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Abstract: Two models of the neocortex are developed to study normal and
pathologic neuronal activity. One model contains a detailed description of a
neocortical microcolumn represented by 656 neurons, including superficial
and deep pyramidal cells, four types of inhibitory neurons, and realistic
synaptic contacts. Simulations show that neurons of a given type exhibit
similar, synchronized behavior in this detailed model. This observation is
captured by a population model that describes the activity of large neuronal
populations with two differential equations with two delays. Both models
appear to have similar sensitivity to variations of total network excitation.
Analysis of the population model reveals the presence of multistability,
which was also observed in various simulations of the detailed model.
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pilepsy is a neurologic disease, characterized by an increased risk of

recurring seizures, that affects nearly 1% of the world population.
This disease can be controlled pharmacologically in approximately two
third of the cases, although a multidrug regimen, with all the side effects
resulting from drug-drug interactions, is often required to adequately
control these patients. The remaining third of patients has an intractable
epilepsy that cannot be controlled adequately with drug treatment
(Kwan and Brodie, 2000). Despite the introduction of many novel drugs
throughout the last decades, the prevalence of intractable epilepsy has
not decreased. One possible explanation for this observation is that the
existing antiepileptic drugs target only a few specific mechanisms of
epileptogenesis, whereas other etymologies, yet unidentified, may re-
quire different treatment.

As most patients with epilepsy remain seizure-free most of the
time, it can be time consuming to collect enough pathologic data for
analysis. This is partially due to the limitations in spatial and temporal
resolution of recording equipment. For instance, scalp EEG mainly
displays collective phenomena of cortical dynamics with a very limited
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sensitivity for subcortical circuits that are presumably relevant in certain
types of epilepsies (e.g., absence epilepsy).

Modeling may improve our understanding of epileptogenesis
and provide clues for novel treatments. Such models exist at many
levels of abstraction, ranging from describing the brain as a black box
with a certain input/output relation to a detailed description of the
individual neurons in the brain. To reveal new mechanisms behind
seizures, any useful model should have a succinct connection with
physiology to relate observed (neurologic) behavior to the pathologic
condition of the patient.

A straightforward approach to model neuronal activity in the
brain is to model individual neurons in the brain and their mutual
interactions. We refer to models of this type as detailed models. As
individual cells and connections can be modeled with various levels of
complexity, different types of detailed models exist. Several detailed
models have been proposed of the complete brain (Izhikevich and
Edelman, 2008; Markram, 2006), but these do not focus on pathologic
behavior. Detailed models of the brain primarily intended to study
epileptiform activity have been developed as well, but these consider
only a limited number of neurons (Lytton, 2008; Traub et al., 2005; van
Drongelen et al., 2004, 2005, 2006). This limitation, however, does not
preclude the possibility of formulating important, testable hypotheses.
For instance, predictions regarding epileptiform activity have been
made with a detailed model that were subsequently confirmed in vitro
(van Drongelen et al., 2005).

Because these detailed models are substantial in both size and
complexity, analyzing their behavior is a hazardous task. For that
reason, we are interested in studying a more abstract class of models
that gives a more concise description of neuronal activity than detailed
models, so-called population models. Rather than describing properties
of individual neurons, these models describe the dynamics of popula-
tion-averaged quantities, such as the mean membrane potential of all
neurons in the populations, the mean firing rate, or the fraction of active
neurons within the population.

Most population models are based on the original work done by
Wilson and Cowan (1972) who derived a model for two generic
interconnected populations; one population containing only excitatory
and the other only inhibitory neurons. Potential mechanisms for tran-
sitions between normal and epileptic activity have been studied with
population models in absence epilepsy (Breakspear et al., 2006; Lopes
da Silva et al., 2003; Rodrigues et al., 2009) and mesial temporal lobe
epilepsy (Wendling et al., 2002).

A fundamental problem of population models, however, is that
they are based on averaging procedures that cannot be justified rigor-
ously. For that reason, it is difficult to relate parameters of population
models to physiological properties of the neurons within the popula-
tions. Therefore, one should be cautious during analysis of the model
and continuously investigate the physiological relevance of the param-
eters considered.

We do not favor one modeling approach over the other, because
we believe that both types of models should be analyzed simultaneously
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to study new mechanisms for seizure onsets. In our opinion, hypotheses
should be formulated through bifurcation analysis of simpler population
models and then subsequently tested in a detailed model. This step,
which to our knowledge is rarely performed, is crucial because it gives
the lumped parameters of the population model a relevance and clinical
significance by mapping them onto a set of physiological parameters in
a detailed model. Similarity between both models should ideally be
determined by quantitative measures.

We present two models of the neocortex, one detailed model and
the other based on the population approach. We consider changes of
parameters and show that both models have similar sensitivity to these
parameters.

METHODS

Areas of the neocortex make numerous connections with each
other and with deeper subcortical brain regions such as the thalamus.
These regions of neocortex are organized into a collection of macro-
columns that each perform an elementary task (Churchland and Se-
jnowski, 1999). These macrocolumns can then be split into mesocol-
umns that are in turn split into microcolumns within which the activity
of neurons is strongly correlated. Such a microcolumn contains roughly
1,000 neurons and covers an area of approximately 100 X 100 wm of
neocortex. The local structure of a microcolumn consists of several
layers that are tightly connected with each other. In this article, we focus
on modeling a small area of neocortex without long-range interactions
to either thalamus or other neocortical columns.

Two modeling approaches are used: the first being a detailed
neuron model analyzed at a mesoscale of 656 neurons and the other
a simpler two-population model.

Detailed Model

Description

A small patch of the neocortex is modeled by connecting
detailed models of individual neurons with artificial synapses, sim-
ilar to that in the study by van Drongelen et al. (2004, 2005, 2006).

Briefly, the model describes the activity of pyramidal neurons
in layers 2/3 and 5/6 of the neocortex, referred to as superficial cells
and deep cells, respectively, and four types of inhibitory interneu-
rons: three types of basket cells (each of a different size) and
chandelier cells. All neurons are discretized into several compart-
ments that describe the physiological structure of a cell with a soma
and a dendritic tree. The interneurons consist, due to their limited
size, of two compartments, whereas the superficial and deep pyra-
midal cells are described by five and seven compartments, respec-
tively. Cells are placed randomly in a three-dimensional space,
complying with the following depth ranges for each cell type. The
depth of the superficial pyramidal cells varies between 250 and 750
um, whereas the depth of the deep pyramidal cells varies between
1000 and 1500 um and the interneurons between 250 and 1500 pwm.
The minimal separation between two cells is 2 wm.

Voltage-gated sodium and potassium channels and maximal
conductances for ion channels are the same as that used in the study
by van Drongelen et al. (2006). Superficial pyramidal cells contain
persistent sodium channels that cause the cells to burst intrinsically.

Action potentials are assumed to have a constant conduc-
tion velocity of 0.08 m/s through axons, inducing a time lag for
synaptic transmission proportional to the distance between cells.
After arrival of an action potential, an exponentially decaying
postsynaptic current is generated, which has two time constants
(Bower and Beeman, 1998).

Connections of neurons are randomly determined in a way such
that the connection probability depends on the cell types (both sending
and receiving neurons) as well as the distance between the cells. Both
types of pyramidal neurons can connect to all neurons within a certain
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range. Basket cells will only inhibit pyramidal cells and other basket
cells. Chandelier cells make inhibitory connections to initial segments
of pyramidal cells exclusively. The model contains neither gap junc-
tions nor long-range connections to other columns.

Mesoscale Implementation

A realization of this model with 656 neurons (2 X 256
pyramidal cells and 4 X 36 interneurons) is implemented in C++,
making it a mesoscale simulation. We randomly generate one
network, consisting of 43,124 connections, and we only consider
simulations with this specific network topology.

Next, an interface is developed that converts the neuronal
activity of the network to a local field potential, representing a small
electrode placed on or nearby the network, e.g., an EEG or an
electrocorticogram electrode. The algorithm is based on the method
of “sinks and sources” as described in the study by Nunez and
Srinivasan (2005), except that only the superficial pyramidal neu-
rons are considered rather than all neurons, because these large cells
are closest to the electrode. Therefore, they will have the largest
contribution to the EEG compared with the smaller interneurons and
the deep cells that lie farther away. The obtained signal is unfiltered
and should be interpreted as a DC recording.

Population Model

Description

The activity of a neuron in a microcolumn is strongly corre-
lated with the activity of nearby neurons because of tight connec-
tivity and synchronization. It is therefore a natural step to consider
the average activity of a large group of neurons rather than the
behavior of individual neurons.

Here, a microcolumn of the neocortex is modeled using two
populations, representing the average activity of the superficial and
the deep pyramidal cells, respectively. First, it is assumed that
neither of the populations can exhibit self-sustained activity in the
absence of activity of the other population; hence, the activity of the
populations is modeled to decay exponentially over time. Next,
when the activity of a layer increases, more action potentials are sent
to neurons in the other layer where excitatory synapses are activated
after some time lag. This increases the activity in that layer. Rather
than modeling a population of inhibitory interneurons, we model the
inhibition caused by pyramidal cells that excite interneurons that in
turn inhibit the pyramidal cells (see also Fig. 1).

The above-described model leads to the following set of
delayed differential equations:

dx,
E = —wxi(t) — Fi(x,(t — 7)) + Gi(x,(¢ — 7.)),
(D
dx,
E =~y (1) — Fo(xy(t — 1)) + Go(x,(t — 7.)),

with x, and x, the activity of the neuronal populations of superficial
and deep pyramidal cells, respectively. The constants w, and pw,
represent the intrinsic rate of exponential decay of neuronal activity
within a population. The functions F;(x) and G{(x) are both sigmoi-
dal functions that determine the activation of the inhibitory and
excitatory synapses, respectively. The delay 7, is the time needed for
action potentials to travel from one layer to another, whereas 7; is the
time lag for the inhibitory feedback loop. Both delays include the
extra time lag caused by activation of the synapses.

The two-population network given in Eq. 1 is an example of
a graded Hopfield network with delays. Several of these networks
have been analyzed in the study by Belair and Campbell (1994) and
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Shayer and Campbell (2000), but their analysis focused mainly on
studying steady states rather than (periodic) oscillations.

To simplify the model and decrease the number of parame-
ters, we analyze the symmetric system:

M = M2 T M,
Fi(x) = Fy(x):= F(x), 2)
G,(x) G,(x) := G(x).

The following expressions are chosen for the synaptic acti-
vation functions:

F(x) = a;(tanh(o,x — 1) + tanh(1)) cosh?(1),
G(x) = a(tanh(o,x — 1) + tanh(1)) cosh?(1), )

with «; and «, the strengths of the inhibitory and excitatory con-
nections and o; and o, the rates at which their synapses saturate. For
negative values of x, both F(x) and G(x) are negative, representing
a suppression of the synaptic background activity.

We choose the following values for the parameters: u = 3,
n=41,=70a =02, a =15,0,=2,and o, = 1.2. The delays
are chosen similar to the delays in the detailed model. Because the
number of excitatory synapses in the detailed model outnumbers the
inhibitory, «, is chosen larger than ;. For the same reason, we
choose o; > o, because the inhibitory synapses will saturate faster
because of their low number.
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FIGURE 1. Schematic overview of the population model:
two connected excitatory (E) populations are considered as
well as the feedback of the inhibitory (I) populations that is
modeled as an intrinsic property.
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Simulating Epilepsy

Decreased Excitation

As shown in the study by van Drongelen et al. (2005), the
neocortex can exhibit epileptiform activity when excitatory synapses
in the network are weakened. Although verified experimentally, this
opposes most expectations, and therefore we try to reproduce the
results of this experiment with both models. In the detailed me-
soscale model, the global levels of excitation can be modified by
adding or removing excitatory synapses.

Modifying the levels of excitation in the population model
can be achieved in several ways. The parameter «, represents the
excitation between layers and is therefore a proper candidate param-
eter. Nevertheless, the parameter u determines the rate at which the
activity within a layer decreases. If the network contains more
excitatory synapses, more connections are made within the popula-
tion, and the activity will therefore decrease at a lower rate. We have
chosen to vary the parameter w to modify the levels of excitation
because we assume that more intralayer connections exist than
interlayer connections. Using numerical continuation packages
DDE-BIFTOOL and PDDE-CONT, we study all possible solutions
of the population model.

RESULTS

Mesoscale Detailed Model

Validation

The mesoscale detailed model is evaluated for different levels
of excitation, beginning at a high value of excitation and then
decreasing excitation below the normal level.

For high levels of excitation, the network exhibits satu-
rated, desynchronized activity in which all neurons fire action
potentials at a high frequency with a very low correlation (Fig. 2).
When the network excitation is set to normal physiological
values, the microcolumn’s behavior shows irregular bursts (Fig.
3). For low values of excitation, we observe fast oscillations in
the EEG of 50 Hz (Fig. 4). A closer analysis of these oscillations
reveals that the populations of superficial and deep pyramidal
cells are alternately active, similar to that in the study by van
Drongelen et al. (2007). After reducing the excitation to excep-
tionally low levels, one fifth of the normal level, the oscillations
cease and the network reaches a state of burst suppression-like
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Simulation of mesoscale detailed model for high excitation. The local field potential in the left panel shows de-

synchronized activity. The right panel depicts mean firing rate of individual neurons (see text).

Copyright © 2010 by the American Clinical Neurophysiology Society

473



S. Visser et al.

Journal of Clinical Neurophysiology ® Volume 27, Number 6, December 2010

x 10~

-2

—4H i

Local field potential (a.u.)

_8 . .
0 0.5 1 1.5 2

time (s)

FIGURE 3.
especially at 0.5 seconds.

-4

Local field potential (a.u.)
|
N

-8 . . .
0.5 1 1.5 2

time (s)

o

SPyr

140

120

100

Mean firing rate (Hz)

100 200 300 400 500 600
Cell ID

Simulation of mesoscale detailed model for moderate excitation. The local field potential shows irregular bursting,

Bask

SPyr DPyr 12 3Ch

140

120+ 1

100 1

[or]
o

[e2]
o

Mean firing rate (Hz)

N
o

n
o

100 200 300 400 500 600

FIGURE 4. Simulation of mesoscale detailed model for low excitation. The local field potential shows oscillatory activity.

behavior (Fig. 5). These network bursts are initiated by the
intrinsically bursting superficial pyramidal neurons that synchro-
nize easily but fail to initiate activity in other layers because of
the low level of excitation. Hence, the network remains silent
apart from these short bursts of activity.

Oscillating and regular bursting behavior, typical epileptiform
activity, are only observed in networks with weak excitatory syn-
apses. Contrarily, desynchronized activity and irregular bursting are
exclusively seen in simulations with high levels of excitation. These
results are in correspondence with the findings of van Drongelen et
al. (2005).

Activity of Populations

Next, we study the activity of individual neurons during
simulations of the different types of network behavior. For each
neuron in the network, the mean firing rate of action potentials is
determined by dividing of the total number of action potentials of
a neuron by the total simulation time. The results are shown in the
right panels of Figs. 2 to 5, in which the mean firing rate is
depicted for all neurons. The first group of 256 neurons repre-
sents the activity of the superficial pyramidal neurons (SPyr),
whereas the second group depicts the activity of the deep cells
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(DPyr). The four other groups each contain 36 interneurons of
different types: the first three columns contain basket cells of
increasing size (Bask 1-3) and the latter column holds the
chandelier cells (Ch).

As a first observation, we note that the variation of the
mean firing rate of individual neurons is small for neurons within
a population. For example, note the result for low excitation (Fig.
4) in which the firing rate of many neurons is identical to that of
others. Furthermore, both the type 2 basket cells and the chan-
delier cells have similar firing rates as well as the superficial
pyramidal cells and type 3 basket cells.

Generally, we observe that the activity of most neurons
decreases gradually as the levels of excitation are reduced, except
for the deep pyramidal cells whose activity drops suddenly for
normal levels of excitation and recovers again for lower levels.
As the levels of excitation are high, the small basket cells (type
1) experience an excitation block, indicating that the excitatory
synapses remain continuously activated due to the absence of a
rhythm. Hence, the neuronal activity is desynchronized.

By counting the number of action potentials 7, , ; of popu-
lation i in time bin j, we define the instantaneous firing rate f; ; of
neurons within population 7 as follows:

Copyright © 2010 by the American Clinical Neurophysiology Society
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Instantaneous firing rate of both excitatory populations is plotted during simulations with high (left), low (cen-

ter), and very low (right) excitation. Note the desynchronized activity in the left and the alternating activity in the center

panel.
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with &, the number of neurons in population i and 7, the size of time
bin ;. The size of the time bins is chosen to be 2 milliseconds. Figure
6 shows the instantaneous firing rate of the pyramidal neurons for
several levels of excitation in the network. The desynchronized
activity is now clearly visible as is the alternating activity during the
oscillations.

Population Model

The above results, indicating that neurons of a given type in
the detailed model have very similar behavior in the detailed model,
encourage us to study a population model that describes the activity
of these clusters rather than the individual neurons.

Analysis of Bifurcations

To understand the dynamics available to the population
model, we performed the bifurcation analysis for the excitation
parameter u (cf. Appendix), which shows that the population
model can display several different behavioral states. The model
has equilibrium states corresponding to no activity and to high
levels of activity in which both populations participate. More
interestingly, the model displays three types of oscillatory be-
havior in which activity between populations is either in

Copyright © 2010 by the American Clinical Neurophysiology Society

phase or in antiphase. Furthermore, substantial changes in fre-
quencies can occur, which are caused by period-doubling bifur-
cations. Finally, for a range of decay parameter w, the model may
exhibit either periodic or equilibrium behavior depending on the
initial conditions chosen for the system. In summary, the popu-
lation model can, in principle, display all the basic types of
behavior previously seen from the detailed model (cf. Validation
section).

Behavior

Simulations are performed for the population model given in
Eq. 1 for different values of w to study the effects of altering
excitation. For high levels of excitation (uw = 2), the simplified
model reaches a steady state with high-level constant activity (left
panel of Fig. 7). At moderate levels of excitation (u = 3), the model
manifests oscillations in which both populations are antiphasically
active (middle panel of Fig. 7). For very low levels of excitation
(p = 4), all activity dies out and both populations become quiescent
(right panel of Fig. 7).

Comparison

Behavior
After analyzing both the detailed model and the population
model individually, we compare their results in this section.
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Simulation of the detailed model for values of excitation between low and very low, the model’s behavior

switches between oscillations and regular bursts. Compare with Figs. 4 and 5.

We note that the desynchronized behavior observed in the
detailed model is similar to the high steady state in the population
model, because the detailed model reveals that individual neurons in
the excitatory populations are continuously active without a distinct
rhythm. Both models exhibit this type of behavior for high levels of
excitation.

For normal levels of excitation, the detailed model displays
irregular bursts of activity, in which the superficial pyramidal cells
are clearly more active than the deep cells (Fig. 3). This type of
behavior, in which one population clearly dominates the other, can
never be observed in the population model as no asymmetric steady
states are found in the bifurcation analysis. In future work, we will
break the symmetry of the population model and include specific
properties of the excitatory neurons, such that asymmetric steady
states, corresponding with the observed behavior, are likely to exist.
Even though the population model is unable to exhibit this type of
behavior, we may question the relevance of this result of the detailed
model because of the, perhaps unnatural, dominance of the super-
ficial population.

When the excitation in the network is low, the network shows
oscillatory behavior in which neurons in the pyramidal populations
are alternately active (Fig. 6, center). This corresponds extremely
well with the family of asymmetric limit cycles observed in the
population model (Fig. 7, center).

For very low values of excitation in the population model, we
find that activity of both populations dies out eventually (Fig. 7,
right). This behavior matches closely with the burst suppression of
the detailed model, which is observed at very low levels of excita-
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tion, because it is quiescent for most of the time. We recall that the
regular bursts occur on a long time scale (close to 1 second) and that
the population does not contain such long time scales. Furthermore,
the bursts of activity in the detailed model are initiated by the
superficial pyramidal cells that burst intrinsically (van Drongelen et
al., 2005). Because spontaneous activity is not included in the
population model, we do consider these behaviors similar.

Multistability and Bifurcations

Bifurcation analysis of the population model reveals the
presence of multistability of at most four attractors. These attractors
and their stability are well defined in the population model but
undetermined in the detailed model. For instance, if the detailed
model is close to a bifurcation point, it can repeatedly switch from
one type of behavior to another (see Fig. 8). This type of behavior,
in which both states appear intermittently, is caused by the chaotic
nature of the detailed model. The population model does not capture
this intermittent behavior, but it describes the attractors to which
switches can be made.

Moreover in the detailed model, we have found evidence for
the occurrence of period-doubling bifurcations and the existence of
multistability for synchronous and asynchronous neuronal activity.

Finally, two simulations were also performed in which the
conduction velocity of action potentials through axons varied slowly
over time (Fig. 9). As the conduction velocity slowly increases (Fig.
9, left) the frequency of the oscillations seems to double at # ~ 0.6
seconds. If the conduction velocity is slowly returned to its original

Copyright © 2010 by the American Clinical Neurophysiology Society
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FIGURE 10. Bifurcation diagram of the population model,
representing possible solutions of the system. Curves repre-
sent steady states (thin lines) and periodic orbits (thick
lines). Solid lines indicate stable solutions and dashed lines
correspond to unstable solutions. See text for a description
of the curves and bifurcation points a to I.

value (Fig. 9, right) then these fast oscillations persist. This hyster-
esis confirms the multistability predicted by the bifurcation analysis
of the population model, in which we found both symmetric and
asymmetric stable limit cycles for a wide range of values for .

DISCUSSION

In this work, we studied two models of neocortex to examine
neuronal activity during epileptiform network behavior. The first
model is based on a detailed description of 656 neurons, consisting
two types of pyramidal cells and four types of interneurons. For
validation, we compared this model with the model by van Dronge-
len et al. (2005), because the network shows similar types of
behavior (i.e., desynchronized, irregular bursting, oscillatory, and
regular bursting) when the network excitation is changed. The
second model is a population model, consisting two delay differen-
tial equations, that represents the activity of pyramidal neurons in

Copyright © 2010 by the American Clinical Neurophysiology Society

both superficial and deep layers of the neocortex. Analysis of this
model reveals comparable behavior with the detailed model for
corresponding changes of excitation levels in the network. Determi-
nation of the bifurcation diagram of the population model yields an
understanding of the more exotic types of behavior observed in the
detailed model, such as multistability, intermittency, and period
doublings (Figs. 8 and 9).

Although several hypotheses have been formed using popu-
lation models (Lopes da Silva et al., 2003; Rodrigues et al., 2009),
none of these have been further confirmed in a detailed model. This
impedes any attempt to put these results into a physiological and
clinical relevant perspective.

However, the fact that both the studied models exhibit
similar behavior reveals, in our opinion, an efficient way to
analyze transitions of network activity in the brain dependent on
properties of individual neurons. First, bifurcations of an associ-
ated population model with lumped parameters can be studied,
from which new hypotheses can be formulated regarding emer-
gent epileptiform network behavior. Next, values of the lumped
parameters of the population model should be translated into
physiological parameters in the detailed model to gain physio-
logical insight into the role these parameters play in inducing
epileptiform behavior in the detailed model. This would allow for
hypotheses generated from the population model to be verified in
a more realistic model, which incorporates details of single
neurons, and eventually validated in in vivo/in vitro model of
epilepsy. This step is important because drug therapies are
developed for targets at subcellular level.

We are aware of the limitations of both of our models (for
instance omitting the thalamocortical feedback loop by only consid-
ering neocortical structures), and we present this work merely as a
starting point for future work. Both models can be expanded by
including thalamocortical connections, enabling us to study other
types of epilepsy as well. The proposed population model is not fully
examined for the presence of bifurcations with respect to parameters
other than the level of excitation w, and we expect further study to
reveal new predictions for mechanisms behind the generation of
epileptiform activity.

APPENDIX

Figure 10 shows a caricature of the bifurcation diagram of the
population model for varying decay rate w of the population’s
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activity. Every curve in the diagram represents a specific type of
limiting behavior of the model: either a fixed point or a limit cycle.
Fixed points are depicted with a thin line of which the vertical
component is the population’s activity at that fixed point. Limit
cycles are indicated with a thick line that corresponds with the
maximal activity reached by a population during a period. Solid
lines are used to mark stable limiting behavior, meaning that it will
force nearby orbits to exhibit similar behavior as the limiting
behavior itself, whereas dashed lines designate unstable types of
behavior that will repel nearby orbits.

Because the origin is always a fixed point of the system in Eq.
1, we choose this point as initial point for our analysis. For high
values of u, the origin is a stable fixed point of the system. When
decreasing the parameter u, the origin retains its stability until the
critical point (a) is crossed at which it undergoes a subcritical Hopf
bifurcation and a family of (unstable) limit cycles arises. Continu-
ation of the unstable equilibrium yields a branch point at (b) where
it coincides with another unstable equilibrium. Analyzing the evo-
lution of this new equilibrium reveals a fold bifurcation and two
successive subcritical Hopf bifurcations at (c) and (d) after which it
becomes stable.

Closer inspection of the limit cycles that appeared at (a)
yields a family of symmetric oscillations representing synchronous
neuronal activity. This branch passes a Neimark-Sacker bifurcation
at (e) and a supercritical period-doubling bifurcation at (f) where it
spawns a branch of asymmetric periodic solutions with its period
initially doubled. The symmetric branch folds over and undergoes
another period-doubling bifurcation at (g) where it becomes stable
until it undergoes another period doubling at (h). Beyond (h), the
branch folds over and experiences another period-doubling bifurca-
tion at (i) until it terminates in the Hopf bifurcation (c).

Following the branch of asymmetric solutions that emerges at
(f), we find that it folds twice to gain stability at (j). At the left end
of the diagram, stability is lost in another fold bifurcation (k), and
the branch eventually terminates at the Hopf bifurcation (d).

Next, we continue the branch of limit cycles spawned at the
period-doubling bifurcation (h), at which the populations exhibit
synchronous activity at half the original frequency. The branch is
stable at first but loses stability in (1) because of three successive fold
bifurcations after which it ends in the period doubling at (i).

We summarize the results of this bifurcation analysis. For
large values of w larger than (j), the origin is the only stable solution
of the system, indicating that all activity eventually dies out. If w is
smaller than (a), only one stable equilibrium is present at a high level
of activity at which both populations remain continuously activate.
Either of these steady states is symmetric in the sense that both
populations exhibit identical behavior. Asymmetric steady states, in
which one population is continuously active and the other quiescent,
are not present with the current choice of parameters.

If the value of w lies between (j) and (k), the network can
generate periodic behavior where both neuronal populations are
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alternately activated. Whenever u takes values between (1) and (d),
the system has four stable solutions: two equilibria and two types of
oscillations. The network can exhibit fast oscillations for w in the
range of (h) and (g) because of a period-doubling bifurcation.
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