-

mined. The feature vector of one node is communicated

wirelessly to the other node, which performs the correlation

calculation. The accelerometer and compass features are

correlated separately, yielding two distinct correlation

values. The final stage in the process, the decision logic,

combines the two correlation values into a discrete inter-

action assessment.

The nodes exchange the necessary correlation messages

wirelessly using the IEEE 802.15.4 protocol. One node acts

as the coordinator and broadcasts its feature vector to slave

nodes, which check whether they are moving together with

the coordinator.

The sampling and feature extraction tasks running on the

slave nodes need to be synchronized to the coordinator for

proper correlation performance. For our experiments, a

very simplistic synchronization procedure is implemented.

It is executed only in the system startup phase, and the

system is restarted for each experiment to ensure proper

synchronization. All nodes maintain a local sample counter

that increases for every sample taken. When a new slave

node is added to the network, the coordinator sends its

local sample counter value to the new node. The new node

uses the message to adjust its local sample counter and

echoes the message back to the coordinator at the time of

Table 5 Comparison of computational effort required per second

Computations per second

Additions Multiplications Square root

qrcompo 15,504 952 48

qrmax 139,296 7,920 216

qmam 612 176 4

qcra 448 216 12

qcombined 1,076 404 16

Pers Ubiquit Comput

123

the next sample. The coordinator uses the reply to calculate

the counter difference in terms of samples, which is then

communicated back to the slave node along with the new

current counter value. Using this second message, the slave

node updates its local sample timer using the counter value

from the master and half the communicated difference.

These steps are repeated until the coordinator receives the

next reply at the moment its local counter value is equal to

the sum of the counter value and the difference value

contained in that reply. This achieves coarse synchroniza-

tion within one sample. The feature extraction is syn-

chronized once the sample counters are synchronized.

6.3 Benchmark

To investigate the feasibility of our implementation, we run

a benchmark to measure the processing load on the

MSP430 processor. Table 6 lists the results for each task. The

correlation computation, sensor sampling and feature extrac-

tion operations have the longest execution times, as expected.

The complete implementation uses only approximately 7% of

the processor’s time, leaving therefore ample resources

available for the high-level application.

The energy usage of the implementation is currently not

optimized, e.g., CPU and radio sleep modes are not

employed. Most of the energy is spent in the communi-

cation, which is performed at a rate of 4 Hz, i.e., the feature

frequency. Varying the configuration of the correlation

algorithm is barely noticeable in the power consumption.

The power consumption measured for the full prototype is

currently about 150 mW per node.

7 Tests and results

To evaluate our implementation, we perform a series of

experiments with handling objects equipped with our sen-

sors. In each experiment, the user wears one sensor node on

a bracelet on his arm and two other sensor nodes are placed

onto or inside objects, as shown in Fig. 9. The arm node

acts as the protocol coordinator and the usage detection is

performed in the object nodes. The exchanged feature

vectors and the resulting assessments are logged by a PC

with a gateway node for later evaluation. In these experi-

ments, the nodes are less synchronized compared to the off-

line evaluation (within one sample instead of microsecond

range), and there is no compensation for the potential

packet loss.

Fig. 7 ProMove inertial sensor board

Fig. 8 Software overview

Pers Ubiquit Comput

123

7.1 Generic movement

First, we assess the response time and accuracy of the

algorithm when correlating generic movement of an object

held by the user. We let our test subjects perform random

motion with the objects, i.e., any motion they see fit. We

use two foam balls (one of which is depicted in Fig. 9) that

can be handled in any orientation. The user can handle one

of the balls with the arm on which he wears the sensor. A

second person moves the balls that are not currently held

by the user, thus trying to generate false correlations. The

user is not necessarily always moving one of the two balls,

in which case the second person may move them both.

Balls can be placed still on the table during the experiment

for the other person to pick them up but also handed over

directly. We experiment with ten different users, which

perform five individual tests. Each of these 50 individual

tests lasts two minutes.

Similar to the off-line evaluation, push buttons on the

balls are used for automated annotation of the ground truth.

While grabbing and holding one of the foam balls, the user

with the bracelet keeps the ground truth button on that ball

pressed continuously. The second person does not touch

the buttons at all.

Figure 10 shows an example experiment, comparing the

true object association as indicated by the button (solid

black lines) and the output of our detection algorithm

(dashed red lines). The produced correlation values are

shown as well. The two plots show the object use associ-

ation results for the two foam balls. Approximately at 4 s,

both balls are picked up from the table and start moving.

Ball 2 is held and moved by the user with the bracelet,

while Ball 1 is moved by the second person. At 27.5 s, the

user hands over Ball 2 to the second person, who at that

point moves both balls at the same time. As shown in the

graph, no ball is associated with the user at that time. A

little later, at 47 s, Ball 2 is handed back to the user. At 65

s, the balls are swapped between the user and the second

person, which is the first time that Ball 1 is held by the

user. At 88 s, the balls are swapped back. Just before the

experiment finishes, both balls are placed back on the table.

Table 7 shows the overall performance of our imple-

mentation for all 50 tests. As expected, in most cases, the

performance is worse than in the simulation. However,

the response times are typically within the 2 s limit, and the

accuracy of the algorithm is adequate, with false correla-

tion at about 3% of the time and false non-correlation at

about 2% of the time. There is one user that exceeds the 2 s

response time by about half a second. The reasons for this

outlier are not known.

7.2 Activities

The aim of this research is to devise a means to establish a

usage relation between an object and a user by comparing

the movement of both. In the previous section, we tested

the performance of our algorithm in the more generic

scenario where the user is holding the object and moving it

around. In the experiments outlined in this section, the

objects are used in actual defined activities. We chose four

activities that were relatively easy to verify: exercising

with a dumbbell, wiping a whiteboard, using a hammer and

painting with a brush. Each test involves two persons

performing the same activity, of which one wears the

bracelet. The objects are the tools used in the activities,

each equipped with sensors, as shown in Fig. 11. The

dumbbell and whiteboard activities are performed in the

office, whereas the hammer and brush activities are per-

formed in a workshop environment. Each activity is tested

by a total of three persons and performed six times by

alternating pairs. The duration of each test is one minute.

The objects are always picked up after ten seconds and laid

down ten seconds before the end of each test, so no ground

truth buttons are used in these experiments.

Table 8 shows the performance results. The whiteboard

and dumbbell activities show excellent performance. The

response time is about one second for both the transition to

Table 6 Software benchmark results

Subsystem CPU time

Cycles (8 MHz) Time (ms)

Sampling (24 Hz) 166,248 20.78

Windowed feature extraction (4 Hz) 147,644 18.46

Correlation (4 Hz, 3 s history) 209,360 26.17

Communication (4 Hz) 11,556 1.44

Overhead (I/O wait, timeouts, etc.) 2,459 0.30

Total system load 537,267 67.16

Fig. 9 Some of the hardware involved in the implementation

experiments

Pers Ubiquit Comput

123

correlating and the transition to non-correlating movement.

The errors are limited to little over 1%. For the dumbbell

experiments, the system never failed to identify correlation,

while the system failed to do so for the whiteboard

experiments 1% of the time. The system falsely reports

correlation 1.1% of the time for the dumbbell experiments

and 0.5% for the whiteboard experiments. It should be

noted that the response times are very low because the

objects are not moving when not used, causing the motion

variance detection scheme to reduce response time, as

explained in Sect. 3.5.

As shown in the table, the results for the workshop

experiments with the brush and the hammer are less ideal.

The system still assesses the situation that the movement is

not correlating and that tool is thus not being used with

high accuracy. However, the system is less capable of

correctly assessing the use of the tools. This is probably

related to the fact that these two activities involve more

wrist mobility than the whiteboard and dumbbell activities.

Particularly, the rotary motion will correlate less for such

activities, which suggests that the way accelerometer and

compass correlation values are currently combined is not

always ideal; for some activities, the correlation of the

accelerometer can be more reliable than the compass cor-

relation. Also, the workshop environment may have con-

tributed to the less ideal results, since much ferrous metal is

in close proximity there, which may have influenced the

compass sensor.

8 Interactive ball game

To illustrate the potential of our motion-based interaction

detection method in a more practical scenario, we imple-

ment a prototype for a simple interactive ball game with

multiple players. The game is a variant of the ‘‘Hot Potato’’

game. In the original game, the players gather in a circle

and toss around a ball while music plays. The player who

holds the ball when the music stops is out, and the game

continues with a new round until only the winner remains.

In our implementation of the game, each player has a

sensor node attached to one arm. A sensor node is also

embedded in the ball. When receiving the ball, a player

first has to move it for a short while using his arm with the

sensor node, so that correlation is achieved; then, he can

pass the ball to another player. The graphical interface of

the game is depicted in Fig. 12. Each player has a smiley

avatar, which disappears when the player is out. The ball is

shown as a cloud of sparkles surrounding the player who

handles it. This indicator jumps to another player when the

ball is tossed.

Figure 13 shows three players involved in the game. All

three players are still in the game and the ball is just being

passed. The sensor node in the ball is the coordinator in the

wireless communication protocol. The sensor nodes on the

arms of the players continuously determine their movement

20 40 60 80 100 120

−1

−0.5

0

0.5

1

C
or

re
la

tio
n

Foam Ball 1

correlation
button
association

20 40 60 80 100 120

−1

−0.5

0

0.5

1

C
or

re
la

tio
n

Time (s)

Foam Ball 2

correlation
button
association

Fig. 10 Example of an

experiment with the

implemented system

Table 7 Implementation performance statistics

Response time (s) Errors (%)

Corr. Uncorr. Corr. Uncorr.

User 1 1.61 1.41 4.44 2.05

User 2 1.66 1.48 0.96 2.17

User 3 1.41 2.00 0.37 2.37

User 4 1.73 0.76 5.77 2.39

User 5 1.23 1.59 3.44 0.53

User 6 1.82 0.89 6.66 1.04

User 7 1.21 1.21 5.45 3.87

User 8 1.05 1.86 2.81 1.80

User 9 1.20 2.28 0.68 2.48

User 10 1.23 1.95 0.40 1.14

Mean performance 1.41 1.55 3.10 1.98

SD 0.27 0.49 2.41 0.94

Pers Ubiquit Comput

123

correlation with respect to the coordinator. Each node on a

player’s arm broadcasts its correlation value four times per

second. These broadcasts are picked up by a gateway node

which is connected to the computer that runs the game

graphical interface. The game is projected on the large

screen behind, where we notice the ball being passed

between players. In addition to the screen interface, the

players can also see when they are associated with the ball

by means of LEDs on the arm sensors.

The game proves to be a very entertaining experience

for the users. The requirement of first moving or shaking

the ball before tossing it is perceived as an interesting

addition to the original ‘‘Hot Potato’’ game, stimulating the

user––object interaction and the physical activity level.

The correlation accuracy is satisfactory from a gaming

perspective, with correct recognition of ball possession in

almost all cases. The transition between players is however

a point of further improvement.

The statistics we collected from ten games indicate an

average response time of 2.6 s with a standard deviation of

1.3 s. A histogram of the response time of each instance the

ball was tossed during the experiments is shown in Fig. 14.

The response time is larger than that achieved in our earlier

experiments. The main reason is the additional delay

introduced by the communication that needs to take place

between the player nodes and the gateway, on the one

hand, and between the gateway and the computer, on the

other hand. Occasional packet loss is also a factor here.

Thus, even though the response time on the actual sensor

nodes will typically remain within the 2 s target, the

reaction of the graphical interface is somewhat slower.

9 Discussion and conclusions

We presented a method for automatic recognition of object

use, based on correlating motion features in a collaborative

manner among sensor nodes attached to the user’s arm and

to the handled objects. Being based on motion sensing, our

solution provides information about the actual usage of

objects instead of only the proximity of the user to the

object. Also, our solution detects which objects the user is

Fig. 11 Performed activities

Table 8 Activity performance statistics

Response time (s) Errors (%)

Corr. Uncorr. Corr. Uncorr.

Dumbbell 1.04 0.94 0.00 1.11

Whiteboard 1.00 0.94 1.09 0.46

Hammer 1.63 0.77 7.79 0.00

Brush 1.69 0.56 9.13 0.90

Fig. 12 A screenshot of the Hot Potato display

Fig. 13 People playing the Hot Potato game with screen in the

background

Pers Ubiquit Comput

123

interacting with, while also offering the possibility to infer

how the objects are used. More specifically, since we

perform both feature extraction and feature correlation, the

outputs of these building blocks could be used directly to

implement distributed activity recognition. Furthermore,

the method we propose is generic and can be applied to

build associations of the type ‘‘moving together’’ for any

entities equipped with sensors. It is therefore not restricted

to a particular one-to-many or many-to-one interaction

scenario. And finally, we prove that our solution can run on

resource-constrained hardware, taking only a fraction of

the CPU time and operating using the 802.15.4 MAC

protocol, which is suitable for wireless sensor networks [2].

In the remainder of this concluding section, we refer

back to the research questions formulated in Sect. 1 and

outline the answers given by our study.

What are the signal features that express well and

compact the motion information, while remaining compu-

tationally simple enough to be implemented on resource-

constrained hardware? In Sects. 3.1 and 3.2, we explain

how the accelerometer and compass sensors can be used to

extract features that characterize well both linear and rotary

motion components. The selected features are the compass

rotation angle and the mean acceleration magnitude. They

match the set requirements: retain the overall motion

characteristics, are computationally efficient, have low

feature size and rate and do not depend on the sensor ori-

entation. In Sect. 5, we evaluated the merit of combining

the compass and accelerometer features. The compass

feature alone already performs better than the accelerom-

eter feature, but their combination is still a clear

improvement: Particularly, in terms of accuracy and reli-

ability, the combination is better, which is mainly visible

for the detection of uncorrelated movement.

How can the correlation be done efficiently among the

sensor nodes? Section 3.4 describes the correlation algo-

rithm and the heuristics used for combining the results

from the accelerometer and compass sensors. The algo-

rithm is based on the correlation coefficient, which gives

a good estimation of the motion similarity of two or

more entities, while being computationally efficient to

implement on sensor nodes. Furthermore, Sect. 3.3 details

the dependencies between the correlation algorithm and the

communication and synchronization of features.

What are the relevant parameters and trade-offs? How

to choose the optimal values? The algorithm parameters

are identified in Sect. 3.6: sensor sampling rate, feature

frequency, correlation history length and decision thresh-

old. In order to establish the performance trade-offs and

choose the optimal values, we perform a series of real

experiments from which we wirelessly collect the raw

sensor data at high rates. Next, we analyze the data off-line,

varying each of the identified parameters individually

while the others are held constant. The performance is

measured in terms of detection accuracy and response time.

With the chosen optimal values, the system achieves a

maximum accuracy for a target response time of 2 s.

How does our algorithm compare to existing work? We

compared our algorithms with earlier work by Fujinami

et al. in Sect. 5. Our algorithms perform better in most

respects. An important exception is that the raw-max

algorithm by Fujinami et al. has higher accuracy and better

response time for correlated movement. However, for

detecting uncorrelated movement, it performs much worse.

In addition to that, the computational effort of the algo-

rithms by Fujinami et al. is much higher, mostly due to the

fact that correlation values are calculated more frequently

over a larger window of values. Also, the raw-max algo-

rithm is even more expensive in this respect, since it cal-

culates the correlation for nine axis pairs each time.

The difference between the performance results from

Fujinami et al. [10] and ours is mostly explained by the

difference in the chosen accuracy metric, as explained in

Sect. 5.1. However, our comparisons are based on simu-

lations using a relatively limited data set, which may have

an influence on the accuracy and response time results. It

would be better to have a much larger data set with raw

sensor data from several people performing a large number

of different activities.

How do we implement the overall system on sensor

nodes? Section 6 presents the implementation on sensor

nodes, covering the hardware details, software architecture

0 1 2 3 4 5 6 7
0

5

10

15

20

25

Response Time (s)

Fig. 14 Response time

histogram from tests with Hot

Potato game

Pers Ubiquit Comput

123

and wireless communication. The feasibility of imple-

mentation is demonstrated by the detailed benchmarking

given in Table 6.

What is the performance in practice, and how does it

compare to simulations? We evaluate the performance

through practical tests with the complete system working

on sensor nodes. We distinguish three types of tests: gen-

eric handling of objects, actual activities involving object

use and an interactive ball game. The detailed descriptions

and performance results are given in Sects. 7 and 8. In

terms of detection accuracy, we observe in general a good

match between the implementation and simulation, with

false correlation B3% and false non-correlation B2%.

Some activities, like hammering or brushing, generate

higher errors (7-9%) because they involve more wrist

mobility that causes decorrelation. In terms of response

time, the performance remains within the 2 s target

for generic handling and activities and reaches 2.6 s on

average in the game tests. These results indicate that

the systems perform robustly in practice, with very

slight performance degradation compared to the off-line

evaluation.

What are the main problems, limitations and ideas for

further improvement? The main problems and limitations

of our solution and our ideas for their mitigation are

summarized as follows:

• Some activities do not cause perfect and lasting motion

correlation between the sensor in the object and the

sensor on the user’s arm. Especially activities involving

significant wrist motion and activities where the object

is not handled continuously with the instrumented hand

will not yield continuous motion correlation between

user and object. However, given the nature of the

object, such characteristics can be taken into account.

For example, when it is known that the typical use of a

particular object can involve much wrist motion, the

accelerometer correlation can be given more weight in

the association result. Based on the object involved, the

association algorithm could also allow short periods in

which movement is less correlated. This would yield a

more dynamic solution where the expected amount and

type (i.e., rotary or linear) of movement correlation are

directly linked to the activities that are possible with the

objects involved. Also, the configuration of the asso-

ciation algorithm can be adjusted accordingly.

• Strong magnetic fields and large nearby ferrous metal

surfaces affect the performance of the compass sensor.

As a solution, a gyroscope could supplement or replace

the compass as rotation sensor, thereby removing the

sensitivity to magnetic disturbances.

• Correlation of linear motion does not perform well

when there is also significant rotary motion. It can be

beneficial for performance to be able to compare both

rotary and linear motion at all times. To achieve this,

gravity needs to be compensated properly. This requires

information on the node’s orientation, which can be

inferred using the compass sensor or a gyroscope.

• It is inefficient to attempt motion correlation with

distant objects. By incorporating radio signal strength

(RSSI) information in the algorithm, nodes that are far

apart can be omitted from the correlation process,

which improves efficiency and scalability and addi-

tionally reduces the number of false positives.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Aylward R, Paradiso JA (2006) Sensemble: a wireless, compact,

multi-user sensor system for interactive dance. In: Proceedings of

the 2006 conference on New interfaces for musical expression.

IRCAM Centre Pompidou, Paris, France, pp 134–139. URL

http://portal.acm.org/citation.cfm?id=1142215.1142248

2. Baronti P, Pillai P, Chook VW, Chessa S, Gotta A, Hu YF (2007)

Wireless sensor networks: A survey on the state of the art and the

802.15.4 and ZigBee standards. Comput Commun 30(7):1655–

1695. doi:16/j.comcom.2006.12.020, URL http://www.sciencedirect.

com/science/article/pii/S0140366406004749

3. Bauer G, Stockinger K, Lukowicz P (2009) Recognizing the Use-

Mode of kitchen appliances from their current consumption. In:

Smart sensing and context, pp 163–176. URL http://dx.doi.org/

10.1007/978-3-642-04471-7_13

4. Berlin E, Liu J, van Laerhoven K, Schiele B (2010) Coming to

grips with the objects we grasp: detecting interactions with effi-

cient wrist-worn sensors. In: Proceedings of the fourth interna-

tional conference on Tangible, embedded, and embodied

interaction, TEI ’10. ACM, New York, p 5764. doi:10.1145/

1709886.1709898. ACM ID: 1709898

5. Bosch S, Marin-Perianu R, Havinga P, Horst A, Marin-Perianu

M, Vasilescu A (2010) Automatic recognition of object use based

on wireless motion sensors. In: Wearable computers (ISWC),

2010 international symposium, pp 1–8. doi:10.1109/ISWC.2010.

5665858

6. Brunette W, Hartung C, Nordstrom B, Borriello G (2003) Prox-

imity interactions between wireless sensors and their application.

In: Proceedings of the 2nd ACM international conference on

Wireless sensor networks and applications. ACM, San Diego,

pp 30–37. doi:10.1145/941350.941356, URL http://portal.acm.org/

citation.cfm?doid=941350.941356

7. Buettner M, Prasad R, Philipose M, Wetherall D (2009) Recog-

nizing daily activities with RFID-based sensors. In: Proceedings

of the 11th international conference on ubiquitous computing.

ACM, Orlandopp. 51–60. doi:10.1145/1620545.1620553. URL

http://portal.acm.org/citation.cfm?id=1620553

8. Feldman A, Tapia E, Sadi S, Maes P, Schmandt C (2005)

ReachMedia: on-the-move interaction with everyday objects. In:

Wearable computers, 2005. Proceedings. Ninth IEEE Interna-

tional Symposium, pp 52–59. doi:10.1109/ISWC.2005.44

9. Fujinami K, Nakajima T (2005) Sentient artefacts: acquir-

ing users context through daily objects. In: Embedded and

Pers Ubiquit Comput

123

http://portal.acm.org/citation.cfm?id=1142215.1142248
http://dx.doi.org/16/j.comcom.2006.12.020
http://www.sciencedirect.com/science/article/pii/S0140366406004749
http://www.sciencedirect.com/science/article/pii/S0140366406004749
http://dx.doi.org/10.1007/978-3-642-04471-7_13
http://dx.doi.org/10.1007/978-3-642-04471-7_13
http://dx.doi.org/10.1145/1709886.1709898
http://dx.doi.org/10.1145/1709886.1709898
http://dx.doi.org/10.1109/ISWC.2010.5665858
http://dx.doi.org/10.1109/ISWC.2010.5665858
http://dx.doi.org/10.1145/941350.941356
http://portal.acm.org/citation.cfm?doid=941350.941356
http://portal.acm.org/citation.cfm?doid=941350.941356
http://dx.doi.org/10.1145/1620545.1620553
http://portal.acm.org/citation.cfm?id=1620553
http://dx.doi.org/10.1109/ISWC.2005.44

ubiquitous computing, pp 335–344. URL http://dx.doi.org/10.1007/

11596042_35

10. Fujinami K, Pirttikangas S (2007) A study on a correlation

coefficient to associate an object with its user. In: Intelligent

environments, 2007. IE 07. 3rd IET international conference,

pp 288–295

11. Fujinami K, Pirttikangas S (2008) Kuka: an architecture for

associating an augmented artefact with its user using wearable

sensors. In: Sensor networks, ubiquitous and trustworthy com-

puting, 2008. SUTC ’08. IEEE international conference on,

pp 154–161. doi:10.1109/SUTC.2008.42

12. Hinckley K (2003) Synchronous gestures for multiple persons

and computers. In: Proceedings of the 16th annual ACM sym-

posium on User interface software and technology, UIST ’03.

ACM, New York, p 149158. doi:10.1145/964696.964713. ACM

ID: 964713

13. Holmquist LE, Mattern F, Schiele B, Alahuhta P, Beigl M,

Gellersen H (2001) Smart-Its friends: a technique for users to

easily establish connections between smart artefacts. URL

http://eprints.comp.lancs.ac.uk/515/

14. Inertia Technology: ProMove wireless inertial sensor node. URL

http://www.inertia-technology.com

15. Kawsar F, Fujinami K, Nakajima T (2006) Exploiting passive

advantages of sentient artefacts. In: Ubiquitous computing sys-

tems, pp 270–285. URL http://dx.doi.org/10.1007/11890348_21

16. Kortuem G, Kawsar F, Fitton D, Sundramoorthy V (2010) Smart

objects as building blocks for the internet of things. Internet

Comput IEEE 14(1):44–51. doi:10.1109/MIC.2009.143

17. Lester J, Hannaford B, Borriello G (2004) Are you with me?—

Using accelerometers to determine if two devices are carried by

the same person. In: Pervasive computing, pp 33–50. URL

http://www.springerlink.com/content/n22dwch7673kgkng

18. Marin-Perianu R, Lombriser C, Havinga P, Scholten H, Trster G

(2008) Tandem: a context-aware method for spontaneous clus-

tering of dynamic wireless sensor nodes. In: Floerkemeier C,

Langheinrich M, Fleisch E, Mattern F, Sarma SE (eds) The

internet of things, vol 4952, pp 341–359. Springer, Berlin. URL

http://eprints.eemcs.utwente.nl/12250/

19. Marin-Perianu R, Marin-Perianu M, Havinga P, Scholten H (2007)

Movement-based group awareness with wireless sensor networks.

In: Pervasive computing, pp 298–315. URL http://dx.doi.org/

10.1007/978-3-540-72037-9_18

20. Mayrhofer R, Gellersen H (2007) Shake well before use:

authentication based on accelerometer data. In: Pervasive com-

puting, pp 144–161. URL http://dx.doi.org/10.1007/978-3-540-

72037-9_9

21. Patterson D, Fox D, Kautz H, Philipose M (2005) Fine-grained

activity recognition by aggregating abstract object usage. In:

Wearable computers, 2005. Proceedings. Ninth IEEE interna-

tional symposium, pp 44–51. doi:10.1109/ISWC.2005.22

22. Philipose M, Fishkin K, Perkowitz M, Patterson D, Fox D, Kautz

H, Hahnel D (2004) Inferring activities from interactions with

objects. Pervas Comput IEEE 3(4):50–57. doi:10.1109/MPRV.

2004.7

23. Schiele B, Antifakos S (2003) Grouping mechanisms for smart

objects based on implicit interaction and context proximity. In:

International conference on ubiquitous computing (UBICOMP

2003)

24. Smith J, Sample A, Powledge P, Roy S, Mamishev A (2006) A

wirelessly-powered platform for sensing and computation. In:

Dourish P, Friday A (eds) UbiComp 2006: ubiquitous computing.

Lecture notes in computer science, vol 4206. Springer, Berlin,

pp 495–506. doi:10.1007/11853565_29.10.1007/11853565_29

25. Strohbach M, Kortuem G, Gellersen H, Kray C (2004) Using

cooperative artefacts as basis for activity recognition. In: Ambi-

ent intelligence, pp 49–60. URL http://www.springerlink.com/

content/75bbmnxb3afphk33

26. Surie D, Laguionie O, Pederson T (2008) Wireless sensor net-

working of everyday objects in a smart home environment. In:

Intelligent sensors, sensor networks and information processing,

2008. ISSNIP 2008. International conference, pp 189–194. doi:

10.1109/ISSNIP.2008.4761985

27. Tapia EM, Intille SS, Larson K (2004) Activity recognition in the

home using simple and ubiquitous sensors. In: Pervasive com-

puting, pp 158–175. URL http://www.springerlink.com/content/

5a4qm20y37089gk9

28. Texas Instruments: CC2430 System-on-Chip Solution for

2.4 GHz IEEE 802.15.4/ZigBee. URL http://focus.ti.com/docs/

prod/folders/print/cc2430.html

29. Texas Instruments: MSP430 family of ultra-low-power micro-

controllers. URL http://focus.ti.com/docs/prod/folders/print/msp

430f1611.html

30. Wang S, Pentney W, Popescu A, Choudhury T, Philipose M

(2007) Common sense based joint training of human activity

recognizers. In: Proceedings of the 20th international joint con-

ference on artificial intelligence, pp 2237–2242. URL http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5347

31. Wu J, Osuntogun A, Choudhury T, Philipose M, Rehg J (2007) A

scalable approach to activity recognition based on object use. In:

Computer vision, 2007. ICCV 2007. IEEE 11th international

conference, pp 1–8. doi:10.1109/ICCV.2007.4408865

Pers Ubiquit Comput

123

http://dx.doi.org/10.1007/11596042_35
http://dx.doi.org/10.1007/11596042_35
http://dx.doi.org/10.1109/SUTC.2008.42
http://dx.doi.org/10.1145/964696.964713
http://eprints.comp.lancs.ac.uk/515/
http://www.inertia-technology.com
http://dx.doi.org/10.1007/11890348_21
http://dx.doi.org/10.1109/MIC.2009.143
http://www.springerlink.com/content/n22dwch7673kgkng
http://eprints.eemcs.utwente.nl/12250/
http://dx.doi.org/10.1007/978-3-540-72037-9_18
http://dx.doi.org/10.1007/978-3-540-72037-9_18
http://dx.doi.org/10.1007/978-3-540-72037-9_9
http://dx.doi.org/10.1007/978-3-540-72037-9_9
http://dx.doi.org/10.1109/ISWC.2005.22
http://dx.doi.org/10.1109/MPRV.2004.7
http://dx.doi.org/10.1109/MPRV.2004.7
http://dx.doi.org/10.1007/11853565_29.10.1007/11853565_29
http://www.springerlink.com/content/75bbmnxb3afphk33
http://www.springerlink.com/content/75bbmnxb3afphk33
http://dx.doi.org/10.1109/ISSNIP.2008.4761985
http://www.springerlink.com/content/5a4qm20y37089gk9
http://www.springerlink.com/content/5a4qm20y37089gk9
http://focus.ti.com/docs/prod/folders/print/cc2430.html
http://focus.ti.com/docs/prod/folders/print/cc2430.html
http://focus.ti.com/docs/prod/folders/print/msp430f1611.html
http://focus.ti.com/docs/prod/folders/print/msp430f1611.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5347
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5347
http://dx.doi.org/10.1109/ICCV.2007.4408865

	A study on automatic recognition of object use exploiting motion correlation of wireless sensors
	Abstract
	Introduction
	Related work
	Solution overview
	Orientation dependencies
	Feature extraction
	Communication and synchronization
	Correlation algorithm
	Motion detection
	Algorithm parameters and trade-offs

	Simulation
	Performance evaluation
	Experiments
	Results
	Impact of sampling rate
	Impact of feature frequency
	Impact of correlation history
	Impact of correlation thresholds
	Conclusion of simulation results

	Comparison of algorithms
	Accuracy
	Response time
	Computational effort
	Conclusion

	Implementation
	Hardware
	Software
	Benchmark

	Tests and results
	Generic movement
	Activities

	Interactive ball game
	Discussion and conclusions
	Open Access
	References

