
Discrete Applied Mathematics 161 (2013) 1699–1706

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bisimplicial edges in bipartite graphs
Matthijs Bomhoff ∗, Bodo Manthey
Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

a r t i c l e i n f o

Article history:
Received 16 September 2010
Received in revised form 9 December 2010
Accepted 3 March 2011
Available online 31 March 2011

Keywords:
Bipartite graphs
Random graphs
Algorithms
Gaussian elimination

a b s t r a c t

Bisimplicial edges in bipartite graphs are closely related to pivots in Gaussian elimination
that avoid turning zeroes into non-zeroes. We present a new deterministic algorithm to
find such edges in bipartite graphs. Our algorithm is very simple and easy to implement.
Its running-time is O (nm), where n is the number of vertices andm is the number of edges.
Furthermore, for any fixed p and random bipartite graphs in the Gn,n,p model, the expected
running-time of our algorithm is O

n2

, which is linear in the input size.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

When applying Gaussian elimination to a square n × n matrix M containing some elements with value zero, the choice
of pivots can often determine the amount of zeroes turned into non-zeroes during the process. This is called the fill-in. Some
matrices even allow Gaussian eliminationwithout any fill-in. Avoiding fill-in has the nice property of bounding the required
space for intermediate results of the Gaussian elimination to the space required for storing the input matrixM . This is often
important for processing very large sparse matrices. Even when fill-in cannot be completely avoided, it is still worthwhile
to avoid it for several iterations, motivating the search for pivots that avoid fill-in.

Ifwe assume subtracting amultiple of one rowofM fromanother turns atmost onenon-zero into a zero,we can represent
the relevant structure of our problemusing only {0, 1}matrices. (This assumption is quite natural, as it holdswith probability
one for a random real-valuedmatrix.) Given such a squarematrixM , we can construct the bipartite graphG[M]with vertices
corresponding to the rows and columns inM , where the vertex corresponding to row i and the one corresponding to column
j are adjacent if and only ifMi,j is non-zero.We denote the number of non-zero elements ofM bym. Furthermore, we assume
M has no rows or columns containing only zeroes, so the associated bipartite graph has no isolated vertices and n ≤ m ≤ n2.
Fig. 1 shows an example.

The {0, 1} matrices that allow Gaussian elimination without fill-in correspond to the class of perfect elimination bipartite
graphs [3]. Central to the recognition of this class of graphs is the notion of a bisimplicial edge: a bisimplicial edge corresponds
to an element of M that can be used as a pivot without causing fill-in. The fastest known algorithm for finding bisimplicial
edges has a running-time of O (nm) for sparse instances and O (nω) in general [2,6], where ω ≤ 2.376 is the matrix
multiplication exponent [1]. However, fast matrix multiplication using the algorithm of Coppersmith and Winograd [1]
has huge hidden constants, which makes it impractical for applications.

We present a new deterministic algorithm for finding all bisimplicial edges in a bipartite graph. Our algorithm is very fast
in practice, and it can be implemented easily. Its running-time is O (nm). In addition, we analyze its expected running-time
on random bipartite graphs. For this, we use the Gn,n,p model. This model consists of bipartite graphs with n vertices in each

∗ Corresponding author. Fax: +31 53 4894858.
E-mail addresses:m.j.bomhoff@utwente.nl (M. Bomhoff), b.manthey@utwente.nl (B. Manthey).

0166-218X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2011.03.004

http://dx.doi.org/10.1016/j.dam.2011.03.004
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:m.j.bomhoff@utwente.nl
mailto:b.manthey@utwente.nl
http://dx.doi.org/10.1016/j.dam.2011.03.004

1700 M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706

a b

Fig. 1. An example of a {0, 1}-matrixM and its bipartite graph G[M].

a b

Fig. 2. Bisimplicial edges inM and its bipartite graph G[M] (bisimplicial edges are bold, the corresponding matrix entries are dashed).

vertex class, where edges are drawn independently, and each possible edge is present with a probability of p. We show that
the expected running-time of our algorithm on Gn,n,p graphs for fixed p ∈ (0, 1) is O

n2

, which is linear in the input size.

(The input size of a random Gn,n,p graph is Θ(n2) with high probability.)

2. Bisimplicial edges

We denote by Γ (u) the neighbors of a vertex u and by δ (u) its degree.

Definition 2.1. An edge (u, v) of a bipartite graph G = (U, V , E) is called bisimplicial, if the induced subgraph G[Γ (u) ∪

Γ (v)] is a complete bipartite graph.

Clearly, we can determine in O (m) time if an edge (u, v) is bisimplicial: we simply have to check all edges adjacent to
it. So a simple algorithm to find a bisimplicial edge in a bipartite graph G, if one exists, takes O

m2

time. The bisimplicial

edges in our examplematrixM and associated graph G[M] are shown in Fig. 2. Asmentioned above, Goh and Rotem [2] have
presented a faster algorithm based on matrix multiplication that can be implemented in either O (nω) or O (nm).

We present a different approach that first selects a set of candidate edges. The candidate edges are not necessarily
bisimplicial and not all bisimplicial edges are marked as candidates. However, knowing which candidates, if any, are
bisimplicial allows us to quickly find all other bisimplicial edges as well. By bounding the number of candidates, we achieve
an improved expected running-time. The following observation is the basis of our candidate selection procedure.

Lemma 2.2. If an edge (u, v) of a bipartite graph G = (U, V , E) is bisimplicial, we must have δ (u) = minu′∈Γ (v) δ

u′

and

δ (v) = minv′∈Γ (u) δ

v′

.

Proof. Let (u, v) ∈ E be a bisimplicial edge, and let A = G[Γ (u) ∪ Γ (v)] be the complete bipartite graph it induces. Now
assume that there is a vertex u′

∈ UA with δ

u′

< δ (u). Then there must be a v′
∈ VA with u′v′

∉ EA. But this would mean
A is not a complete bipartite graph, leading to a contradiction. �

Translated to thematrixM , this means that ifMi,j = 1, it can only correspond to a bisimplicial edge if row i has aminimal
number of 1s over all the rows that have a 1 in column j and column j has a minimal number of 1s over all the columns
having a 1 in row i. In what follows, we will call the row (column) in M with the minimal number of 1s over all the rows
(columns) in M the smallest row (column). Using this observation, we construct an algorithm to pick candidate edges that
may be bisimplicial.

Algorithm 2.3. Perform the following steps:

1. Determine the row and column sums for each row i and column j ofM .
2. Determine for each row i the index ci of the smallest column among those with Mi,ci = 1 (breaking ties by favoring the

lowest index); or let ci = 0 if row i has no 1.

M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706 1701

a b

Fig. 3. Selected candidate edges in M (shaded) and its bipartite graph G[M] (bold).

3. Determine for each column j the index rj of the smallest row among those with Mrj,j = 1 (breaking ties by favoring the
lowest index); or let rj = 0 if column j has no 1.

4. MarkMi,j as a candidate edge if ci = j and rj = i.

Clearly, all steps in the algorithmcanbeperformed inO

n2

time. Furthermore, the last stepwillmark atmostn candidate

edges and at least 1. (The reason that we have at least one candidate edge is as follows: let i be the smallest row with the
smallest index. Row iwill select a column j. Due to the tie-breaking mechanism, column jwill also select row i, which leads
to a candidate.) The candidate edges marked by this algorithm in our example matrixM are shown in Fig. 3.

The following lemmas establish a few more characteristics of the candidate edges.

Lemma 2.4. Let i, j, j′ be such that the following properties hold:

1. Mi,j = 1 and Mi,j′ = 1 and
2. columns j and j′ contain an equal number of 1s and
3. (i, j) is bisimplicial.

Then (i, j′) is also bisimplicial and columns j and j′ are identical. Due to symmetry, the same holds if we exchange the roles of rows
and columns.

Proof. If columns j and j′ are not identical, but contain an equal number of 1s, then there is some row i′ such that Mi′,j = 1
andMi′,j′ = 0. In that case (i, j) cannot be bisimplicial, so columns j and j′ have to be identical. But then (i, j) and (i, j′) both
have to be bisimplicial due to symmetry. �

Lemma 2.5. If (i′, j′) is bisimplicial, then there are i ≤ i′ and j ≤ j′ such that rows i and i′ are identical, columns j and j′ are
identical, and (i, j) is bisimplicial and selected as a candidate by Algorithm 2.3.

Proof. Let j ≤ j′ be the column with (1) the lowest index, (2)Mi′,j = 1, and (3) an equal number of 1s to column j′. As (i′, j′)
is bisimplicial, we know three things from Lemmas 2.2 and 2.4: first, (i′, j) is also bisimplicial. Second, columns j and j′ are
identical. Third, columns j and j′ are smallest columns in row i′. Due to symmetry, there is also such a row i ≤ i′ equal to row
i′ with the lowest index and (i, j′) bisimplicial. As (i′, j) and (i, j′) are bisimplicial, rows i and i′ are identical and columns j
and j′ are identical, also (i, j) must be bisimplicial. Furthermore, by construction, column j must be the smallest column in
row iwith the lowest index, and row imust be the smallest row in column jwith the lowest index. Thus, (i, j) is selected as
a candidate. �

Using Algorithm 2.3 as a subroutine, we can construct Algorithm 2.6 to find all bisimplicial edges of G[M]. Finding all
bisimplicial edges instead of just a single one can be beneficial in practice when performing Gaussian elimination as not
every possible pivot may preserve numerical stability.

Algorithm 2.6. Perform the following steps:

1. Determine candidates using Algorithm 2.3.
2. Test each candidate for bisimpliciality.
3. For each candidate (i, j)marked as bisimplicial, mark also each (i′, j′) as bisimplicial for each row i′ with an equal number

of non-zeroes as row i and Mi′,j = 1 and column j′ with an equal number of non-zeroes as column j and Mi,j′ = 1.

Theorem 2.7. Algorithm 2.6 finds all bisimplicial edges in time O

n3

.

Proof. Step 1 marks up to n candidates in time O

n2

. Each of these candidates can be checked for bisimpliciality in time

O

n2

, so Step 2 can be completed in time O

n3

. Finally, Step 3 marks all non-candidate bisimplicial edges as can be seen

from Lemmas 2.4 and 2.5. For a single candidate (i, j) that is found to be bisimplicial, all relevant rows i′ and columns j′ can be
found in timeO (n). A total ofO

n2

additional edges can bemarked as bisimplicial during this step and every non-candidate

edge is considered at most once. Thus, this step can also be completed in time O

n2

. �

1702 M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706

a b

c d

Fig. 4. Several example matrices with bisimplicial (dashed) and candidate (shaded) elements.

To give a bit more insight into theworking of Algorithm 2.6, Fig. 4 shows several examplematrices with their bisimplicial
and candidate edges: Fig. 4(a) and (c) show situations in which candidates and bisimplicial edges are the same. Fig. 4(b)
illustrates how a single candidate can be used to identify all edges as bisimplicial. Fig. 4(d) shows how an arbitrarily large
matrix can be constructed with n/3 candidates and no bisimplicial edges at all.

The running-time of Algorithm 2.6 is dominated by Step 2 in which we have to check all candidates in O

n2

time each.

As we can find up to n candidates, this leads to a worst-case running-time of O

n3

. In the next section, we present an

improved running-time analysis for sparse instances. After that, we show that our algorithm performs significantly better
on random bipartite graphs. The reason for this is that our algorithm will usually select only a few candidate edges.

3. Sparse matrices

Algorithm 2.6 can be implemented such that it makes use of any sparsity in the matrix M . This section describes how a
running-time ofO (Cm) can be obtained, where C denotes the number of candidates found in the first phase of the algorithm.
As C ≤ n, the running-time is bounded by O (nm). We assume the input matrixM is provided in the form of adjacency lists
of the corresponding graph G[M]: for every row (column) we have a list of columns (rows) where non-zero elements occur.

The first step of Algorithm2.6 consists of runningAlgorithm2.3,which selects the candidates. Algorithm2.3 itself consists
of three steps. The first step, determining the row and column sums, can be completed in time O (m) by simply traversing
the lists. The same holds for the second step: by traversing the adjacency lists the values of ci and rj can be determined in
time O (m). Constructing the actual set of candidates from these values can subsequently be done in time O (n). In total,
Algorithm 2.3 determines the set of candidates in time O (m). After this time, the number C of candidates is known.

Checking a single candidate can be done in time O (m). Thus, the second step of Algorithm 2.6, which consists of checking
all candidates for bisimpliciality, can be performed in time O (Cm).

Finally, we analyze the third step of Algorithm 2.6, marking the remainder of the bisimplicial edges. For each bisimplicial
candidate (i, j), we have to find all rows i′ identical to row i and columns j′ identical to column j. Due to Lemma 2.4, we
can simply traverse the adjacency lists for row i and column j and check the column and row sums. As every row and every
column contains at most one candidate, all adjacency lists are traversed at most once. Thus, this takes at most time O (m)
for all candidates together. For each candidate, once all relevant rows i′ and columns j′ have been determined, we have to
mark all combinations (i′, j′) as bisimplicial. As every edge is considered at most once during this process, this can also be
completed in time O (m).

Summarizing we have that the total running-time of Algorithm 2.6 is O (Cm) where C is bounded from above by n and
known in time O (m) after the first phase of the algorithm has been completed.

M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706 1703

4. A first bound on the number of candidate edges

In order to justify the good practical performance of our algorithm theoretically, we study the behavior of Algorithm 2.6
on random bipartite graphs in the Gn,n,p model in the following sections. For such instances, we show that the number of
candidates is significantly smaller than n, both with high probability and in expectation. This yields an improved expected
running-time on these instances. In this section, we show a logarithmic bound on the expected number of candidates for
a fixed value of the parameter p in the Gn,n,p model. This also provides tail bounds for the distribution of the number of
candidates. The two subsequent sections improve the bound for the expected number of candidates to a constant.

For a fixed value of p ∈ (0, 1), we consider random bipartite graphs in the Gn,n,p model. This means that we have n
vertices in each vertex class and each edge is presentwith a probability of p. Such a randomgraph corresponds to a stochastic
n × n{0, 1} matrix M with P

Mi,j = 1

= p. Let Xi be the (random) i-th row of M , and let |Xi| be the (random) sum of its

elements. If we order the Xi vectors according to the number of 1s they contain (breaking ties by favoring lower values of i),
we denote by X(1) the row with the least number of 1s, by X(2) the row with the second-to-least number etc.

Lemma 4.1. Let ε = 2

log n
pn . Then

P

|X(1)| < (1 − ε)pn

≤

1
n
.

Proof. Fix any i ∈ {1, . . . , n}. By Chernoff’s bound [4], we have

P [|Xi| < (1 − ε)pn] < e−npε2/2
= e−2 log n

=
1
n2

.

By a union bound over all rows, we get

P

|X(1)| < (1 − ε)pn

≤ nP [Xi < (1 − ε)pn] =

1
n
. �

Lemma 4.2. Fix p ∈ (0, 1). For k ∈ o(
√
n/ log n), we have

P [C > k] ≤ (1 + o(1)) · n(1 − p)k +
1
n
.

Proof. Choose ε = 2

log n
pn as in Lemma 4.1 above. If |X(1)| ≥ (1 − ε)pn, we have for any column j

P

Column j has no 1 in rows X(1), . . . , X(k) | |X(1)| ≥ (1 − ε)pn

≤ (1 − p + εp)k.

Thus, the probability that in this case, any column does not have a 1 in the k rows with the smallest number of 1s is bounded
from above by

P

∃j : Column j has no 1 in rows X(1), . . . , X(k) | |X(1)| ≥ (1 − ε)pn

≤ n(1 − p + εp)k.

If all columns have at least one 1 in rows X(1), . . . , X(k), all candidates selected must be among these k rows, as they contain
the smallest number of 1s over all the rows in M . Since each row contributes at most 1 candidate, Algorithm 2.3 selects at
most k candidates in this case.

By Lemma 4.1, the probability that |X(1)| < (1 − ε)pn, i.e., the smallest row contains too few 1s, is bounded from above
by 1/n. Altogether, we get

P [C > k] ≤ n(1 − p + εp)k +
1
n

≤ n

(1 − p)k +

k
i=1

k
i

(εp)i(1 − p)k−i

+

1
n

≤ n

(1 − p)k + (1 − p)k ·

k
i=1

kεp
1 − p

i

+
1
n
.

The lemma follows because
k

i=1

kεp
1−p

i
∈ o(1) since kεp

1−p ∈ o(1) by our choice of ε and k. �

1704 M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706

Lemma 4.2 says that atmostO (log n) candidates are selectedwith high probability. This bound also holds in expectation:
we use k = 2 log(1−p)

1
n = 2 log1/(1−p) n. If the number of candidate edges exceeds k, then we use the worst-case bound of

n. This gives us

E [C] ≤ k + nP [C > k]
≤ k + n2(1 − o(1))(1 − p)k + 1
≤ (2 + o(1)) log1/(1−p) n

and the following theorem and corollary.

Theorem 4.3. Fix p ∈ (0, 1) and consider random instances in the Gn,n,p model. With a probability of 1 − O(1
n) and in

expectation, Algorithm 2.3 selects at most (2 + o(1)) log1−p
1
n candidates.

Corollary 4.4. For any fixed p, Algorithm 2.6 has an expected running-time of O

n2 log1/(1−p) n

on instances drawn according

to Gn,n,p.

5. Isolating lemma for binomial distributions

The tie-breaking of Algorithm 2.3 always chooses the row or column with the lowest index. Thus, the probability of the
event that row i and column j becomes a candidate edge depends also on the number of rows (or columns) that actually
have the minimum number of 1s.

Let us analyze the number of rows (or columns) that attain the minimum number of 1s. At first glance, one might argue
as follows: the number of 1s in the rows are independent random variables with binomial distribution. Thus, according
to Chernoff’s bound, the number of 1s in each row is np ± O(

√
n) with high probability. Hence, we have roughly np

random variables that assume values in an interval of size roughly O
√

n

. From this, we would expect that the minimum is

assumed by roughly O
√

n

random variables. However, first, this bound does not give us any good bound on the number of

candidates. Second, it is far too pessimistic. It turns out that, although relatively many random variables fall into a relatively
small interval, the minimum is usually unique: the probability that the minimum is unique is 1 − o(1). This resembles the
famous isolating lemma [5]. Even stronger, the expected number of random variables that assume theminimum is 1+o(1).
The following lemma is the crucial ingredient for this, and it captures most of the intuition.

Lemma 5.1. Let k ∈ N, and let X1, . . . , Xk be independent and identically distributed random variables with values in Z.
Let Y = min{X1, . . . , Xk}, and let Z = |{i | Xi = Y }| be the number of random variables that assume the minimum value.
Let t ∈ Z, q ∈ (0, 1), and c ∈ (0, 1) such that the following properties hold:

1. P [Xi ≤ t] ≤ q for any i ∈ {1, . . . , k}.
2. For every s > t, we have P [Xi = s | Xi ≤ s] ≤ c.

Then

E [Z] ≤
1

1 − c
+ k2q.

Proof. The probability that Y ≤ t is bounded from above by kq by a union bound over the k events Xi ≤ t . If indeed Y ≤ t ,
we use the trivial upper bound of Z ≤ k. This contributes the term k2q. Otherwise, we consider X1, X2, . . . , Xk one after the
other. Let Yi = min{X1, . . . , Xi}. Let Y0 = ∞ for consistency. Clearly, we have Yk = Y . For every i ∈ {1, . . . , k}, we let an
adversary decide whether Xi ≤ Yi−1 or Xi > Yi−1.

Fix any ℓ ∈ N, and let j0, j1, . . . , jℓ be the last ℓ+1 positions for which the adversary has chosen Xji ≤ Yji−1. By our choice
of ji, we have Yji−1 = Yji−1 .

The crucial observation is that Z ≥ ℓ + 1 if and only if Xji = Yji−1 for all i ∈ {1, . . . , ℓ}. By independence and assumption,
the probability of this is bounded from above by cℓ. This essentially shows that the distribution of Z − 1 is dominated by a
geometric distribution with parameter c . Overall, we obtain

E [Z] ≤

∞
ℓ=0

cℓ
+ k2q =

1
1 − c

+ k2q

as claimed. �

To actually get the result for binomial random variables, we show that the value for c from the lemma above can be
chosen arbitrarily small. Intuitively, this is because for binomial distributions, adjacent values have approximately the same
probability.

M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706 1705

Lemma 5.2. Fix any p ∈ (0, 1). Let X1, . . . , Xk ∼ Binom(n, p) be independent random variables distributed according to a
binomial distribution with parameters n and p, and let k ∈ O(n). Let Y = min{X1, . . . , Xk}, and let Z = |{i | Xi = Y }|. Then

E [Z] ≤ 1 + o(1).

Proof. We show that the value for c in Lemma 5.1 can be chosen as c = o(1), provided that n is sufficiently large.
Let t = np − a for a =

√
n log n. According to Chernoff’s bound, we have P [Xi ≤ t] = o(1/k2) for any i. Thus, we can

choose q = o(1/k2) for the application of Lemma 5.1.
Now we choose a slowly growing x = x(n) ∈ ω(1). We will give constraints for the function x later on. Our goal is to

show that it is possible to choose c = 2/x = o(1). This together with our choice of q yields

E [Z] ≤
1

1 − 2/x
+ qk2 = 1 +

2/x
1 − 2/x

+ qk2 = 1 + o(1)

as claimed.
Now fix any s > t . We have

P [Xi = s | Xi ≤ s] ≤
P [Xi = s]

P [Xi ∈ {s, s − 1, . . . , s − x + 1}]

=

 n
s

ps(1 − p)n−s

s
ℓ=s−x+1

 n
ℓ

pℓ(1 − p)n−ℓ

=
n! · ps(1 − p)n−s

s! · (n − s)! ·
s

ℓ=s−x+1

n!
ℓ!·(n−ℓ)!

pℓ(1 − p)n−ℓ

=
1

s
ℓ=s−x+1

(1−p)s−ℓ

ps−ℓ ·

s
i=ℓ+1

i
n−i

. (1)

Let us estimate the product within the summation in the denominator. For some appropriately chosen ε > 0, we have

s
i=ℓ+1

i
n − i

≥

s

n − s

s−ℓ

≥

t

n − t

s−ℓ

=

p −

a
n

1 − p +
a
n

s−ℓ

≥

(1 − ε) ·

p
1 − p

s−ℓ

.

The last inequality holds in particular for ε =
a
n ·

1

1−p +
1
p

and n large enough such that p > log n/

√
n. Plugging this into

(1) yields

P [Xi = s | Xi ≤ s] ≤
1

s
ℓ=s−x+1

(1 − ε)s−ℓ

≤
1

x · (1 − ε)x
.

The termon the right-hand side is boundedby2/x for x ≤ ln(1/2)/ ln(1−ε). Thus,we can choose x = ⌊ln(1/2)/ ln(1−ε)⌋ =

ω(1), which completes the proof. �

6. Constant bound for the number of candidates

Theorem 6.1. Fix any p ∈ (0, 1), and let C be the (random) number of candidates if we draw instances according to Gn,n,p. Then

E [C] ≤
1 + o(1)

p
.

Proof. Similar to Lemma 4.1, for p′
= (1 − ε)p and ε =

log n
√
n , the probability that some row or column in M contains less

than np′ 1s is o(1/n) by Chernoff’s bound [4]. If some row or column of M does have fewer 1s, we simply assume that we
have n candidates. This adds only o(1) to our final expected value, which is negligible. For the remainder of the proof we
may thus assume that all rows and columns contain at least np′ 1s.

1706 M. Bomhoff, B. Manthey / Discrete Applied Mathematics 161 (2013) 1699–1706

Weproceed by bounding the probability that a row i contains a candidate. To establish an upper bound on this probability,
we introduce a game on an unknown matrix M in which our adversary aims to increase the probability of row i containing
a candidate as much as possible. For any fixed i, let us consider an unknown n × n matrix M and let our adversary pick a
column j. We set Mi,j = 1 and let our adversary place additional 1s in column j so that it contains at least np′ 1s. The other
elements of M (i.e., those not in column j) are subsequently each assigned a 1 with probability p. Based on our assumption,
every row and column now contains at least np′ 1s. We now determine an upper bound on the maximum probability our
adversary can achieve of row i containing a candidate.

The number and placement of 1s in column j is the only element of the game our adversary can influence to maximize
the probability of row i containing a candidate. Thus, the optimal strategy is to maximize the probability of (i, j) becoming a
candidate. In order to do this, the number of 1s in column j has to be as small as possible (to force row i to select column j),
so we may assume our adversary places no more than np′

− 1 additional 1s for a total of np′. We assume row i thus selects
column j.

Now let Z again be a random variable denoting the number of rows containing the smallest number of 1s among all rows
having a 1 in column j. Recall thatE [Z] ≤ 1+o(1) by Lemma 5.2. The probability of column j selecting row i in our algorithm
is now bounded from above by E [Z] /np′, which implies the probability of (i, j) becoming a candidate is also bounded by
this probability. Plugging this in, we get

E [C] ≤

i

P [row i contains a candidate] + o(1)

=

i

E [Z]
np′

+ o(1)

≤
E [Z]
p

+ o(1)

=
1 + o(1)

p
. �

For any fixed p ∈ (0, 1), we have a constant bound on the expected number of candidates. This implies the expected
running-time of Algorithm 2.6 on random instances of Gn,n,p is O

n2

. This expected running-time is linear in the input size.

7. Conclusion

Avoiding fill-inwhile performingGaussian elimination is related to finding bisimplicial edges in bipartite graphs. Existing
algorithms to find bisimplicial edges are based on matrix multiplication. Their running-time is dominated by the matrix
multiplication exponent (ω ≤ 2.376). We have presented a new algorithm to find such pivots that is not based on matrix
multiplication. Instead, our algorithm selects a limited number of candidate edges, checks them for bisimpliciality, and
finds all other bisimplicial edges based on that. The worst-case running-time of our algorithm is O

n3

, but the expected

running-time for random Gn,n,p instances for fixed values of p is O

n2

, which is linear in the input size. The main reason for

this difference is that the expected number of candidates is only 1+o(1)
p .

Besides improving on the expected running-time on random instances, our new algorithm is also very easy to implement
in an efficient way. The running-time can be brought down easily to O (Cm), where the number of candidates C is known
after time O (m) and is bounded from above by n. Thus, we have a worst-case running-time of O (nm). The combination of
ease of efficient implementation and a linear bound on the average-case running-time makes our algorithm very practical.

Existing algorithms for the recognition of perfect elimination bipartite graphs are based on finding a sequence of
bisimplicial edges. We ask whether it is possible to extend our new algorithm to a new algorithm for the recognition of
perfect elimination bipartite graphs.

Acknowledgements

We gratefully acknowledge the support of the Innovation-Oriented Research Programme ‘Integral Product Creation and
Realization (IOP IPCR)’ of the Netherlands Ministry of Economic Affairs, Agriculture and Innovation.

References

[1] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990) 251–280.
[2] L. Goh, D. Rotem, Recognition of perfect elimination bipartite graphs, Inform. Process. Lett. 15 (1982) 179–182.
[3] M.C. Golumbic, C.F. Goss, Perfect elimination and chordal bipartite graphs, J. Graph Theory 2 (1978) 155–163.
[4] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, United Kingdom, 1995.
[5] K. Mulmuley, U.V. Vazirani, V.V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987) 105–113.
[6] J.P. Spinrad, Recognizing quasi-triangulated graphs, Discrete Appl. Math. 138 (2004) 203–213.

	Bisimplicial edges in bipartite graphs
	Introduction
	Bisimplicial edges
	Sparse matrices
	A first bound on the number of candidate edges
	Isolating lemma for binomial distributions
	Constant bound for the number of candidates
	Conclusion
	Acknowledgements
	References

