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a b s t r a c t

Given n clubs with two teams each, we show that, if n is even, it is possible to construct a schedule for a
single round robin tournament satisfying the following properties: the number of breaks is 2n− 2, teams
of the same club never play at home simultaneously, and they play against each other in the first round.
We also consider a fairness constraint related to different playing strengths of teams competing in the
tournament.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction and problem specification

Sports scheduling is a well-established and important area
of operations research with numerous practical applications. Al-
though schedules for certain simple tournaments can easily be
generated using combinatorial methods, the problem of finding a
schedule becomes very hard when it has to satisfy additional con-
straints. In practice, sports schedules are required to satisfy more
and more constraints in order to meet the increasing demands of
sports clubs and associations, supporters’ organizations, TV net-
works, and local communities. We refer to the extensive survey
by Rasmussen and Trick [5] for an overview of many of these con-
straints.

We consider sports leagues having a set of 2n teams. A single
round robin tournament (SRRT) is a tournament where each team
plays a match against every other team exactly once. The matches
of an SRRT are divided into rounds in such a way that each team
plays at most one match per round. Throughout this paper, we
assume that each team plays exactly one match per round, which
means that there are exactly 2n− 1 rounds; such an SRRT is called
compact in [5]. A timetable for an SRRT is a table whose rows
correspond to the teams and whose columns correspond to the
rounds, such that the entry in row i and column j represents the
opponent of team i in round j. Awell-knownmethod for generating
a timetable for an SRRT is the so-called Circle Method, dating back
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to 1883 [4] (see also Section 2). Each match is carried out at the
venue of one of the twoopponents. A home–away pattern for a team
is a sequence of length 2n − 1 specifying for each round whether
the team plays at home or away. The home–away patterns for all
2n teams together constitute a home–away pattern set, determining
the home team for each match of the SRRT. A schedule for an SRRT
consists of a timetable and a corresponding home–away pattern
set. We say that a team has a break in round k if the team plays
either at home in rounds k − 1 and k, or plays away in both
these rounds. It is well known that each home–away pattern set
of a single round robin tournament with 2n teams yields at least
2n − 2 breaks, and that a home–away pattern set with exactly
2n− 2 breaks exists for any timetable constructed using the Circle
Method; see for example [3]. Two home–away patterns that are
different in each round are called complementary. We say that
two teams play complementarily if their home–away patterns are
complementary.

Schedules for SRRTs with a minimum number of breaks have
been studied by many different researchers: Rasmussen and
Trick [5] devote an entire section of their survey to breakminimiza-
tion. Since playing away in several consecutive rounds is seen as a
disadvantage, a schedule with as few breaks as possible is consid-
ered fairer than a schedule where more breaks occur. Moreover,
such a schedule allows supporters to see a home game every other
round, and this guarantees regular earnings from home games for
the owner of the venue. Complementary constraints often appear
in practice when designing schedules for sports leagues; again, we
refer to [5] for many references. For example, if two football clubs
both have a stadium in the same city, then it is desirable that they
do not play at home simultaneously in order to avoid traffic prob-
lems and conflicts between supporters. Sometimes, for example
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when two football clubs share the same stadium, it is not only de-
sirable but also essential that they do not both play at home in any
round. Amore extreme example, which forms the original motiva-
tion for this paper, is a local billiards league in the Netherlands.
Due to the large number of teams competing in the league, the
teams play each other exactly once per year in a single round robin
tournament. The teams are associated to pubs. Althoughmost pubs
have more than one team competing in the league, they typically
have only one billiards table. Since teamsof the samepub share this
single table, at most one of them can play at home in each round.
For fairness reasons, it is required that teams of the same pub play
against each other as early as possible in the tournament, so that a
team cannot deliberately lose a game at the end of the tournament
to give another team of the same pub an unfair advantage.

Motivated by the billiards league described above, we consider
in Section 2 a set of n clubs, having exactly two teams and one
venue each. As we mentioned before, any schedule for an SRRT
with 2n teams contains at least 2n − 2 breaks. The question is
whether a schedulewith exactly 2n−2 breaks exists if the schedule
has to satisfy the following two conditions: teams of the same club
do not play at home in the same round, and they play against each
other in the first round. We prove that for every even n such a
schedule indeed exists by presenting a method for constructing a
schedule for an SRRT satisfying the following properties.

Property I. The number of breaks equals 2n − 2.

Property II. The teams of the same club play complementarily.

Property III. The teams of the same club meet in the first round.

Note that Property II implies that teams of the same club do not
play at home in the same round. In fact, the reverse implication
also holds. After all, in every round, n teams play at home and n
teams play away. If both teams of a club play away in round k, then
the n teams that play at home in round kmust belong to the other
n − 1 clubs. This implies that there is at least one club, both teams
of which play at home in round k. Hence demanding teams of the
same club not to play at home in the same round is equivalent to
demanding teams of the same club to play complementarily.

In Section 3, we consider another fairness constraint. It is
considered unfair if one team plays against strong teams in several
consecutive matches, whereas another team has a match against
a weak team following each match against a strong team. In order
to deal with fairness issues arising from teams of different playing
strengths, Briskorn [2] introduced the concept of strength groups.
The basic idea is that teamswith equal or similar playing strengths
are contained in the same strength group. If there are s different
strength groups, each containing the same number of teams, then
the goal is to find a schedule in which no team plays against
two teams of the same strength group within any s consecutive
rounds. An SRRT having such a schedule is called group-balanced.
Briskorn [2] studies the case where 2n/s is an integer and each
strength group contains exactly 2n/s teams. He proves that a
group-balanced schedule exists if and only if both s and 2n/s are
even. In Section 3,we consider the casewhere 2n teams are divided
into n strength groups, each containing two teams. We present
a method for constructing a schedule for a group-balanced SRRT
with 2n − 2 breaks, for every even n.

Section 4 contains the conclusions and mentions some open
problems.

2. Sports schedules with multiple teams per club

One of the oldest and easiest ways of constructing a timetable
for an SRRTwith 2n teams is the so-called CircleMethod, described
by Lucas [4] in 1883. SRRTs constructed using the CircleMethod are
also known as Lucas leagues; see for example [1]. The CircleMethod
can be presented in algebraic form as follows.
Circle Method

(a) For i, j < 2n and i ≠ j, the teams i and j play in round k if
i + j − 1 ≡ k(mod 2n − 1).

(b) For i < 2n, the teams i and 2n play in round k if 2i − 1 ≡

k(mod 2n − 1).

For the remainder of this sectionwe consider the case of n clubs,
where n is even. Each club has exactly two teams, and the teams are
numbered from 1 to 2n in such a way that for i < n the teams i and
i+n−1 belong to the same club, and the same holds for the teams
2n − 1 and 2n.

The purpose of this section is to prove the existence of a
schedule for an SRRT satisfying Properties I, II and III, specified in
Section 1, for every even n. We do this by an explicit construction
of such a schedule. We first describe a method, closely resembling
the Circle Method, for generating a timetable for an SRRT with 2n
teams; we call this method the Adapted Circle Method. We then
show how to construct a home–away pattern set that, together
with the timetable constructed by the Adapted Circle Method,
constitutes a schedule for an SRRT satisfying Properties I, II and III.
Adapted Circle Method

(a) In round 1, each team plays against the other team of the same
club.

(b) For i, j ≤ 2n − 2, the teams i and j of different clubs play in
round k ≥ 2 if i + j ≡ k(mod 2n − 2).

It remains to describe the matches involving the teams 2n − 1
and 2n. It follows from rules (a) and (b) that for team i these must
be played in round k, where either k ≡ 2i(mod 2n − 2) or k ≡

2i + n − 1(mod 2n − 2).

(c1) For 1 ≤ i ≤
1
2n, team i plays against team

2n − 1 in round 2i + n − 1
2n in round 2i.

(c2) For 1
2n + 1 ≤ i ≤ n − 1, team i plays against team

2n − 1 in round 2i
2n in round 2i − (n − 1).

(c3) For n ≤ i ≤
3
2n − 1, team i plays against team

2n − 1 in round 2i − 2(n − 1)
2n in round 2i − (n − 1).

(c4) For 3
2n ≤ i ≤ 2n − 2, team i plays against team

2n − 1 in round 2i − 3(n − 1)
2n in round 2i − 2(n − 1).

It is not difficult to verify that every team i plays against each of
the 2n−1 other teams for i ≤ 2n−2. For teams 2n−1 and 2n, the
opponents follow from rules (c1)–(c4). Team 2n − 1 plays against
team 2n in round 1, and plays against teams 1, 2, . . . , 2n − 2 in
rounds

n + 1, n + 3, . . . , 2n − 3, 2n − 1,
n + 2, n + 4, . . . , 2n − 4, 2n − 2,
2, 4, . . . , n − 2, n,
3, 5, . . . , n − 3, n − 1,

(1)

respectively. For team 2n, the analysis is similar. We conclude that
the Adapted Circle Method indeed yields a timetable for an SRRT
with 2n teams. See Table 1 for an example of a timetable for 12
teams generated using the Adapted Circle Method.
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Table 1
A schedule for an SRRT with 12 teams generated using the Adapted Circle Method. The grey entries form the band.

Round: 1 2 3 4 5 6 7 8 9 10 11

Team 1 6 −12 −2 3 −4 5 −11 7 −8 9 −10

Team 2 7 −10 1 −12 −3 4 −5 6 −11 8 −9

Team 3 8 −9 10 −1 2 −12 −4 5 −6 7 −11

Team 4 9 −8 12 −10 1 −2 3 11 −5 6 −7

Team 5 10 −7 8 −9 12 −1 2 −3 4 11 −6

Team 6 −1 11 7 −8 9 −10 12 −2 3 −4 5

Team 7 −2 5 −6 11 8 −9 10 −1 12 −3 4

Team 8 −3 4 −5 6 −7 11 9 −10 1 −2 12

Team 9 −4 3 −11 5 −6 7 −8 −12 10 −1 2

Team 10 −5 2 −3 4 −11 6 −7 8 −9 −12 1

Team 11 12 −6 9 −7 10 −8 1 −4 2 −5 3

Team 12 −11 1 −4 2 −5 3 −6 9 −7 10 −8
Note that in rule (b) of the Adapted Circle Method there is a
shift of one round as compared to rule (a) of the Circle Method,
due to the special first round. Also note that calculations are done
modulo 2n−2 in the Adapted CircleMethod, as opposed tomodulo
2n−1 calculations in the Circle Method. This is due to the fact that
the Circle Method has only one exceptional team, namely team 2n
(sometimes called team ∞ in the literature), whereas the Adapted
CircleMethod has two exceptional teams, namely teams 2n−1 and
2n. We point out that the Adapted CircleMethod cannot be applied
when n is odd, since in that case the aforementioned rounds in (1)
are not all different.

To define a home–away pattern set satisfying Properties I and II
we introduce the band.

Definition 1. Given a timetable constructed using the Adapted
CircleMethod, the band consists of all pairs (i, k) of team i ≤ 2n−2
and round k, for which

1
2
(k + δk) ≤ i <

1
2
(k + δk) + n − 1,

where

δk =


1 if k ≤ n
0 if k > n.

The grey entries of the schedule in Table 1 form the band of the cor-
responding timetable for 12 teams, constructed using the Adapted
Circle Method. Using the band, we construct a home–away pattern
set as follows.

Lemma 1. Given a timetable, with band B, constructed using the
Adapted Circle Method, a home–away pattern set is obtained as
follows. For i ≤ 2n − 2, team i plays at home in round k if and only if
one of the following holds:
(i, k) ∈ B and k is odd
(i, k) ∉ B and k is even.

In round 1, team 2n−1 plays at home against team 2n. In every other
round, teams 2n−1 and 2n play complementarily to their opponents.

Proof. It is clear that each team i plays either at home or away
in each round. Hence, in order to prove that the rules described
in Lemma 1 define a proper home–away pattern set, it suffices
to prove that, if two teams meet in round k, then one plays at
home and the other plays away. For all matches involving teams
2n − 1 and 2n, this immediately follows from the formulation of
the lemma. So suppose now that teams i and jmeet in round k, and
assume without loss of generality that i < j ≤ 2n − 2. We have
to prove that exactly one of the pairs (i, k) and (j, k) is in the band.
For k = 1, this is the case, since j = i + n − 1, which implies
that (i, 1) is in the band, and (j, 1) is outside. For k > 1, it follows
from rule (b) of the Adapted Circle Method that either i + j = k or
i + j = k + 2n − 2. We consider both cases below.

In the first case, i < 1
2k, so (i, k) ∉ B. On the other hand, j > 1

2k
implies that 1

2 (k + δk) ≤ j. To prove that (j, k) ∈ B, it remains to
prove that j < 1

2 (k + δk) + n − 1. For this, we note that j < k and
k ≤ 2n − 1 imply that

j ≤ k − 1 =
1
2
k +

1
2
k − 1 ≤

1
2
k +

1
2
(2n − 1) − 1

=
1
2
k + n −

3
2

<
1
2
(k + δk) + n − 1.

Hence we have that j < 1
2 (k + δk) + n − 1, and we have proved

that (j, k) ∈ B.
In the second case, j > 1

2k + n − 1, which implies that j ≥

1
2 (k + δk) + n − 1, and hence (j, k) ∉ B. At the same time, we
have that i < 1

2k + n − 1, so surely i < 1
2 (k + δk) + n − 1. To

prove that (i, k) ∈ B, it remains to prove that i ≥
1
2 (k + δk). To get

a contradiction, we assume that i < 1
2 (k + δk). This implies that

i ≤
1
2k. If i =

1
2k (implying that k is even), team i plays against

team 2n − 1 or 2n; cases we already discarded. If i < 1
2k, then the

opponent is k− i, implying that j < k. This is in contradiction with
j > 1

2k + n − 1. Hence (i, k) ∈ B. �

Table 1 contains a schedule for an SRRT with 12 teams;
the timetable has been constructed using the Adapted Circle
Method, and the home–away pattern set is generated as de-
scribed in Lemma 1. The entries belonging to the band are
colored grey, and a positive (respectively negative) entry in
row i and column k indicates that team i plays at home (re-
spectively away) in round k. For other values of n a Java
script is available: see http://wwwhome.math.utwente.nl/∼postgf/
RoundRobinWithTwoTeamsPerClub.html.

It is easy to verify that the schedule in Table 1 satisfies
Properties I, II and III. We now prove that this is the case for every
schedule constructed using the Adapted Circle Method and the
home–away pattern set defined in Lemma 1.

Theorem 1. For every even n there exists a single round robin tour-
nament with 2n teams, satisfying Properties I, II and III specified in
Section 1.

Proof. We show that any timetable generated using the Adapted
Circle Method, together with a home–away pattern set defined in
Lemma 1, constitutes a schedule for an SRRT satisfying Properties I,
II and III.

http://wwwhome.math.utwente.nl/~postgf/RoundRobinWithTwoTeamsPerClub.html
http://wwwhome.math.utwente.nl/~postgf/RoundRobinWithTwoTeamsPerClub.html
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Table 2
A schedule for a group-balanced SRRT with 12 teams, obtained from the schedule in Table 1. The grey entries formed the band of the original schedule.

Round: 1 2 3 4 5 6 7 8 9 10 11

Team 1 −11 7 −8 9 −10 6 −12 −2 3 −4 5

Team 2 −5 6 −11 8 −9 7 −10 1 −12 −3 4

Team 3 −4 5 −6 7 −11 8 −9 10 −1 2 −12

Team 4 3 11 −5 6 −7 9 −8 12 −10 1 −2

Team 5 2 −3 4 11 −6 10 −7 8 −9 12 −1

Team 6 12 −2 3 −4 5 −1 11 7 −8 9 −10

Team 7 10 −1 12 −3 4 −2 5 −6 11 8 −9

Team 8 9 −10 1 −2 12 −3 4 −5 6 −7 11

Team 9 −8 −12 10 −1 2 −4 3 −11 5 −6 7

Team 10 −7 8 −9 −12 1 −5 2 −3 4 −11 6

Team 11 1 −4 2 −5 3 12 −6 9 −7 10 −8

Team 12 −6 9 −7 10 −8 −11 1 −4 2 −5 3
In order to prove Property I, we note that team i ≤ 2n− 2 does
not have a break in round k, 2 ≤ k ≤ 2n, if and only if the pairs
(i, k − 1) and (i, k) are both inside or both outside the band. Since
for each i ≤ 2n − 2 the transition from inside to outside the band
– or vice versa – happens exactly once, each of those teams has
exactly one break. For every round k, if team 2n − 1 plays against
team i, then the pair (i, k) is outside B. Hence the home–away
pattern for team 2n − 1 is home–away–home–· · ·–away–home,
which means that team 2n − 1 does not have a break. Similarly,
the pair (i, k) corresponding to opponent i of team 2n in round k
is always inside B. Hence the home–away pattern of team 2n is
complementary to that of team 2n − 1, which means that team
2n does not have a break either.

In order to prove Property II, we note that for every fixed round
exactly n − 1 ‘‘consecutive’’ teams belong to the band. Hence for
i < n the teams i and i + n − 1 play complementarily, since
for each round k either (i, k) or (i + n − 1, k) is inside the band.
As noted in the first part of the proof, teams 2n − 1 and 2n play
complementarily as well.

Property III follows directly from the construction of the first
round. �

3. Group-balanced schedules

The schedule constructed using the Adapted Circle Method as
described in Section 2 is much more structured than is required
by Properties I, II and III. In fact, a closer look at the schedule in
Table 1 and rules (b) and (c1)–(c4) of the Adapted Circle Method
reveals that any such schedule also has the following property.

Property IV. If a team of club A plays against a team of club B, then
the other teams of clubs A and B meet in the same round.

For the matches defined by rule (b) this can be seen by
considering i, j ≤ n− 1, and realizing that by adding n− 1 to i and
jwemove to the teams of the same club. If i + j ≡ k(mod 2n − 2),
then also (i + n − 1) + (j + n − 1) ≡ k(mod 2n − 2). Hence, if
teams i and j of different clubs play each other in round k, then the
other two teams of the same clubs meet in round k as well. For the
matches defined by the rules (c1)–(c4) the same holds, as can be
verified case by case.

Looking at rounds 2 to 2n − 1 at club level, which can be done
due to Property IV, we see that the clubs play exactly a double
round robin tournament in these 2n−2 rounds. Moreover, the two
matches between the same clubs are exactly n − 1 rounds apart.
This extra structure can be used to construct a schedule for a group-
balanced single round robin tournament with n strength groups of
size 2, when n is even.
Theorem 2. For every even n and every set of 2n teams, divided into
n strength groups containing two teams each, there exists a group-
balanced single round robin tournament with 2n − 2 breaks.

Proof. We consider a set of 2n teams, divided into n strength
groups containing two teams each. It is easy to see that in a group-
balanced SRRT a team plays against distinct teams j and j′ from
the same strength group in two rounds having absolute difference
exactly n, and the teams from the same strength group meet in
round n. We prove Theorem 2 by constructing a schedule for such
a group-balanced SRRT using the Adapted Circle Method.

We interpret each strength group as a club, containing exactly
two teams. We then construct a schedule for an SRRT using the
Adapted Circle Method and the home–away pattern set defined in
Lemma1, likewedescribed in Section 2. It follows from the proof of
Theorem 1 that this schedule satisfies Properties I, II and III. Finally,
we modify this SRRT by rotating every round n − 1 ‘‘slots’’ to the
right; that is, round k becomes round k + n − 2(mod 2n − 2) + 1.
In particular, the first round is moved to round n. Table 2 provides
the schedule obtained in this way from the schedule in Table 1.

First, we observe that the obtained schedule is group-balanced.
As we noted before, the Adapted Circle Method yields a schedule
such that for each strength group the matches against the two
teams in another strength group are carried out in two rounds that
differ by n − 1. Hence, after rotating, these matches are played
in rounds that differ by exactly n. Thus, the schedule is group-
balanced.

Second, we show that the number of breaks is 2n − 2. Note
that, in an SRRT with a minimum number of breaks, for two teams
the last entry of the home–away pattern equals the first entry
(home–homeor away–away). Hencewe could say that these teams
have a break in the first round, implying that each teamhas exactly
one break. Note that by rotating rounds we do not destroy this
property. Hence, the modified schedule has a minimum number of
breaks if and only if two teams have a break in the first round. The
Adapted Circle Method yields a timetable in which teams 1

2n and
3
2n − 1 have a break in round n + 1, which becomes round 1 after
rotating. Thus, the obtained schedule has the minimum number of
breaks. In Table 2 we can see that for teams 1

2n and 3
2n − 1 either

the first or the last match lies in the band, which illustrates their
breaks in the first round. �

4. Conclusions

Our construction only works for an even number of clubs.
Formulating the problem as an integer linear program and solving
for small instances (n = 3 and n = 5) suggests that for an odd
number of clubs an SRRTwith Properties I, II and III does not exist. It
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is known that, in any schedule for an SRRT with 2n teams in which
each team has at most one break, the 2n teams can be grouped
into n disjoint pairs in such a way that each pair of teams plays
complimentary [3]. This implies that any schedule for an SRRTwith
Property I automatically satisfies Property II [3]. It is remarkable
that by adding Property III we seem to lose all odd n. An interesting
question is what the minimum number of breaks is in a schedule
for an SRRT satisfying Properties II and IIIwhen the number of clubs
is odd, and how to construct such a schedule.

Although we do not know whether an SRRT with Properties I,
II and III exists for some odd n larger than 5, we can easily see
that no SRRT with Properties I, II, III and IV can exist for any odd
n. In fact, there is no SRRT with Properties III and IV for any odd
n. Satisfying Property III means that teams of the same club play
against each other in the first round. Property IV implies that clubs
can be grouped in pairs in each round other than the first round. In
each of those rounds, this leaves a single club if the total number of
clubs is odd. Since every team must play in every round according
to the definition of a single round robin tournament, the two teams
of this club must play against each other in two different rounds.
This is not possible in a single round robin tournament.

The combination of break minimization and fairness with re-
gard to strength groups raises interesting open questions for future
research.

• What is the minimum number of breaks in a group-balanced
SRRT with 2n teams and g strength groups?
• What is the computational complexity of the break minimiza-
tion problem for a group-balanced SRRT?

Our result in Section 3 gives an answer to the first question for
the special case where each strength group has size 2.
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