
Journal of Computational Physics 230 (2011) 789–817
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Space–time discontinuous Galerkin finite element method
for two-fluid flows

W.E.H. Sollie, O. Bokhove, J.J.W. van der Vegt ⇑
Department of Applied Mathematics, Institute of Mechanics, Processes and Control Twente, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
a r t i c l e i n f o

Article history:
Received 14 December 2009
Received in revised form 7 October 2010
Accepted 16 October 2010
Available online 26 October 2010

Keywords:
Cut-cell
Space–time discontinuous Galerkin
Front tracking
Level set
Two-fluid flow
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.10.019

⇑ Corresponding author. Tel.: +31 53 489 5628; fa
E-mail addresses: w.e.h.sollie@math.utwente.nl (

der Vegt).
a b s t r a c t

A novel numerical method for two-fluid flow computations is presented, which combines
the space–time discontinuous Galerkin finite element discretization with the level set
method and cut-cell based interface tracking. The space–time discontinuous Galerkin
(STDG) finite element method offers high accuracy, an inherent ability to handle disconti-
nuities and a very local stencil, making it relatively easy to combine with local hp-refine-
ment. The front tracking is incorporated via cut-cell mesh refinement to ensure a sharp
interface between the fluids. To compute the interface dynamics the level set method
(LSM) is used because of its ability to deal with merging and breakup. Also, the LSM is easy
to extend to higher dimensions. Small cells arising from the cut-cell refinement are merged
to improve the stability and performance. The interface conditions are incorporated in the
numerical flux at the interface and the STDG discretization ensures that the scheme is con-
servative as long as the numerical fluxes are conservative. The numerical method is applied
to one and two dimensional two-fluid test problems using the Euler equations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Fluid flows with interfaces involve combinations of gases, liquids and solids and have many applications in nature and
industry. Examples include flows with bubbles, droplets or solid particles, wave–structure interactions, dam breaking,
bed evolution, Rayleigh–Taylor and Kelvin–Helmholtz instabilities and industrial processes such as bubble columns, fluid-
ized beds, granular flows and ink spraying. The flow patterns in these problems are complex and diverse and can be ap-
proached at various levels of complexity. Often the interface is not static but moves with the fluid flow velocity and in
more complex cases interface topological changes due to breakup and coalescence processes may occur. Solutions often have
a discontinuous character at the interface between different fluids, due to surface tension and other effects. In addition, the
density and pressure differences across the interface can be very high, like in the case of liquid–gas flows. Also, the existence
of shock or contact waves can introduce additional discontinuities into the problem. Because of the continuous advances in
computer technology the numerical simulation of these problems is becoming increasingly affordable. However, there are
several issues related to solving flows with interfaces numerically. These include issues regarding accuracy and conservation
of the flow field quantities near the interface, robustness and stability of the interface coupling, complex geometries,
unstructured mesh generation and motion, mesh topological changes and computational efficiency. A numerical method
which has received much attention in recent years and which is especially suited for dealing with flows with strong discon-
tinuities and unstructured meshes is the discontinuous Galerkin finite element method.
. All rights reserved.

x: +31 53 489 4833.
W.E.H. Sollie), o.bokhove@math.utwente.nl (O. Bokhove), j.j.w.vandervegt@math.utwente.nl (J.J.W. van

http://dx.doi.org/10.1016/j.jcp.2010.10.019
mailto:w.e.h.sollie@math.utwente.nl
mailto:o.bokhove@math.utwente.nl
mailto:j.j.w.vandervegt@math.utwente.nl
http://dx.doi.org/10.1016/j.jcp.2010.10.019
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

790 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
In this article a novel discontinuous Galerkin front tracking method for two-fluid flows is presented, which is accurate,
versatile and can alleviate some of the problems commonly encountered with existing methods. In order to explain and
motivate the choices made for the numerical method, first the most important aspects of the space–time discontinuous
Galerkin finite element method are discussed. This is followed by a discussion of important existing techniques for dealing
with interfaces. Based on this discussion the interface related choices in the method are explained. Finally, the research
objectives are stated.

For a complete survey of discontinuous Galerkin (DG) methods and their applications, see [11]. The main feature of DG
methods is that they allow solutions to be discontinuous over element faces. The basis functions are defined locally on each
element with only a weak coupling to neighboring elements. The computational stencil is therefore very local; hence, DG
methods are relatively easy to combine with parallel computation and also hp-refinement, where a combination of local
mesh refinement (h-adaptation) and adjustment of polynomial order (p-adaptation) is used. Another important property
is that DG discretizations are conservative. The DG method has order of accuracy O(hp+1) for smooth solutions and order
of accuracy O(h1/2) for discontinuous solutions [31,55]. Front capturing and tracking techniques can help to improve the
accuracy of the DG method around discontinuities. Near discontinuities higher order DG solutions will exhibit spurious oscil-
lations. These oscillations may be removed by using slope limiting, shock fitting techniques or artificial dissipation in com-
bination with discontinuity detection.

The space–time discontinuous Galerkin finite element method (STDG) introduced by van der Vegt and van der Ven [65] is
a space–time variant of the DG method which is especially suited for handling dynamic mesh motions in space–time (see
also [6,28,55,66]). It features a five-stage semi-implicit Runge–Kutta scheme with coefficients optimized for stability in com-
bination with multigrid for accelerated convergence to solve the (non) linear algebraic equations resulting from the STDG
discretization.

Many methods have been proposed for computing flows with interfaces or, to be more general, fronts. By looking at the
front representation in the mesh one can distinguish between front capturing and front tracking methods. Other methods
exist, such as particle methods and boundary integral methods, but these are not relevant for the current discussion.

In front capturing methods a regular stationary mesh is used and there is no explicit front representation. Instead, the
front is either described by means of marker particles, like in the marker and cell method, or by use of functions, such as
in the volume of fluid and level set methods. The earliest numerical method for time dependent free surface flow problems
was the marker and cell (MAC) method [12,24]. Being a volume marker method it uses tracers or marker particles defined in
a fixed mesh to locate the phases. However, the large number of markers required to obtain sufficient accuracy makes the
method expensive.

In the Volume of Fluid (VoF) method [25,42,50,73] a fractional volume or color function is defined to indicate the fraction
of a mesh element that covers a particular type of fluid. Algorithms for volume tracking are designed to solve the equation
@c=@t þ �r � ðcuÞ ¼ 0, where c denotes the color function, u the local velocity at the front, t the time and �r ¼ ð@=@x1; . . . ;

@=@xdÞ the spatial gradient operator in d-dimensional space. In the VoF method typically a reconstruction step is necessary
to reproduce the interface geometry from the color function. More accurate VoF techniques like the Piecewise Linear Inter-
face Construction (PLIC) method attempt to fit the interface by means of piecewise linear segments. VoF methods are easy to
extend to higher dimensions and can be parallelized readily due to the local nature of the scheme. They can automatically
handle reconnection and breakup. Current VoF methods can conserve mass but have difficulty in maintaining sharp bound-
aries between different fluids, and interfaces tend to smear. In addition, these methods can give inaccurate results when high
interface curvatures occur. The computation of surface tension is not straightforward and in addition spurious bubbles and
drops may be created. Recently, Greaves has combined the VoF method with Cartesian cut-cells with adapting hierarchical
quadtree grids [22], which alleviates some of these problems.

The level set method (LSM) was introduced by Osher and Sethian in [36] and further developed in [1,52,56]. For a survey,
see [53]. In the LSM an interface can be represented implicitly by means of the 0-level of a level set function w(x, t). The evo-
lution of the interface is found by solving the level set equation @w=@t þ u � �rw ¼ 0, with u the interface velocity. To reduce
the computational costs a narrow band approach can be used, which limits the computations of the level set to a thin region
around the interface. To enhance the level set accuracy it can be advected with the interface velocity, which for this purpose
is extended from the interface into the domain. In case the level set becomes too distorted a reinitialization may be neces-
sary. Various reinitialization algorithms are available based on solving a Hamilton–Jacobi partial differential equation
[26,37,40]. Although the choice of the level set function is somewhat arbitrary, the signed distance to the interface tends
to give the best accuracy in computing the curvature of the interface. Also, the LSM is easy to extend to higher dimensions
and can automatically handle reconnection and breakup. The LSM, however, is not conservative in itself. Recent develop-
ments include the combination of the VoF method with the level set method [57].

Front capturing methods have the advantage of a relatively simple formulation. The main drawback of these methods lies
in the need for complex interface shape restoration techniques, which often have problems in restoring the smooth and con-
tinuous interface shape, particularly in higher dimensions.

In front tracking and Lagrangian methods the front is tracked explicitly in the mesh. Front tracking was initially proposed
in [47] and further developed in [19,33,63,64]. For a survey, see [27,48]. The evolution of the front is calculated by solving the
equation @x/@ t = u at the front, where x is a point at the front and u its velocity. Glimm et al. [20] have combined front track-
ing with local grid based interface reconstruction using interface crossings with element edges. More recently they have pro-
posed a fully conservative front tracking algorithm for systems of nonlinear conservation laws in [21].

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 791
Front tracking methods are often combined with either surface markers or cut-cells to define the location of the front. In
the cut-cell method [4,13,39,60,61,71] a Cartesian mesh is used for all elements except those which are intersected by the
front. These elements are refined in such a way that the front coincides with the mesh. At a distance from the front the mesh
remains Cartesian and computations are less expensive. A common problem with cut-cell methods is the creation of very
small elements which leads to problems with the stiffness of the equations and causes numerical instability. One way to
solve this problem is by element merging as proposed in [72].

In Lagrangian or moving mesh methods [17,18,35,49] the mesh is modified to follow the fluid. In these methods the mesh
can become considerably distorted, which gives problems with the mesh topology and stretched elements. In the worst case,
frequent remeshing may be necessary [2,32]. In cases of breakup and coalescence, where the interface topology changes,
these methods tend to fail.

Front tracking methods are good candidates for solving problems that involve complex interface physics. They are robust
and can reach high accuracy when the interface is represented using higher order polynomials, even on coarse meshes. A
drawback of front tracking methods is that they require a significant effort to implement, especially in higher dimensions.

The numerical algorithm for two-fluid flows presented here combines a space–time discontinuous Galerkin (STDG) dis-
cretization of the flow field with a cut-cell mesh refinement based interface tracking technique and a level set method (LSM)
for computing the interface dynamics. The STDG discretization can handle interface discontinuities naturally, is conservative
and has a very compact computational stencil. The level set method has the benefit of a simple formulation which makes it
easier to extend the method to higher dimensions and also provides the ability to handle topological changes automatically.
The interface tracking serves to maintain a sharp interface between the two fluids. This allows for different equations to be
used for each fluid, which are coupled at the interface by a numerical interface flux, based on the interface condition. In addi-
tion, front tracking methods typically have high accuracy. Cut-cell refinement is used since it has the benefit of being local in
nature and also is relatively easy to extend to higher dimensions.

An alternative approach to tracking singular surfaces with STDG meshes can be found in [38], where a space–time
advancing front strategy (’tent pitching’, [62]) is used to accomplish solution based tracking.

The outline of this article is as follows: In Section 2 the flow and level set equations are introduced. In Section 3 the back-
ground and refined meshes are discussed and the mesh refinement procedure is presented. In Section 4 the flow and level set
discretizations, and the Runge–Kutta semi-implicit time integration method for the solution of the algebraic equations
resulting from the numerical discretization are discussed. In Section 5 the two-fluid algorithm is presented. In Section 6
some test results are presented. Section 7 contains the final discussion and conclusions.
2. Equations

2.1. Two-fluid flow equations

Considered are flow problems involving two fluids as illustrated in Fig. 1. The two fluids are separated in space–time by an
interface S. Let i = 1, 2 denote the fluid index. Furthermore, let x ¼ ðt; �xÞ ¼ ðx0; . . . ; xdÞ denote the space–time coordinates,
with d the spatial dimension, �x ¼ ðx1; . . . ; xdÞ the spatial coordinates and t 2 [t0,T] the time coordinate, with t0 the initial time
and T the final time. The space–time flow domain for fluid i is defined as Ei � Rdþ1. The (space) flow domain for fluid i at time
t is defined as XiðtÞ ¼ f�x 2 Rdjðt; �xÞ 2 E ig. The space–time domain boundary for fluid i, @Ei is composed of the initial and final
flow domains Xi(t0) and Xi(T), the interface S and the space boundaries Qi ¼ fx 2 @Eijt0 < t < Tg. The two-fluid space–time
flow domain is defined as E ¼ [iEi, the two-fluid (space) flow domain at time t as X(t) = [i X

i(t) and the two-fluid space–time
Fig. 1. An example two-fluid flow problem in space–time. Here Ei and Xi(t) denote the space–time and space flow domains for fluids i = 1, 2; and, S denotes
the interface between the two fluids in space–time.

792 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
domain boundary as @E ¼ [i@Ei. Let wi denote a vector of Nw flow variables for fluid i. The bulk fluid dynamics for fluid i are
assumed to be given as a system of conservation laws:
@wi

@t
þ �r � FiðwiÞ ¼ 0; ð1Þ
where �r ¼ ð@=@x1; . . . ; @=@xdÞ denotes the spatial gradient operator and FiðwiÞ ¼ Fi
1; . . . ; Fi

d

� �
the spatial flux tensor for fluid i

with Fi
j the jth flux vector and j = 1, . . . ,d. Reformulated in space–time (1) becomes:
r � F iðwiÞ ¼ 0; with

F iðwiÞ ¼ ðwi; FiðwiÞÞ; ð2Þ
andr ¼ ð@=@t; �rÞ the space–time gradient operator and F iðwiÞ the space–time flux tensor. The flow variables are subject to
initial conditions:
wið0; �xÞ ¼ wi
0ð�xÞ; ð3Þ
boundary conditions:
wiðt; �xÞ ¼ Bi
Bðwi;wi

bÞ on Qi=S ð4Þ
with wi
b the prescribed boundary data at Qi, and interface conditions:
wiðt; �xÞ ¼ Bi
Sðw1;w2Þ on S: ð5Þ
Since the actual flow variables, fluxes and initial, boundary and interface conditions are problem specific they shall be pro-
vided when the test cases are discussed.

2.2. Level set equation

To distinguish between the two fluids a level set function w(x) is used:
wðt; �xÞ ¼
< 0 in Fluid 1;
> 0 in Fluid 2;
¼ 0 at the interface:

8><>: ð6Þ
Initially, the level set function is defined as the minimum signed distance to the interface:
wðt; �xÞ ¼ a inf
8�xS2SðtÞ

k�x� �xSk; ð7Þ
where a = �1 in Fluid 1 and a = +1 in Fluid 2, �xS denotes a point at the interface S(t) and k�k is the Euclidian distance. The
evolution of the level set is determined by an advection equation:
@w
@t
þ �a � �rw ¼ 0; ð8Þ
where �a ¼ ða1; . . . ; adÞ is a vector containing the level set velocity, which will be taken equal to the flow velocity. The level set
function is subject to initial conditions:
wð0; �xÞ ¼ w0ð�xÞ; for �x 2 Xðt0Þ: ð9Þ
At the domain boundary the level set is subject to solid wall boundary conditions:
�aðt; �xÞ � �n ¼ 0; for ðt; �xÞ 2 Q; ð10Þ
where �n denotes the space outward unit normal vector at the domain boundary.

3. Meshes

3.1. Two-fluid mesh

To simplify computations, the two-fluid domain is subdivided into a number of space–time slabs on which the equations
are solved consecutively. Interval (t0,T) is subdivided into Nt intervals In = (tn, tn+1), with t0 < t1 < � � � < tNt ¼ T and based on
these intervals domains Ei are subdivided into space–time slabs I i

n ¼ fx 2 E
ijt 2 Ing. For every space–time slab I i

n a tessel-
lation T i;n

h of non-overlapping space–time elements Ki;n
j � Rdþ1 is defined:
T i;n
h ¼ Ki;n

j � Rdþ1
[Ni

h

j¼1

Ki;n
j

������ ¼ I i
n and Ki;n

j

\
Ki;n

j0
¼ ; if j – j0; 1 6 j; j0 6 Ni;n

h

8<:
9=; ð11Þ

Fig. 2. Two-fluid mesh.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 793
with Ni;n
h the number of space–time elements in the space–time slab I i

n for fluid i and where Ki;n
j ¼ K

i;n
j [@K

i;n
j denotes the

closure of the space–time element. The tessellations T i;n
h ; i ¼ 1;2 will be referred to as the two-fluid or refined mesh T n

h

(see Fig. 2), since they will be constructed from a background mesh by performing local mesh refinement. The tessellations
T i;n

h define the numerical interface Si;n
h as a collection of finite element faces. The numerical interface is assumed to be geo-

metrically identical in both tessellations, S1;n
h ¼ S

2;n
h . Let Ci;n ¼ Ci;n

I [Ci;n
B [Cn

S denote the set of all fluid i faces Si;n
m , with Ci;n

I the
set of internal faces, Ci;n

B the set of boundary faces, and Cn
S the set of interfaces. Every internal face connects to exactly two

elements in T i;n
h , denoted as the left element Kl and the right element Kr . Every boundary face connects to one element in

T i;n
h , denoted as the element Kl. Every interface connects to one element from T 1;n

h and also to one element from T 2;n
h .

The finite element space Bk
hðT

i;n
h Þ associated with the tessellation T i;n

h is defined as:
Bk
h T

i;n
h

� �
¼ w 2 L2 Ei

h

� �
: wjK � GK 2 PkðbKÞ; 8K 2 T i;n

h

n o
ð12Þ
with Ei
h the discrete flow domain, L2 E i

h

� �
the space of square integrable functions on Ei

h, and PkðbKÞ the space of polynomials
of degree at most k in the reference element bK. The mapping GKi;n

j
relates every element Ki;n

j to a reference element bK � Rdþ1:
GKi;n
j

: bK ! Ki;n
j : n#x ¼

XNi;n
F;j

k¼1

xkðKi;n
j ÞvkðnÞ ð13Þ
with Ni;n
F;j the number of vertices and xkðKi;n

j Þ the coordinates of the vertices of space–time element Ki;n
j . The finite element

shape functions vk(n) are defined on the reference element bK, with n = (n0, . . . ,nd) the coordinates in the reference element.
Given a set of basis functions /̂m defined on the reference element, the basis functions /m : Ki;n

j ! R are defined on the
space–time elements Ki;n

j 2 T
i;n
h by means of the mapping GKi;n

j
:

/m ¼ /̂m � G�1
Ki;n

j
: ð14Þ
On the two-fluid mesh the approximated flow variables are defined as:
wi
hðt; �xÞjKi;n

j
¼
X

m

cWi
mðK

i;n
j Þ/mðt; �xÞ ð15Þ
with cWi
m the expansion coefficients of fluid i. Each element in the two-fluid mesh contains a single fluid. Therefore, in every

element one set of flow variables is defined. Because the basis functions are defined locally in every element the space–time
flow solution is discontinuous at the element faces.

3.2. Background mesh

In the construction of the two-fluid mesh T n
h it was assumed that every element contains exactly one fluid or equivalently

that the interface is represented by a set of finite element faces. In order to define a mesh which satisfies this requirement, a
level set function wh is defined on a space–time background mesh T n

b .
For every space–time slab In a tessellation T n

b of space–time elements Kn
b;~j � Rdþ1 is defined:
T n
b ¼ Kn

b;~j � Rdþ1
[Nb

~j¼1

Kn
b;~j

������ ¼ In and Kn
b;~j

\
Kn

b;~j0 ¼ ; if ~j – ~j0; 1 6 ~j; ~j0 6 Nb

8<:
9=; ð16Þ

794 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
with Nb the number of space–time elements. The tessellation T n
b will be referred to as the background mesh. In two and three

space–time dimensions the background mesh is composed of square and cube shaped elements, respectively. The finite ele-
ment space, mappings and basis functions are identical to those defined for the refined mesh in Section 3.1 except when
dealing with the background mesh these will be denoted using a subscript b. On the background mesh a discontinuous Galer-
kin approximation of the level set is defined as:
whðt; �xÞjKn
b;~j
¼
X

m

bWmðKn
b;~jÞ/mðt; �xÞ; ð17Þ
with bWm the level set expansion coefficients. A discontinuous Galerkin discretization is used because the level set is advected
with the flow velocity and will develop discontinuities in the vicinity of shock waves. In addition, a discontinuous Galerkin
approximation of the level set velocity is defined as (later the flow velocity projected on the background mesh):
�ahðt; �xÞjKn
b;~j
¼
X

m

bAmðKn
b;~jÞ/mðt; �xÞ: ð18Þ
3.3. Mesh refinement

After solving the level set equation the interface shape and position are approximately known from the 0-level set. In or-
der to define a mesh for two-fluid flow computations, the background mesh is refined by means of cut-cell mesh refinement.
In the refined mesh the interface is represented by a set of faces on which the level set value is approximately zero.

The discontinuous nature of the level set approximation is not desirable for the mesh refinement, since it can result in
hanging nodes. Hence the level set is smoothed before performing the mesh refinement. Assuming computations have
reached time slab In the level set approximation wh is smoothed by first looping over all elements in In and storing the mul-
tiplicity and the sum of the values of wh in each vertex. For every vertex in In the continuous level set value wc

h is calculated
by dividing the sum of the wh values by the vertex multiplicity. In every background element in In, wh is then reinitialized
using the wc

h values in the element vertices. To ensure continuity of the mesh only the values of the level set in the back-
ground elements belonging to the previous time slab In�1 are used at the faces between the previous and the current time
slab.

The mesh refinement algorithm is defined in Algorithm 1. The algorithm consists of a global element refinement step, in
which all the elements of the background mesh are refined consecutively according to a set of refinement rules, followed by a
face generation step to create the connectivity between the refined elements. The refinement rules define how a single ele-
ment will be refined given an intersection with a 0-level set. The face generation is straightforward and will not be discussed.

Algorithm 1. Mesh refinement algorithm

FOR every element Kn
b;~j

in T n
b DO

Calculate intersection of 0-level set wc = 0 with Kn
b;~j

Select refinement rule
Create and store interface physical nodes xI

FOR all child elements ĵ defined by the refinement rule DO

Create Ki;n
h;̂j

and store in T i;n
h

END DO
END DO

Generate faces for T i;n
h

FOR every element Ki;n
h;j in T i;n

h

Initialize data on Ki;n
h;j

END DO
Given a smoothed level set, the element refinement is executed separately for each background element. For a given back-
ground element, it is first checked if the element contains more than one fluid by evaluating the level set at each vertex of the
element. If the level set has the same sign in every vertex, the element contains only one fluid and is copied directly to the
refined mesh T n

h. Alternatively, the type of cut is determined from the level set signs. Depending on the cut type, the element
is refined, based on a predefined element refinement rule for that type, see Sections 3.4 and 3.5, and the cut coordinates. The
resulting elements are stored in T n

h. The element refinement rules have been designed such that for two neighboring ele-
ments the shared face is refined identically at both sides. Hence, no hanging nodes will occur in the refined mesh. The inter-
face cut coordinates xI for an edge cut by the interface are calculated as:
xI ¼
xAwhðxBÞ � xBwhðxAÞ

whðxAÞ � whðxBÞ
; ð19Þ

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 795
where xA and xB denote the coordinates of the edge vertices. For simplicity it is assumed that the level set is non-zero and can
only be positive or negative in the vertices.

Because the refinement type is only based on the level set signs in the background element vertices, in cases where more
than one interface intersects an element an ambiguity will occur where exactly the interface lies and the refinement rule will
give rise to elements for which the fluid type is ambiguous. However, the fluid types of these elements can easily be found by
computing the level set signs in the element midpoints.

The mesh refinement algorithm allows for freedom in choosing the element refinement rules. However, the refined mesh
should have full connectivity to avoid difficulties with face integration. Element refinement rules have been developed for
two and three dimensions, similar to [20], and these will be discussed next for a set of base types. In the implementation
each cut is linked to one of these base types by means of the rotational and translational symmetries of the background ele-
ment for which algorithmic details are available in [54].
3.4. 2D refinement

In 2D the background mesh consists of square elements. The classification of the 2D cuts is based on the values of the level
set in the four vertices of the square. Each cut type is defined as a series of four signs corresponding to the level set signs in
the four vertices. For example one type is defined by ��++. Switching to a binary representation with � and + correspond-
ing to 0 and 1, respectively, we can assign the number 0011 = 3. Since a square has four vertices, there are 24 = 16 possibil-
ities. In 2D three base types have been defined as given in Table 1. In Fig. 3 (top) the signs of the level set in each vertex for
every type are shown. Level set configuration 2 allows for two possible linear interface cuts both of which are handled by the
element refinement rule. The element refinements for the 2D base types are shown in Fig. 3 (bottom) and defined in Table 2.
3.5. 3D refinement

In 3D the background mesh consists of cubical elements. Like in the 2D refinement, the 3D types are classified based on
the values of the level set in the vertices. Thirteen configurations were identified, and these are given in Table 3. In Fig. 4 the
signs of the level set in each vertex for every base type are shown. It should be noted that level set configurations 6–12 allow
for multiple interface cuts. This ambiguity is solved by making sure that for each level set configuration the element refine-
ment rule is such that also multiple element cuts can be handled. The corresponding interfaces are shown in Fig. 5. In order
to define the element refinement of the 13 base types, first a surface refinement is defined, which is based on the 2D refine-
ments illustrated in Fig. 3. Element refinements have been manually devised based on the surface refinements. The element
Table 1
Binary codes of the 2D base types. Each code represents a
combination of level set signs for each of the 4 background
element vertices, where a negative (positive) level set sign is
represented by a 0 (1).

Index Binary code Number

0 0111 7
1 0011 3
2 0110 6

Fig. 3. The vertex level set signs (top) and the corresponding element refinements (bottom) for the 2D base types.

Table 2
2D base type element refinements.

Type index Child index Child LNI Fluid type

0 0 {0,4,5} 0
1 {4,1,3} 1
2 {5,3,2} 1
3 {5,4,3} 1

1 0 {0,1,5,6} 0
1 {5,6,2,3} 1

2 0 {0,4,5} 0
1 {4,1,6} 1
2 {6,3,7} 1
3 {7,2,5} 0
4 {5,4,7,6} 0 or 1

Table 3
Binary codes of the 3D base types. Each code represents a combination of level set signs for each of the 8 background element vertices,
where a negative (positive) level set sign is represented by a 0 (1).

Index Binary code Number Index Binary code Number

0 00100000 32 7 00100100 36
1 00100010 34 8 01100100 100
2 10100010 162 9 10100101 165
3 10101010 170 10 00101101 45
4 10110010 178 11 00101001 41
5 10100011 163 12 01101001 105
6 00101000 40

796 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
refinements for the 13 base types are given in Tables 4 and 5. In some of the refinements an additional node is used, which is
located at the interface center and has local node index (LNI) 20. Due to the high complexity the 3D element refinements are
not illustrated [54].

3.6. Merging

The occurrence of small elements in the refined mesh tends to cause numerical stability and performance problems. To
solve these problems an element merging procedure was developed.

Let Ki;n
k ; k ¼ 0; . . . ;Nĵ denote a collection of elements which need be merged, determined by means of a merging strategy

to be discussed later. The merged element Ki;n
m;̂j

is defined as:
Ki;n
m;̂j
¼
[Nĵ

k¼0

Ki;n
k : ð20Þ
For each merged element Ki;n
m;̂j

the minimum and maximum bounding points xmin
ĵ

and xmax
ĵ

are defined componentwise as:
xmin
ĵ;l
¼ min
8x2Ki;n

m;̂j

xl; xmax
ĵ;l
¼ max
8x2Ki;n

m;̂j

xl; l ¼ 0; . . . ;d; ð21Þ
with d the space dimension. Let xmin
~j

and xmax
~j

denote the minimum and maximum bounding points of background element
Kn

b;~j. It is assumed that all background mesh elements are of equal size and shape; hence, xmax
~j
� xmin

~j
¼ hb;~j ¼ hb ¼ constant.

For each merged element the minimum and maximum lengths relative to the background element are defined as:
�min
ĵ
¼ min

l¼0;...;d

xmax
ĵ;l
� xmin

ĵ;l

hb;l
; �max

ĵ
¼ min

l¼0;...;d

xmax
ĵ;l
� xmin

ĵ;l

hb;l
: ð22Þ
In addition two predefined parameters, �MIN = 0.9 and �MAX = 1.9, are introduced. The merging strategy is defined for each
fluid i individually as follows:

� Step 1: For each background element Kn
b;~j retrieve the collection of all child elements that contain fluid i. For this collection

of elements compute �min and �max and store these values on the background element. If the background element does not
contain fluid i elements it is unavailable for merging and �min = �max = 0.0. If �min < �MIN the collection defines a small or

Fig. 4. The vertex level set signs for the 3D base types.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 797
thin merged element and requires merging involving one or more neighboring background elements. If �min > �MIN the col-
lection itself defines a valid merged element. Step 1 is illustrated in Fig. 6.
� Step 2: Using a loop over the faces in the background mesh, it is determined for each background element Kn

b;~j which
neighboring elements Kn

b;k; k ¼ 0; . . . ;N~j are usable for merging, which is the case if the neighboring element contains
a collection of fluid i elements with �min > �MIN. Step 2 is illustrated in Fig. 7.
� Step 3: The merged elements are determined in three steps. Each step corresponds to a different type of

merging, and these are illustrated in Fig. 8. After a background element has been used in merging it is marked as
UNAVAILABLE.
– Type 1: For each available individual background element Kn

b;~j check if �min > �MIN and if it has at least two available
neighboring elements for which �min < �MIN. If so, merge all refined elements Ki;n

j with the correct fluid type i contained
in these background elements.

– Type 2: For each available individual background element Kn
b;~j check if �min < �MIN. If so loop over all available neigh-

boring elements Kn
b;k; k ¼ 0; . . . ;N~j with N~j the number of available neighboring elements. For each combination of the

background element Kn
b;~j and a neighboring element Kn

b;k determine �min
k . Find the ~k for the combination which has the

largest size, �min
~k

> �min
k ; k ¼ 0; . . . ;N~j. Merge all refined elementsKi;n

j with the correct fluid type i contained in the back-
ground elements Kn

b;~j and Kn
b;~k.

– Type 3: For each available individual background element Kn
b;~j check if �min > �MIN. If so check if it contains more than

one element Ki;n
j with the correct fluid type i and if so merge these elements.

Fig. 5. The interface cuts for the 3D base types. For types 6–12 the level set configuration allows for alternative cuts not shown here, which are supported by
the element refinement rule for that type.

798 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
The merged elements tend to have complex shapes which makes it difficult to find suitable reference elements and basis
functions. To alleviate this problem a bounding box element is introduced [16], which is simple shaped and contains the
merged element. This merging procedure is illustrated for two dimensions in Fig. 9 and an example of a mesh with merged
elements in two dimensions is shown in Fig. 10.

Let Ki;n
M;̂j

denote the bounding box of the merging element Ki;n
m;̂j

. The finite element space, mappings and basis functions
used for the bounding box elements are identical to those defined for the refined mesh but will be denoted using a subscript
M. On the bounding box element the approximated flow variables are defined as:
wi
hðt; �xÞjKi;n

M;̂j

¼
X

m

cWi
m K

i;n
M;̂j

� �
/mðt; �xÞ ð23Þ
with cWi
m the flow coefficients of fluid i. Each merged element contains exactly one fluid. For all elements Ki;n

k � K
i;n
m;̂j

the flow
evaluation is redefined as an evaluation in the bounding box element:
wi
hðxÞjKi;n

k
¼ wi

hðxÞjKi;n

M;̂j

: ð24Þ
Integration of a function f ðwi
hÞ over a merged element Ki;n

m;̂j
is performed by integrating over all the individual elements and

summing the contributions:

Table 4
Element refinements for 3D base types.

Type index Child index Child LNI Fluid type Type index Child index Child LNI Fluid type

0 0 {11,1,3,5,7} 0 10 {7,15,18,20} 1
1 {9,0,1,4,5} 0 11 {3,1,15,20} 0
2 {1,5,9,11} 0 12 {5,18,1,20} 0
3 {2,9,11,14} 1 13 {18,15,1,20} 0
4 {14,4,5,6,7} 0 14 {2,11,6,20} 1
5 {4,5,9,14} 0 15 {3,15,11,20} 0
6 {5,7,11,14} 0 16 {7,6,15,20} 1
7 {5,9,11,14} 0 17 {11,15,6,20} 1

1 0 {0,1,9,4,5,17} 0 18 {20,7,18,6,17} 1
1 {1,3,11,5,7,19} 0 19 {20,18,5,17,4} 0
2 {1,11,9,5,19,17} 0 6 0 {1,11,9,20} 0
3 {2,9,11,6,17,19} 1 1 {1,3,11,20} 0

2 0 {20,8,1,11,3} 0 2 {20,9,14,12,17} 0 or 1
1 {20,0,8,2,11} 1 3 {5,1,16,20} 0
2 {4,12,17,20} 0 4 {12,16,1,20} 0
3 {12,0,2,20} 1 5 {20,5,7,1,3} 0
4 {6,17,2,20} 1 6 {3,7,11,20} 0
5 {12,2,17,20} 1 7 {14,11,7,20} 0
6 {12,8,0,20} 1 8 {5,16,7,20} 0
7 {8,5,1,20} 0 9 {16,17,7,20} 0
8 {12,5,8,20} 0 10 {9,14,11,2} 1
9 {4,5,12,20} 0 11 {9,11,14,20} 0 or 1

10 {20,1,5,3,7} 0 12 {12,16,17,4} 1
11 {20,2,11,6,19} 1 13 {12,17,16,20} 0 or 1
12 {20,11,3,19,7} 0 14 {7,14,17,6} 0
13 {17,5,4,20} 0 15 {7,17,14,20} 0
14 {19,7,5,20} 0 16 {1,12,9,0} 0
15 {6,19,17,20} 1 17 {1,9,12,20} 0
16 {17,19,5,20} 0 7 0 {0,1,9,20} 0

3 0 {0,8,2,11,4,16,6,19} 1 1 {1,11,9,20} 0
1 {8,1,11,3,16,5,19,7} 0 2 {1,3,11,20} 0

4 0 {0,8,2,12} 1 3 {0,9,4,20} 0
1 {1,8,5,10} 0 4 {9,14,4,20} 0
2 {2,10,3,15} 1 5 {14,6,4,20} 0
3 {2,6,17,19} 1 6 {0,1,13,20} 0
4 {2,19,15,8,10} 1 7 {13,16,0,20} 0
5 {2,17,19,12,8} 1 8 {4,0,16,20} 0
6 {4,5,12,17} 0 9 {1,13,3,20} 0
7 {5,7,15,19} 0 10 {18,3,13,20} 0
8 {5,8,10,19,15} 0 11 {7,3,18,20} 0
9 {5,12,8,17,19} 0 12 {3,11,7,20} 0

5 0 {20,0,8,2,11} 1 13 {6,7,14,20} 0
1 {20,8,1,11} 0 14 {14,7,11,20} 0
2 {0,2,12,20} 1 15 {4,6,16,20} 0
3 {6,17,2,20} 1 16 {16,6,18,20} 0
4 {4,12,17,20} 0 17 {18,6,7,20} 0
5 {12,2,17,20} 1 18 {9,11,14,20} 0
6 {0,12,8,20} 1 19 {9,14,11,2} 0 or 1
7 {1,8,5,20} 0 20 {13,16,18,20} 1
8 {4,5,12,20} 0 21 {13,18,16,5} 0 or 1
9 {8,12,5,20} 0

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 799
Z
Ki;n

m;̂j

f ðwi
hÞdK ¼

XNĵ

k¼0

Z
Ki;n

k

f ðwi
hÞdK: ð25Þ
Hence, there are no hanging nodes.
4. Space–time discontinuous Galerkin discretization

4.1. Flow discretization

The discontinuous Galerkin finite element approximation for two-fluid flows on the refined mesh T i;n
h is found by multi-

plying (2) with an arbitrary test function v 2 Bk
hðT

i;n
h Þ and integrating over all elements in the domains E1 and E2; further

application of Gauss’ theorem results in:

Table 5
Element refinements for 3D base types (continued).

Type index Child index Child LNI Fluid type Type index Child index Child LNI Fluid type

8 0 {1,10,8,5,18,16} 1 6 {0,12,1,20} 0
1 {14,16,18,8,10} 0 or 1 7 {12,16,1,20} 0
2 {16,18,14,6} 0 8 {16,5,1,20} 0
3 {14,8,10,9,11} 0 or 1 9 {5,18,1,20} 0
4 {4,16,14,6} 0 10 {18,15,1,20} 0
5 {4,14,16,9} 0 11 {15,3,1,20} 0
6 {14,8,16,9} 0 or 1 12 {3,15,11,20} 0
7 {9,4,16,0,8} 0 13 {6,14,19,20} 0
8 {18,7,14,6} 0 14 {20,11,15,14,19} 0 or 1
9 {18,14,7,11} 0 15 {5,16,18,20} 0

10 {14,10,11,18} 0 or 1 16 {6,19,17,20} 0
11 {11,18,7,10,3} 0 17 {20,17,19,16,18} 0 or 1
12 {2,9,11,14} 1 18 {9,11,14,20} 0 or 1

9 0 {2,11,14,0,8,12} 1 19 {12,17,16,20} 0 or 1
1 {3,15,11,1,13,8} 0 20 {18,19,15,20} 0 or 1
2 {7,19,15,5,16,13} 1 21 {9,14,11,2} 1
3 {6,14,19,4,12,16} 0 22 {12,16,17,4} 1
4 {11,15,14,19,8,13,12,16} 0 or 1 23 {18,15,19,7} 1

10 0 {0,1,9,20} 0 12 0 {0,8,9,20} 0
1 {9,1,11,20} 0 1 {3,11,10,20} 0
2 {3,11,1,20} 0 2 {20,8,10,9,11} 0 or 1
3 {0,9,12,20} 0 3 {0,9,12,20} 0
4 {6,17,14,20} 0 4 {6,17,14,20} 0
5 {20,12,9,17,14} 0 or 1 5 {20,12,9,17,14} 0 or 1
6 {20,12,13,0} 0 6 {0,12,8,20} 0
7 {20,13,15,1,3} 0 7 {5,13,16,20} 0
8 {3,15,11,20} 0 8 {20,16,13,12,8} 0 or 1
9 {6,14,19,20} 0 9 {3,10,15,20} 0

10 {20,11,15,14,19} 0 or 1 10 {5,18,13,20} 0
11 {6,17,19,20} 0 11 {20,18,15,13,10} 0 or 1
12 {9,11,14,20} 0 or 1 12 {3,15,11,20} 0
13 {9,14,11,2} 1 13 {6,14,19,20} 0
14 {12,17,13,20} 0 or 1 14 {20,11,15,14,19} 0 or 1
15 {17,19,13,20} 0 or 1 15 {6,19,17,20} 0
16 {19,15,13,20} 0 or 1 16 {5,16,18,20} 0
17 {19,17,13,5} 1 17 {20,17,19,16,18} 0 or 1
18 {17,4,5,12,13} 1 18 {9,11,14,20} 0 or 1
19 {19,5,7,13,15} 1 19 {12,17,16,20} 0 or 1

11 0 {0,1,9,20} 0 20 {8,13,10,20} 0 or 1
1 {9,1,11,20} 0 21 {18,19,15,20} 0 or 1
2 {3,11,1,20} 0 22 {9,14,11,2} 1
3 {0,9,12,20} 0 23 {12,16,17,4} 1
4 {6,17,14,20} 0 24 {8,10,13,1} 1
5 {20,12,9,17,14} 0 or 1 25 {18,15,19,7} 1

ε

 =
 ε

 =

m
in

m

ax
1.

0

ε

 =
m

ax
1.

0

εminε = ε =min max 1.0 εmax

εm
in

Fig. 6. Illustration of the first step in the merging strategy. The dotted lines represent the background element and the solid lines represent the collection of
child elements of one of the fluid types. The collection on the left has an �min > �MIN and hence is considered a valid merged element in itself. The collections
in the middle and on the right are have a small �min and require merging with a neighboring element.

800 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
�
X
Ki;n

j
2T i;n

h

Z
Ki;n

j

rv � F iðwiÞdKþ
X
Si;n

m 2C
i;n
I

Z
Si;n

m

F i;lðwi;lÞ � nl
K vl þ F i;rðwi;rÞ � nr

Kv
r dS þ

X
Si;n

m 2C
i;n
B

Z
Si;n

m

F i;lðwi;lÞ � nl
K vl dS

þ
X
Si;n

m 2C
i;n
S

Z
Si;n

m

F i;lðwi;lÞ � nl
K vl dS ¼ 0; ð26Þ
where F i;K and wi,K are the limiting trace values at the face S of element Ki;K , K = l, r.

Fig. 7. Illustration of the second step in the merging strategy for fluid type 0 and background element 4. The background elements are shown in dotted lines
and the 0-level set is shown as a dashed line. Background element 4 has an �min < �MIN and hence requires merging with one or more of the neighboring
elements 1, 3, 5 and 7. Elements 1 and 3 both contain enough fluid 0 (�min > �MIN) and hence are valid candidates for merging, while element 5 and element 7
do not contain enough fluid 0 (�min < �MIN) and hence are invalid candidates for merging.

Fig. 8. The three types of merged elements. The solid lines represent the refined elements that will be combined into a single merged element. The dotted
lines represent the background mesh and the dashed lines represent the interface at positions not occupied by the merged element.

Fig. 9. A collection of elements, their merged element and its bounding box element, in physical space.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 801
Let the trace vK
h of a function vh on a face S with respect to the element KK ; K ¼ l; r be defined as vK

h ¼ lim�#0vhðx� �nK
KÞ,

where nK
K ¼ ðn0; . . . ; ndÞ is the space–time outward unit normal vector at the face S with respect to element KK . Left and right

normal vectors of a face are related as nl
K ¼ �nr

K. The element local trace v�h of a function vh on a face S is defined as v�h ¼
lim�#0vhðx� �nKÞ. The average {{F}} of a scalar or vector function F on the face Sm 2 CI is defined as ffFgg :¼ 1

2 ðF
l þ FrÞ, where

l and r denote the traces at elements Kl and Kr , respectively. The jump [[F]] of a scalar function F on the face Sm 2 CI is de-
fined as [[F]]: = Flnl + Frnr and the jump [[G]] of a vector function G on the face Sm 2 CI is defined as [[G]] :¼ Gl � nl + Gr � nr. The
jump operator satisfies on CI the product rule [[FG]] = {{F}}[[G]] + [[F]]{{G}}.

By using a conservative flux, F lðwlÞ � nl
K ¼ �F rðwrÞ � nr

K; hence, ½½FðwÞ�� ¼ 0, the integration over the internal faces is
rewritten as:
X

Si;n
m 2C

i;n
I

Z
Si;n

m

F i;lðwi;lÞ � nl
K vl þ F i;rðwi;rÞ � nr

K vrdS ¼
X
Si;n

m 2C
i;n
I

Z
Si;n

m

ffF iðwiÞgg � ½½v��dS: ð27Þ

Fig. 10. Refined mesh showing the merged elements as colored collections of child elements.

802 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
So far the formulation (26) has been strictly local, in the sense that neighboring elements and also the initial, boundary and
interface conditions are not incorporated. In order to do this, numerical fluxes are introduced. At internal faces the flux in
(27) is replaced by a numerical fluxHi

Iðwi;l;wi;r ;nKÞ, which is consistent:Hðw;w;nKÞ ¼ FðwÞ � nl
K, and conservative. Likewise

at the boundary faces the flux is replaced by a numerical flux Hi
Bðwi;l;wi;r

b ;nKÞ, which is also consistent. At the interface the
flux is replaced by a numerical interface flux Hi

Sðwi;l;wi;r
s ;nKÞ, with wi;r

s the ghost state at the interface for fluid i. Using the
fact that for a conservative flux ffHðwl;wr ;nKÞgg ¼ Hðwl;wr ;nKÞ and replacing the trial and test functions by their approx-
imations in the finite element space Bk

hðT
i;n
h Þ, the weak formulation is defined as:

Find wi
h 2 Bk

hðT
i;n
h Þ such that for all vh 2 Bk

hðT
i;n
h Þ:
�
X
Ki;n

j
2T i;n

h

Z
Ki;n

j

rvh � F iðwi
hÞdKþ

X
Si;n

m 2C
i;n
I

Z
Si;n

m

Hi
Iðw

i;l
h ;w

i;r
h ;nKÞðv

l
h � vr

hÞdS þ
X
Si;n

m 2C
i;n
B

Z
Si;n

m

Hi
Bðw

i;l
h ;w

i;r
b ;nKÞv

l
h dS

þ
X
Si;n

m 2C
i;n
S

Z
Si;n

m

Hi
Sðw

i;l
h ;w

i;r
s ;nKÞvl

h dS ¼ 0; i ¼ 1;2; n ¼ 0; . . . ;Nt � 1: ð28Þ
Introduction of the polynomial expansion (15) in (28) and using the basis functions /l for the test functions gives the fol-
lowing discretization in each space–time element Ki;n

j :
Li;n
kl ðcWn;cWn�1Þ ¼ 0; i ¼ 1;2; n ¼ 0; . . . ;Nt � 1;

k ¼ 0; . . . ;Nw � 1; l ¼ 0; . . . ;Ni;n
B;j � 1 ð29Þ
with Nt the number of time slabs, Nw the number of flow variables and Ni;n
B;j the number of basis functions. The nonlinear oper-

ator Li;n
kl is defined as:
Li;n
kl ¼ �

Z
Ki;n

j

ðr/lÞj � F i
kjðwi

hÞdKþ
X

Si;n
m 2@K

i;n
j
\Ci

I

Z
Si;n

m

HI;kðwi;�
h ;wi;þ

h ;nKÞ/l dS þ
X

Si;n
m 2@K

i;n
j
\Ci

B

Z
Si;n

m

HB;kðwi;�
h ;wi;þ

b ;nKÞ/l dS

þ
X

Si;n
m 2@K

i;n
j
\Ci

S

Z
Si;n

m

HS;kðwi;�
h ;wi;þ

s ;nKÞ/l dS: ð30Þ
In Eq. (29) the dependency of Li;n
kl on cWn�1 stems from the integrals over the internal faces connecting the current and

previous time slabs. The numerical fluxes are problem dependent and will be discussed later for each specific test problem.

4.2. Level set discretization

The level set equation can be characterized as a hyperbolic partial differential equation containing an intrinsic noncon-
servative product, meaning that it cannot be transformed into divergence form. This causes problems when the level set be-
comes discontinuous, because the weak solution in the classical sense of distributions does not exist. Thus, no classical
Rankine–Hugoniot shock conditions can be defined. Although the level set is initially smooth, it can become discontinuous
over time due to discontinuities in the global flow velocity advecting the level set. In order to find a discontinuous Galerkin
discretization for the level set equation, valid even when level set solution and velocity become discontinuous, the theory
presented in [45] is applied.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 803
The nonconservative level set discretization is defined as:
X
Kn

b;~j
2T n

b

Z
Kn

b;~j

� @/l

@t
wh þ /l�ah � �rwh dKþ

X
Kn

b;~j
2T n

b

Z
Kn

b;~j
ðtnþ1Þ

/l
lw

l
h dS �

Z
Kn

b;~j
ðtnÞ

/l
lw

r
h dS

0@ 1A
þ
X
Sn

b; ~m2C
n
b

Z
Sn

b; ~m

/l
l � /r

l

� �bPnc dS �
X
Sn

b; ~m2C
n
b

Z
Sn

b; ~m

ff/lgg½½wh��ff�ahggdS ¼ 0; ð31Þ
with
bPnc ¼
þ 1

2 ½½wh��ff�ahgg if SL > 0;

þ 1
2 SR w	h � wR

h

� �
þ SL w	h � wL

h

� �� �
if SL < 0 < SR;

� 1
2 ½½wh��ff�ahgg if SR < 0;

8><>: ð32Þ
where SL ¼ min �aL
h � �nL

K ; �a
R
h � �nL

K

� �
and SR ¼max �aL

h � �nL
K ; �a

R
h � �nL

K

� �
the minimum and maximum wavespeeds and where the star

state level set value is defined as:
w	h ¼
wL if ðSL þ SRÞ=2 > 0;
wR if ðSL þ SRÞ=2 < 0:

	
ð33Þ
At (solid wall) boundary faces the level set boundary conditions (10) are enforced by specifying the right state as:
wrðt; �xÞ ¼ wlðt; �xÞ;
�arðt; �xÞ ¼ �alðt; �xÞ � 2ð�alðt; �xÞ � nKÞnK; for ðt; �xÞ 2 Q:

ð34Þ
4.3. Pseudo-time integration

By augmenting the flow equations with a pseudo-time derivative, the discretized equations (29) are extended into pseu-
do-time, resulting in:
Mi;n
ml

@cW i;n
km

@s
þ Li;n

kl
cWn;cWn�1
� �

¼ 0; ð35Þ
using the summation convention on repeated indices, and with
Mi;n
ml ¼

Z
Ki;n

j

/l/m dK ð36Þ
the mass matrix. To solve (35) a five stage semi-implicit Runge–Kutta iterative scheme is used [29,65] as defined in Algo-
rithm 2. Starting from a guess for the initial solution, the solution is iterated in pseudo-time until a steady state is reached,
which is the real time solution of the space–time discretization.

Algorithm 2. Pseudo-time integration method for solving the non-linear algebraic equations in the space–time
discretization

1. Initialize first Runge–Kutta stage: Wi;ð0Þ ¼ cWi;n.
2. Calculate Wi;ðsÞ; s ¼ 1; � � � ;5:
ð1þ askÞWi;ðsÞ ¼Wi;ð0Þ þ ask Wi;ðs�1Þ � DtðMi;nÞ�1L Wi;ðs�1Þ;Wi;n�1� �� �

3. Update solution:cWi;n ¼Wi;ð5Þ.

Here k = Ds/Dt denotes the ratio of pseudo-time and physical time step, and the coefficients a are defined as:
s

a1 = 0.0791451, a2 = 0.163551, a3 = 0.283663, a4 = 0.5, a5 = 1.0. The physical time step Dt is defined globally by using a Cou-
rant–Friedrichs–Levy (CFL) condition:
Dt ¼ CFLDth=jSmaxj; ð37Þ
with CFLDt the physical CFL number, h the inradius of the space projection of the element and jSmaxj the maximum absolute
value of the wave speed on the faces. The five stage semi-implicit Runge–Kutta iterative scheme is also used for solving the
discretized level set equation.

5. Two-fluid algorithm

The two-fluid algorithm is defined in Algorithm 3. The operations at the initialization, in the inner iteration and at the
time slab update are illustrated for two space–time dimensions in Figs. 11–13, respectively.

Fig
nu
in
re

804 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
Algorithm 3. Computational steps in the two-fluid method. Lines 1–6 detail the initialization, lines 13–22 the inner
iteration and lines 8–12 time slab update. The initialization, inner iteration and time slab update are illustrated for
two space–time dimensions in Figs. 11–13

1. n = 0
2. Create background mesh T n�1

b

3. Initialize level set wn�1
h ðxÞ on T n�1

b

4. Initialize level set velocity �an�1
h ðxÞ on T n�1

b

5. Create refined mesh T i;n�1
h based on wn�1

h ¼ 0
6. Initialize flow field wi;n�1

h ðxÞ on T i;n�1
h

7. WHILE n < Nt DO
8. Create background mesh T n

b

9. Initialize level set wn
hðxÞ on T n

b as wn�1
h ðtn; �xÞ on T n�1

b (41)
10. Initialize level set velocity �an

hðxÞ on T n
b as �an�1

h ðtn; �xÞ on T n�1
b (42)

11. Create refined mesh T i;n
h;0 based on wn

h ¼ 0
12. Initialize flow field wi;n

h;0ðxÞ on T i;n
h;0 as wi;n�1

h;0 ðtn; �xÞ on T i;n�1
h (38)

13. k = 0
14. WHILE two-fluid mesh has not converged:jek � ek�1j > �IF DO
15. Solve wn

h on T n
b

16. Calculate level set interface error ek ¼ ð
P

Si;n
h
2Cn

S

R
Si;n

h
jwn

hj
2dSÞ1=2

17. Create refined mesh T i;n
h;k based on wn

h ¼ 0
18. Initialize flow field wi;n

h;kðxÞ on T i;n
h;k as wi;n�1

h ðtn; �xÞ on T i;n�1
h (38)

19. Solve wi;n
h;kðt; �xÞ on T i;n

h;k

20. Initialize level set velocity �an
hðxÞ on T n

b as ui;n
h;kðxÞ on T i;n

h (39)
21. k = k + 1
22. END DO
23. n = n + 1
24. END DO
. 11. At initialization, first the background mesh is created. Because the solution from the previous time step is required in the evaluation of the
merical flux at the time slab face, the background mesh is conveniently composed of a current (n) and a previous (n � 1) time slab (a). Next the level set is

itialized on the background mesh (b). Based on the 0-level set, the background mesh is refined to obtain the refined mesh (c). Finally, in all elements of the
fined mesh the flow variables are initialized (d). The initialization is performed on the current as well as a previous time slab.

Fig. 12. In the inner iteration, given level set and flow solutions on the background and refined meshes (a1, a2), first the level set is solved on T n
b (b). Based

on the 0-level set the background mesh is refined to obtain a new two-fluid mesh T n
h , on which the flow field is reinitialized and solved (c). Finally, the level

set velocity is reinitialized with the flow velocity.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 805
In the inner iteration and at the time slab update the flow approximation wi;n
h is reinitialized with the solution average

from the previous time slab:
wi;n
h ðt; �xÞ ¼ �wi;n�1

h ðtn; �xÞ: ð38Þ
When, for a fluid type, no solution exists in the previous time slab, the element is marked as such and is reinitialized at a later
stage by using the reinitialized solution from a neighboring element in the new timeslab. To make the flow reinitialization
compatible with the element merging it is preceded by a projection step, in which the solution in each merged element is
projected onto the refined elements of which it is composed. After solving the flow equations the level set velocity an

h is reini-
tialized as:
Z

Kn
b;~j

�an
hðxÞ/lðxÞdK ¼

Z
Kn

b;~j

un
h;kðxÞ/lðxÞdK: ð39Þ
In order to evaluate the flow velocity un
h;k on the background mesh, for every element Ki;n

j in the refined mesh T n
h , a child to

parent mapping HKi;n
j

is defined:
HKi;n
j
¼ G�1

Ki;n
j
� GKn

b;~j
; ð40Þ
where GKn
b;~j

and GKi;n
j

are the mappings from the reference element to the physical space of the background and the child ele-
ment, respectively. The mapping HKi;n

j
maps the element Ki;n

j to its parent element Kn
b;~j in the background mesh T n

b . The in-
verse mappings G�1

Kn
b;~j

always exist, since the background elements are by construction never degenerate. The child to parent
mapping is illustrated in Fig. 14. At the time slab update the level set approximation wn

h is reinitialized as:
wn
hðt; �xÞ ¼ wn�1

h ðtn; �xÞ ð41Þ
and the level set velocity approximation an
h is reinitialized as:
�an
hðt; �xÞ ¼ �an�1

h ðtn; �xÞ: ð42Þ

Fig. 13. When moving to the next time slab, given level set and flow solutions on the background and refined meshes (a1, a2), first a new background mesh
T n

b is created, on which a level set is initialized and solved (b). Based on the 0-level set, the background mesh is refined to obtain the two-fluid mesh T n
h , on

which the flow field is initialized (c).

Fig. 14. The child to parent mapping HKi;n
j

is composed of the mapping GKi;n
j

from the child reference element to child physical element and the inverse
mapping G�1

Kn
b;~j

from background physical element to the background reference element. The child physical element is connected to the background physical
element through the identity mapping Id.

806 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 807
6. Test cases

The method is applied to model problems in two and three space–time dimensions. The interface is assumed to be with-
out surface tension and therefore continuity of the normal velocity and pressure are imposed [14,51]. The simulations have
been performed using three dimensional space–time codes based on the hpGEM software framework for Discontinuous
Galerkin finite element methods [41]. More test cases are available in [54].

Let wi
hðtnþ1;xÞ denote the approximate flow solution, wi(tn+1,x) the exact flow solution and Xi

hðtnþ1Þ the spatial mesh for
fluid i at time t = tn+1. The L2 flow error at time t = tn+1 is defined as:
wi
hðtnþ1; �Þ �wiðtnþ1; �Þ

L2ðXi

hðtnþ1ÞÞ
¼

Z
Xi

hðtnþ1Þ
jwi

hðtnþ1; xÞ �wiðtnþ1; xÞj2 dx

 !1=2

: ð43Þ
The order of accuracy with respect to the norm k�k is defined as log(kfh � fk/kfh/2 � fk)/log(2), where fh and fh/2 denote
numerical solutions on embedded meshes Xn

h and Xn
h=2, with h the mesh width. It should be noted that the refined meshes

are often only approximately embedded, hence a small error is introduced in the orders of accuracy for the flow solutions.
Solutions will be plotted as discontinuous data without any postprocessing to give a clear illustration of the behavior of

the STDG numerical scheme in each individual element.

6.1. Isothermal magma–ideal gas shock tube

Considered is an isothermal magma–ideal gas shock tube problem. This test is motivated by the high speed geological
event analyzed in [7–9,69,70] and it features very high density and pressure ratio’s which cause strong oscillations around
the interface between the gas and magma with standard shock capturing schemes. The purpose of this test is to investigate
the performance of the method for a case where the interface moves with the flow velocity. To account for this, two solve
steps are used for the flow and level set equations in each time step. The contact wave is considered an interface and is cap-
tured using the two-fluid method.

For the ideal gas the one dimensional Euler equations for mass, momentum and energy are used, which are defined as
@q
@t
þ @ðquÞ

@x
¼ 0;

@ðquÞ
@t
þ @ðqu2 þ pÞ

@x
¼ 0;

@ðqEÞ
@t
þ @ðuðqEþ pÞÞ

@x
¼ 0;

ð44Þ
with q the density, u the fluid velocity, p the pressure and qE = qu2/2 + qe the total energy, with qe the internal energy. In
addition to these equations an equation of state (EOS) is required to account for the thermodynamic properties of the ideal
gas:
e ¼ p
qðc� 1Þ ; ð45Þ
where c = 1.4. The governing equations for an effectively compressible magma are the Euler equations for mass and momen-
tum. The magma consists of a mixture of molten rock and 2 wt.% (weight percentage) H2O. At high pressure, the H2O only has
a liquid form. When the pressure decreases water vapor is formed within the mixture due to decompression effects. In this
situation the magma effectively is a pseudo one-phase mixture. In explosive eruptions starting with a high pressure differ-
ence viscosity effects are negligible at leading order relative to the nonlinear inertial effects driven by the high bubble con-
tent. The total mass fraction n0 of H2O in the magma consists of a fraction n(p) which is exsolved in the magma as gas and a
fraction 1 � n(p) which is dissolved in the magma as liquid.

The mixture of magma and liquid H2O has a density r = 2500 kg/m3 and the water vapor has a density of qg. The total void
or bubble fraction of the mixture is given by a = n(p)q/qg. The density of the magma is defined as q = aqg + (1 � a)r. Using
the relation for a and the ideal gas law qg = p/(RT) gives:
q ¼ nðpÞRmT
p

þ 1� nðpÞ
r

� ��1

; ð46Þ
where Rm = 462 J/kg K is the mixtures gas constant. This relation is only valid when there are bubbles, i.e., n(p) > 0. The crit-
ical pressure pc is reached when there are no longer any bubbles in the mixture. This is the case when n(p = pc) = 0 which
gives pc = (4/9)
 108 Pa. The magma considered will be assumed to be compressible; hence, p < pc. For p P pc the following
relation is used:
q ¼ rþ c�2
m ðp� pcÞ; ð47Þ
with cm = 2000 m/s the speed of sound in bubble free magma. The mass fraction n(p) is assumed to satisfy Henry’s law, which
is valid when bubbles and melt are in equilibrium:

808 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
nðpÞ ¼ n0 � Shpb: ð48Þ
For basaltic high volatile magma, n0 = 0.02, b � 0.5, T = 1200 K and Sh = 3.0
 10�6 Pa�b. The magma is assumed to be isother-
mal at a temperature of 1200 K. For isothermal magma the density depends only on the pressure, q = q(p). The speed of
sound a is defined for isothermal magma as:
1=a2 � @q
@p

� �
T
¼ �q2 @ð1=qÞ

@p
¼ �q2 dnðpÞ

dp
RmT

p
þ 1

r

� �
� nðpÞRmT

p2

 �
: ð49Þ
The simulations are performed on a spatial domain [�5 m,5 m] from time t = 0 s to t = 0.0075 s. Initially the interface is lo-
cated at x = 0 m, with the magma on the left and the ideal gas on the right, and both fluids are in constant states:
ðq;u;pÞð0; xÞ ¼ ðqL;uL;pLÞ ¼ ð535:195 kg=m3; 0 m=s; 5
 106 PaÞ for x < 0 m;

ðqR;uR;pRÞ ¼ ð1:18902 kg=m3; 0 m=s; 1:0
 105 PaÞ for x > 0 m:

(
ð50Þ
At the boundaries solid wall conditions are imposed:
u � �n ¼ 0 m=s at x ¼ �5 m: ð51Þ
At the magma–gas interface continuity of the velocity and pressure is assumed. The exact solution is calculated by solving
the magma and ideal gas Riemann problem and consists of a left moving expansion wave with head and tail speeds of
SLH = �97.2861 m/s, SLT = 186.409 m/s respectively, a contact wave which is identified with the magma–air interface and
moves with speed SC = 286.329 m/s; and, a right moving shock wave with speed SR = 555.540 m/s. The left and right star
states are defined as: q	L ¼ 28:0517 kg=m3; q	R ¼ 2:45364 kg=m3; u	 ¼ 286:329 m=9m; p	 ¼ 2:89134
 105 Pa. The solution
structure is shown in Fig. 15.

Let w = (q,qu,qE) and F = (qu,qu2 + p,u(qE + p)) denote the conservative variables and flux vectors. The HLLC flux pro-
vides an accurate solution to the Riemann problem, which is an initial value problem for the Euler equations, where the ini-
tial condition consists of two constant states:
wðx;0Þ ¼
wL when x < 0;
wR when x > 0:

	
ð52Þ
The HLLC flux extended to space–time meshes [5,65] is defined as:
HHLLC ¼
1
2

FL þ FR � ðjSL � vj � jSM � vjÞw	L þ ðjSR � vj � jSM � vjÞw	R þ jSL � v jwL � jSR � vjwR � vðwL þwRÞ
� �

; ð53Þ
with v the interface velocity. It is assumed that the speeds are the same at both sides of the contact wave, so SM ¼ u	L ¼
u	R ¼ u	. From the Rankine–Hugoniot relations FðwKÞ � Fðw	KÞ ¼ SKðwK �w	KÞ with K = L or R for the left and the right waves,
respectively, the following relations are found for the star state variables:
q	K ¼ qK
SK � uK

SK � u	
;

q	K u	ðu	 � SKÞ ¼ ðpK � p	Þ þ qK uKðuK � SKÞ;
ð54Þ
and also an approximation for the speed SM = u* of the contact wave is obtained:
SM ¼
qRuRðSR � uRÞ � qLuLðSL � uLÞ þ pL � pR

qRðSR � uRÞ � qLðSL � uLÞ
: ð55Þ
The wave speeds SL and SR are estimated as:
Fig. 15. The solution structure of the Euler magma–ideal gas shock tube.

Fig. 16.
elemen

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 809
SL ¼minðuL � aL;uR � aRÞ; SR ¼ maxðuL þ aL; uR þ aRÞ: ð56Þ
By using the Rankine–Hugoniot relations of the left wave and substituting the left and right states and wave speeds, the val-
ues of w	L are calculated as:
w	L ¼
SL � uL

SL � SM
wL þ

1
SL � SM

0
p	 � pL

p	SM � pLuL

0B@
1CA; ð57Þ
and likewise for w	R by replacing L with R. By using the expression for q	K and u* in the Rankine–Hugoniot relation for the
momentum of the left and the right moving wave, the intermediate pressure is found:
p	 ¼ qLðSL � uLÞðSM � uLÞ þ pL ¼ qRðSR � uRÞðSM � uRÞ þ pR: ð58Þ
Assuming the interface coincides with the contact wave, SM = v and the corresponding HLLC flux defines the contact HLLC
flux HC

HLLC:
HC
HLLC ¼ ð0; p	; p	u	Þ

T ð59Þ
which shows that there is no mass flux through the contact interface.
For the interface an alternative interface flux is proposed, which is defined separately for the left and right sides of the

interface:
HL
HLLC ¼ w	LðSM � vÞ þ HC

HLLC and HR
HLLC ¼ w	RðSM � vÞ þ HC

HLLC: ð60Þ
When the interface representation in the mesh is exact, SM = v and the interface flux is reduced toHC
HLLC. The interface numer-

ical flux removes the small numerical oscillations caused by errors in the interface shape and position at the cost of mass
conservation at the interface.

At the boundary faces the solid wall conditions are implemented in the HLLC flux by defining the right state as:
qR ¼ qL; uR ¼ �uL; pR ¼ pL: ð61Þ
To account for the dependence of the level set on the flow velocity the flow and level set are updated twice each time step.
The simulations are performed at CFLDt � 0.56, using interface flux (60) and primitive variable discretizations for both fluids.

The test results for the solution at time t = 0.0075 s are presented in Table 6 and convergence in the L2 norm is observed.
In Fig. 16 the interface evolution and the level set profile at the final time are shown. It is observed that the level set becomes
Table 6
Error and order of accuracy in the L2 norm of the density for the
isothermal magma and ideal gas Euler shock tube test.

Nx
 Nt L2 error L2 order

40
 30 28.5747 –
80
 60 16.7343 0.772
160
 120 10.6157 0.657
320
 240 5.95713 0.834

x

t

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

x

ψ

-4 -2 0 2 4
-6

-4

-2

0

2

4

6

The time evolution of the interface position and level set at time t = 0.0075 s for the Euler magma–ideal gas shock tube using 320 background
ts.

x

ρ

-4 -2 0 2 4

0

100

200

300

400

500

600

x

ρ

0 1 2 3 4 5

0

10

20

30

40

x

u

-4 -2 0 2 4
-100

0

100

200

300

x

p

-4 -2 0 2 4

0

1E+06

2E+06

3E+06

4E+06

5E+06

Fig. 17. The exact (black) and numerical (colored) density, density zoom, velocity and pressure at time t = 0.0075 s for the Euler magma–ideal gas shock
tube using 320 background elements.

810 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
distorted over time. The reason for this behavior lies in the use of the global flow velocity for advecting the level set and the
problem can be fixed by reinitializing the level set every few time steps. In Fig. 17 the density, density zoom, velocity and
pressure at the final time are shown. It is observed that the solution shows significant over- and undershoots near the expan-
sion and shock waves. To remove these spurious oscillations the HWENO slope limiter is used in combination with the Kriv-
odonova discontinuity detector [30,34] and the results are shown in Fig. 18. The slope limiter significantly reduces the over-
and undershoots, but also causes a small offset error in the star region and a decrease in the accuracy of the shock position. In
Fig. 19 the mass evolution of the magma and the ideal gas is shown for the results without slope limiter. The mass loss is less
than 1%.

6.2. Helium cylinder–ideal gas shock interaction

To test the algorithm in a more complex setting computations are performed on the interaction between a cylindrical
helium volume in a tube filled with an ideal gas and a Mach 1.22 shock wave [15,23,43,68] as illustrated in Fig. 20. For
the Euler equations this problem has no unique solution, because the shock induces a Rayleigh–Taylor instability at the
interface, but it presents a challenging test case for the numerical algorithm. The adiabatic indices and the gas constants
for an ideal gas and helium are given as cI = 1.4, RI = 287.0 J/kg K and cH = 1.67, RH = 2080.0 J/kg K. Initially the helium volume
is a cylinder with a radius 0.025 m and is located at (x,y) = (0 m,0 m) while the shock is located at x = 0.055625 m. The do-
main has dimensions [�0.11125 m,0.11125 m]
 [�0.0445 m,0.0445 m]. Both fluids are modelled using the two dimen-
sional Euler equations. The initial state of the helium, and the ideal gas in front and behind of the shock are given as:
ðqB;uB;vB; pBÞ ¼ ð0:164062 kg=m3; 0 m=s;0 m=s;1:0
 105 PaÞ;
ðqL;uL;vL; pLÞ ¼ ð1:18902 kg=m3; 0 m=s;0 m=s;1:0
 105 PaÞ;
ðqR;uR;vR; pRÞ ¼ ð1:63652 kg=m3;�114:473 m=s;0 m=s;1:5698
 105 PaÞ;

ð62Þ
where the density of the helium is related to the density of the air in front of the shock as qB = qLRI/RH. The shock velocity is
VS = MaL = 418.628 m/s, with aL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cIpL=qL

p
¼ 343:138 m=s. The states on both sides of the shock wave are related through

the Rankine–Hugoniot relations:

x

ρ

-4 -2 0 2 4

0

100

200

300

400

500

600

x

ρ

0 1 2 3 4 5

0

10

20

30

40

x

u

-4 -2 0 2 4
-100

-50

0

50

100

150

200

250

300

350

x

p

-4 -2 0 2 4

0

1E+06

2E+06

3E+06

4E+06

5E+06

Fig. 18. The exact (black) and numerical (colored) density, density zoom, velocity and pressure at time t = 0.0075 s for the Euler magma – ideal gas shock
tube using 320 background elements and with HWENO slope limiter.

t

R
el
at
iv
e
m
as
s
m
ag
m
a

0 0.002 0.004 0.006
0

0.0002

0.0004

0.0006

0.0008

t

R
el
at
iv
e
m
as
s
id
ea
lg
as

0 0.002 0.004 0.006
0

0.002

0.004

0.006

0.008

Fig. 19. Relative mass error over time of magma (left) and ideal gas (right) for the Euler magma–ideal gas shock tube using 320 background elements. The
relative mass is defined as jMe �Mhj/Me, with Me the exact and Mh the numerical amount of mass.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 811
ðqR � qLÞVS ¼ ðqRuR � qLuLÞ;
ðqRuR � qLuLÞVS ¼ qRu2

R � qLu2
L

� �
þ ðpR � pLÞ;

ðqRER � qLELÞVS ¼ uRðqRER þ pRÞ � uLðqLEL þ pLÞ:
ð63Þ
Using the definition of the total energy, qE = q(u2 + v2)/2 + qe, and the EOS for an ideal gas, qe = p/(cI � 1), the Rankine–
Hugoniot conditions can be solved for qR, uR and pR.

The cylindrical helium volume in this test acts as a divergent lens for the shock wave. When the initial shock wave inci-
dents the upstream boundary of the helium volume, the shock is transmitted into the helium volume and accelerates due to
the decrease in density, while the upstream boundary of the helium volume is set into downstream motion and an expansion

Fig. 20. Helium cylinder–shock interaction test.

Fig. 21. Density contours at times t = 0.625
 10�4 s, 1.25
 10�4 s, 1.875
 10�4 s, 2.5
 10�4 s and 3.125
 10�4 s for the helium cylinder–ideal gas shock
interaction test using 320
 64 elements.

812 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 813
wave is generated moving in the upstream direction. When the transmitted shock incidents the downstream boundary of the
helium volume, the shock is transmitted and decelerates, while the downstream boundary of the helium volume is set into
downstream motion and another expansion wave is generated moving in the upstream direction. Over time the helium vol-
ume flattens and is subsequently transformed into a vortex like structure. In addition, the top wall adds to the complexity of
the solution through a number of wave reflections.

At the top, bottom and left boundaries solid wall boundary conditions are imposed. At the right boundary the ideal gas
state behind the shock is imposed weakly by using it as the external state of the numerical flux. At the helium–ideal gas
interface continuity of the normal velocity and the pressure is imposed and the numerical flux (60) is used. To account
for the dependence of the level set on the flow velocity the flow and level set are updated twice during each time step. Be-
cause the solution is symmetric with respect to the x-axis, computations are performed on the half domain
[�0.11125 m,0.11125 m]
 [0 m,0.0445 m]. The simulations are run using 40
 8, 80
 16, 160
 32 and 320
 64 elements
from time t = 0 s to 3.125
 10�4 s at CFL � 1.0 using linear basis functions for the flow field and the level set, where the level
set smoothing reconstructs a bilinear level set.

The density contours for subsequent times are shown in Fig. 21. The density at time t = 3.4375
 10�4 s for different mesh
resolutions are shown in Fig. 22. The evolution of helium mass over time for different mesh resolutions is shown in Fig. 23
and is relatively small, ranging from 0.5% to 2%. The evolution of the interface mesh is illustrated for 80
 16 elements in
Fig. 24. After the shock wave reflects off the left boundary it interacts for a second time with the helium volume, this time
causing breakup, as illustrated in Fig. 25. At this point level set deformations become too large causing spurious bubbles to
be generated. It is expected that this problem can be solved by a post-processing of the level set in which spurious and very
small bubbles are detected and removed. The post-processing is a very crude subgrid scale model that would solely aim to
keep the algorithm robust and stable. However, this concerns future work. Note that the Rayleigh–Taylor instability will
move into finer and finer scales which ultimately cannot be resolved on a finite mesh.
Fig. 22. Density contours at time t = 3.4375
 10�4 s for the helium cylinder–ideal gas shock interaction test using 40
 8, 80
 16, 160
 32 and 320
 64
elements.

t

R
el
at
iv
e
he
liu
m
m
as
s

0 0.0001 0.0002 0.0003-0.01

-0.005

0

0.005

0.01

0.015

0.02

Fig. 23. Relative helium mass error over time for the helium cylinder–ideal gas shock interaction test using 40
 8 (black), 80
 16 (blue), 160
 32 (green)
and 320
 64 (red) elements. The relative mass is defined as (Me �Mh)/Me, with Me the exact and Mh the numerical amount of mass. (For interpretation of
the references in colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Interface evolution for the helium cylinder–ideal gas shock interaction test using 80
 16 elements.

814 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
7. Discussion

A space–time discontinuous Galerkin finite element method for two-fluid flows has been presented which combines as-
pects of front tracking and front capturing methods with cut-cell mesh refinement and a STDG discretization. It is anticipated

x

y

-0.1 -0.08 -0.06 -0.04 -0.02

-0.04

-0.02

0

0.02

0.04
ρ: 0.25 0.6 0.95 1.3 1.65 2 2.35

x

y

-0.1 -0.08 -0.06 -0.04 -0.02

-0.04

-0.02

0

0.02

0.04

x

y

-0.1 -0.08 -0.06 -0.04 -0.02
-0.04

-0.02

0

0.02

0.04

x

y

-0.1 -0.08 -0.06 -0.04 -0.02
-0.04

-0.02

0

0.02

0.04

Fig. 25. Density contours at times t = 5.0
 10�4 s, 5.25
 10�4 s, 5.5
 10�4 s and 5.75
 10�4 s for the helium cylinder–ideal gas shock interaction test
using 80
 32 elements.

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 815
that this scheme can accurately solve smaller scale problems where the interface shape is of importance and where complex
interface physics are involved. Special attention has been paid to making the scheme as generic as possible to allow for future
implementations in higher dimensions. The STDG discretization ensures that the scheme is conservative as long as the
numerical fluxes are conservative. A merging procedure is used to deal with small cells created by the cut-cell mesh refine-
ment. Topological changes such as merging and coalescence can be handled in the method because of the level set.

The STDGFEM for two-fluid flows was applied to solve a magma–ideal gas shock tube problem and the interaction be-
tween a helium cylinder and a shock wave. An interface flux (60) was developed, which reduced oscillations at the interface
at the cost of a small mass loss.

Candidates for further research are:

� Automation of the refinement procedure to allow 4D space–time applications. It is expected that such an automation will
be valuable also outside of the current context.
� Incorporation of surface tension and curvature by means of level set methodology, including level set reinitialization.
� Incorporation of viscosity (Navier–Stokes equations).
� Improvement of performance using h-refinement and multigrid algorithms.
� Applications involving the shallow water equations to simulate flooding and drying [5,10,44,58], two-phase flows [46]

and other applications [3,59,67]. Because of the methods’ flexibility in defining flow domains with interfaces it is
expected that valuable contributions are possible in these fields.

Acknowledgments

The authors are kindly indebted to V.R. Ambati, A. Bell, L. Pesch and S. Rhebergen for the valuable discussion, suggestions
and support.

References

[1] D. Adalsteinsson, J.A. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118 (1995) 269–277.
[2] H.T. Ahn, M. Shashkov, Adaptive moment-of-fluid method, J. Comput. Phys. 228 (2009) 2792–2821.

816 W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817
[3] B. Akers, O. Bokhove, Hydraulic flow through a channel contraction: multiple steady states, Phys. Fluids 20 (2008) 056601.
[4] A.S. Almgren, J.B. Bell, P. Colella, T. Marthaler, A Cartesian grid projection method for the incompressible Euler equations in complex geometries, SIAM J.

Sci. Comput. 18 (1997) 1289–1309.
[5] V.R. Ambati, O. Bokhove, Space–time discontinuous Galerkin discretization of rotating shallow water equations, J. Comput. Phys. 225 (2007) 1233–

1261.
[6] V.R. Ambati, O. Bokhove, Space–time discontinuous Galerkin finite element method for shallow water flows, J. Comput. Appl. Math. 204 (2007) 452–

462.
[7] O. Bokhove, Numerical modeling of magma-repository interactions, University of Twente, 2001, 97 pp. <http://eprints.eemcs.utwente.nl/>.
[8] O. Bokhove, Decompressie van magma in opslagtunnels, Ned. Tijdschr. Natuurk. 68 (2002) 232–235. English version: <http://eprints.eemcs.utwente.nl/>.
[9] O. Bokhove, A.W. Woods, A. de Boer, Magma flow through elastic-walled dikes, Theoret. Comput. Fluid Dyn. 19 (2005) 261–286.

[10] O. Bokhove, Flooding and drying in finite-element Galerkin discretizations of shallow-water equations. Part 1: One dimension, J. Sci. Comput. 22 (2005)
47–82.

[11] B. Cockburn, G.E. Karniadakis, C.W. Shu, Discontinuous Galerkin methods theory, computation and applications, Lecture Notes in Computational
Science and Engineering, vol. 11, Springer, Berlin, 2000.

[12] B.J. Daly, Numerical study of the effect of surface tension on interface instability, Phys. Fluids 12 (1969) 1340–1354.
[13] D. de Zeeuw, K.G. Powell, An adaptively refined Cartesian mesh solver for the Euler equations, J. Comput. Phys. 104 (1993) 56–68.
[14] D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial Processes and Rheology, Butterworth-Heineman, Stoneham, 1991.
[15] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interface in multimaterial flows (the ghost fluid method), J.

Comput. Phys. 152 (1999) 457–492.
[16] K.J. Fidkowski, D.L. Darmofal, A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier–Stokes equations, J.

Comput. Phys. 225 (2007) 1653–1672.
[17] M.J. Fritts, W. Cowley, H.E. Trease (Eds.), The Free Lagrange Method, Lecture Notes on Physics, vol. 238, Springer-Verlag, New York, 1985.
[18] D.E. Fyfe, E.S. Oran, M.J. Fritts, Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, J. Comput. Phys. 76 (1988) 349–384.
[19] J. Glimm, J.W. Grove, X.-L. Li, K.-M. Shyue, Q. Zhang, Y. Zeng, Three-dimensional front tracking, SIAM J. Sci. Comput. 19 (1998) 703–727.
[20] J. Glimm, J.W. Grove, X.-L. Li, N. Zhao, Simple front tracking, Contemp. Math. 238 (1999) 133–149.
[21] J. Glimm, X.-L. Li, Y.-J. Liu, Z.-L. Xu, N. Zhao, Conservative front tracking with improved accuracy, SIAM J. Numer. Anal. 41-5 (2003) 1926–1947.
[22] D.M. Greaves, Simulation of viscous water column collapse using adapting hierarchial grids, Int. J. Numer. Methods Fluids 50 (2005) 693–711.
[23] J.-F. Haas, B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech. 181 (1987) 41–76.
[24] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965) 2182–

2189.
[25] C.V. Hirt, B.D. Nichols, Volume of fluid (VOF) methods for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–255.
[26] C. Hu, C.W. Shu, A discontinuous Galerkin finite element method for Hamilton–Jacobi equations, SIAM J. Sci. Comput. 21 (1999) 666–690.
[27] J.M. Hyman, Numerical methods for tracking interfaces, Physica D 12 (1984) 396–407.
[28] C.M. Klaij, J.J.W. van der Vegt, H. van der Ven, Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations, J. Comput.

Phys. 217 (2006) 589–611.
[29] C.M. Klaij, J.J.W. van der Vegt, H. van der Ven, Pseudo-time stepping methods for space–time discontinuous Galerkin discretizations of the

compressible Navier–Stokes equations, J. Comput. Phys. 219 (2006) 622–643.
[30] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, J.E. Flaherty, Shock detection and limiting with discontinuous Galerkin methods for hyperbolic

conservation laws, Appl. Numer. Math. 48 (2004) 323–338.
[31] D. Kröner, Numerical Schemes for Conservation Laws, Wiley und Teubner, Stuttgart, 1997.
[32] M. Kucharik, J. Limpouch, R. Liska, Laser plasma simulations by Arbitrary Lagrangian Eulerian method, J. de Phys. 133 (2006) 167–169.
[33] R.J. LeVeque, K.-M. Shyue, Two-dimensional front tracking based on high resolution wave propagation methods, J. Comput. Phys. 123 (1996) 354–368.
[34] H. Luo, J.D. Baum, R. Lohner, A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J. Comput. Phys. 225 (2007)

686–713.
[35] J. Magnaudet, M. Rivero, J. Fabre, Accelerated flows around a rigid sphere or a spherical bubble. Part 1: Steady straining flow, J. Fluid Mech. 284 (1995)

97–135.
[36] S.J. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79

(1988) 12–49.
[37] S.J. Osher, C.W. Shu, High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations, SIAM J. Numer. Anal. 28 (1991) 907–922.
[38] J. Palaniappan, S.T. Miller, R.B. Haber, Sub-cell shock capturing and spacetime discontinuity tracking for nonlinear conservation laws, Int. J. Numer.

Methods Fluids 57 (2008) 1115–1135.
[39] R.B. Pember, J.B. Bell, P. Colella, W.Y. Curtchfield, M.L. Welcome, An adaptive Cartesian mesh method for unsteady compressible flow in irregular

regions, J. Comput. Phys. 120 (1995) 278–304.
[40] D. Peng, B. Merriman, S. Osher, H.K. Zhao, M. Kang, A PDE-based fast local level set method, J. Comput. Phys. 155 (1999) 410–438.
[41] L. Pesch, A. Bell, W.E.H. Sollie, V.R. Ambati, O. Bokhove, J.J.W. van der Vegt, hpGEM- A software framework for discontinuous Galerkin finite element

methods, ACM Trans. Math. Software 33 (2007).
[42] E.G. Puckett, J.S. Saltzman, A 3D adaptive mesh refinement algorithm for interfacial gas dynamics, Physica D 60 (1992) 84–93.
[43] J.X. Qiu, T.G. Liu, B.C. Khoo, Simulations of compressible two-medium flow by Runge–Kutta discontinuous Galerkin methods with the ghost fluid

method, Commun. Comput. Phys. 3 (2008) 479–504.
[44] J.-F. Remacle, S.S. Frazao, X. Li, M.S. Shephard, An adaptive discretization of shallow-water equations based on discontinuous Galerkin methods, Int. J.

Numer. Methods Fluids 52 (2006) 903–923.
[45] S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential

equations, J. Comput. Phys. 227 (2008) 1887–1922.
[46] S. Rhebergen, O. Bokhove, J.J.W. van der Vegt, Discontinuous Galerkin finite element method for shallow two-phase flows, Comput. Methods Appl.

Mech. Eng. 198 (2009) 819–830.
[47] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial-Value Problems, Inter-science, New York, 1967.
[48] J.M. Rudman, Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids 24 (1997) 671–691.
[49] G. Ryskin, L.G. Leal, Numerical solution of free-boundary problems in fluid mechanics, Part 2: Buoyancy-driven motion of a gas bubble through a

quiescent liquid, J. Fluid Mech. 148 (1984) 19–35.
[50] R. Saurell, R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21 (1999) 1115–1145.
[51] L.E. Scriven, Dynamics of a fluid interface, Chem. Eng. Sci. 12 (1960) 98–108.
[52] J.A. Sethian, Level Set Methods, Cambridge University Press, 1996.
[53] J.A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech. 35 (2003) 341–372.
[54] W.E.H. Sollie, Space–time discontinuous Galerkin finite element method for two-fluid flows, Ph.D. Thesis, University of Twente, 2010. <http://

eprints.eemcs.utwente.nl/>.
[55] J.J. Sudirham, J.J.W. van der Vegt, R.M.J. van Damme, Space–time discontinuous Galerkin method for advection–diffusion problems on time-dependent

domains, Appl. Numer. Math. 56 (2006) 1491–1518.
[56] M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–

159.

http://eprints.eemcs.utwente.nl/
http://eprints.eemcs.utwente.nl/
http://eprints.eemcs.utwente.nl/
http://eprints.eemcs.utwente.nl/

W.E.H. Sollie et al. / Journal of Computational Physics 230 (2011) 789–817 817
[57] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J.
Comput. Phys. 162 (2000) 301–337.

[58] P.A. Tassi, O. Bokhove, C.A. Vionnet, Space discontinuous Galerkin method for shallow water flows-kinetic and HLLC flux, and potential vorticity
generation, Adv. Water Resour. 30 (2007) 998–1015.

[59] P.A. Tassi, S. Rhebergen, C.A. Vionnet, O. Bokhove, A discontinuous Galerkin finite element model for bed evolution under shallow flows, Comput.
Methods Appl. Mech. Eng. 197 (2008) 2930–2947.

[60] P.G. Tucker, Z. Pan, A Cartesian cut element method for incompressible viscous flow, Appl. Math. Model. 24 (2000) 591–606.
[61] H.S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface Cartesian mesh method for simulating flows with complex moving

boundaries, J. Comput. Phys. 174 (2001) 345–380.
[62] A. Ungor, A. Sheffer, Pitching tents in space–time: mesh generation for discontinuous Galerkin method, Int. J. Found. Comput. Sci. 13 (2002) 201–221.
[63] S.O. Unverdi, G. Tryggvason, Computations of multi-fluid flows, Physica D 60 (1992) 70–83.
[64] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible multi-fluid flows, J. Comput. Phys. 100 (1992) 25–37.
[65] J.J.W. van der Vegt, H. van der Ven, Space–time discontinuous Galerkin finite element method with dynamic mesh motion for inviscid compressible

flows, J. Comput. Phys. 182 (2002) 546–585.
[66] J.J.W. van der Vegt, Y. Xu, Space–time discontinuous Galerkin method for nonlinear water waves, J. Comput. Phys. 224 (2007) 17–39.
[67] A.W. Vreman, M. Al-Tarazi, J.A.M. Kuipers, M. van Sint Annaland, O. Bokhove, Supercritical shallow granular flow through a contraction: experiment,

theory and simulation, J. Fluid Mech. 578 (2007) 233–269.
[68] J. Wackers, B. Koren, A fully conservative model for compressible two-fluid flow, Int. J. Numer. Methods Fluids 47 (2005) 1337–1343.
[69] A.W. Woods, S. Sparks, O. Bokhove, A.-M. Lejeune, C.B. Connor, B.E. Hill, Modeling magma-drift interaction at the proposed high-level radioactive waste

repository at Yucca Mountain, Nevada, USA, Geophys. Res. Lett. 29 (2002) 1641.
[70] A.W. Woods, O. Bokhove, A. de Boer, B.E. Hill, Compressible magma flow in a two-dimensional elastic-walled dike, Earth Planet. Sci. Lett. 246 (2006)

241–250.
[71] G. Yang, D.M. Causon, D.M. Ingram, Calculation of compressible flows about complex moving geometries using a three-dimensional Cartesian cut

element method, Int. J. Numer. Methods Fluids 33 (2000) 1121–1151.
[72] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J.

Comput. Phys. 156 (1999) 209–240.
[73] S.S. Young, J.L. White, E.S. Clark, Y. Oyanagi, A basic experimental study of sandwich injection moulding with sequential injection, Pol. Eng. Sci. 20

(1980) 798–804.

	Space–time discontinuous Galerkin finite element method for two-fluid flows
	Introduction
	Equations
	Two-fluid flow equations
	Level set equation

	Meshes
	Two-fluid mesh
	Background mesh
	Mesh refinement
	2D refinement
	3D refinement
	Merging

	Space–time discontinuous Galerkin discretization
	Flow discretization
	Level set discretization
	Pseudo-time integration

	Two-fluid algorithm
	Test cases
	Isothermal magma–ideal gas shock tube
	Helium cylinder–ideal gas shock interaction

	Discussion
	Acknowledgments
	References

