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A numerical study has been carried out by means of the Green’s function method to explore possible performance
improvements of a simple grated waveguide (GWg) by the variations of its grated structure. It is shown that a GWg
featuring symmetric two-sided grated structure of 16 teeth with a 60nm groove depth and having a symmetric
refractive index profile with a relatively large contrast between the grated and ungrated layers is capable of
delivering largely improved device performance compared to that achieved previously with a one-sided grating
of 40nm groove depth and asymmetric index profile. The improvement is characterized by a remarkable 8-fold
and 15-fold increase in the group index and the maximum field intensity, respectively, at the first resonance
wavelength above the upper band edge (shorter wavelength), while relatively less improvement is found at
the first resonance wavelength below the lower band edge (longer wavelength). It is shown that more than 20%
further improvement can be obtained by an appropriate shifting of the two innermost adjacent grating teeth in the
case of the 40nm groove depth. Apart from that, the result also reveals an interesting and remarkable correlation
between the variations of the group index and the confined energy. © 2011 Optical Society of America

OCIS codes: 050.2770, 230.7400.

1. INTRODUCTION
In the studies of photonic devices in the last decade, we have
witnessed rapidly growing interest in the development of slow
light devices mainly for two major purposes. One is the en-
hancement of light-matter interaction for increased sensitivity
in optical sensing. The other one is the extension of the range
of group velocity variation for the operations and controls of
variable optical delay lines and other photonic devices used
in optical information and communication technology [1,2].
There are two main directions of development pursued by
researchers for the realization of integrated optical devices
for those applications. One approach adopts the basic concept
of coupled resonator optical waveguides (CROWs) [3], while
the other has opted for the use of photonic crystal waveguides
(PhCWs) [4]. A comprehensive and direct comparison be-
tween performances of the two types of devices for commu-
nication applications has recently been reported using the
same silicon-on-insulator (SOI) technological platform [5].
It was shown that both structures can be used to synchronize
the orthogonally polarized data streams of a 100Gbyte=s
polarization-division multiplexing differential quadrature
phase-shift keying (PolDM-DQPSK) system without corrupt-
ing the phase information. Further comparison showed that
the CROW devices are preferable for operational regime of
upper data rate requiring longer delays and lower loss. On
the other hand, for the terabit regime, the PhCWs may offer
a more favorable prospect.

The study of grated waveguides (GWgs) with quasi-two-
dimensional structures has recently gained a growing interest

particularly for optical sensing applications, largely due to
their potential excellent performance in terms of a large group
index and strongly localized field [6–14]. The planar structures
considered in most of those studies also offer the benefit of
greater amenability of their on-chip fabrication by the existing
technology compared to the much more demanding technol-
ogy for the fabrication of fully three-dimensional devices [15].
However, for a waveguide with a uniform grated section as
often found in earlier studies, one has to deal with the prob-
lem of out-of-plane scattering loss arising from the mode-
mismatch between the modal fields of the grated and ungrated
sections. In our recent study, this issue was addressed by
considering a simple model of the waveguide having a one-
sided grating structure with modified edge sections using the
Green’s function method in the Dyson formulation [16]. It was
demonstrated that an appropriately chosen symmteric taper-
ing of the two end sections has resulted in a remarkable
85% loss reduction and 15% transmittance enhancement at
the first lower (longer wavelength) band-edge resonance, with
a less remarkable result found at the first upper (shorter
wavelength) band-edge resonance. The enhancement of the
resonance field and group index by increasing the number
of grating cells as confirmed in the study, is apparently not
the favorable choice as it implies an undesirable increase
of the device size. Further, the same structural modifications
responsible for the favorable loss reduction appeared to in-
duce the undesirable opposite effects on the group index
and field confinement. Therefore, for applications in optical
sensing and time delay control (wave slowing), it is desirable
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to further explore similarly simple but different GWg struc-
tures that would give rise to a significant increase in the group
index as well as local field enhancement while retaining the
favorable low-loss characteristic attained in the previous
work [16].

In this study, we consider a GWg with double-sided grating
structure and investigate the changes of the device’s opera-
tional characteristics induced by a number of structural
variations and different index contrasts, employing the
Green’s function method formulated in our previous work
[16]. Presented in this are the results of investigations on
structural change-induced effects on the transmittance, reflec-
tance, scattering loss, as well as the field enhancement, group
index and its slope, at both the upper and lower band-edge
resonances. The results show that despite the relatively
simple structural changes, it is possible to achieve truly
remarkable improvements on both the group index and field
enhancement over the results previously obtained with the
one-sided grating structure, without seriously compromising
the low-loss characteristic. The structure is further shown
to offer a favorable feature for delay line application.

2. DEVICE STRUCTURE AND
MATHEMATICAL FORMULATION
As shown in Fig. 1, the GWg structure considered is basically a
three-layer planar-system consisting of a cover layer of refrac-
tive index nco, a slab waveguide of thickness h ¼ 160nm and
index nsl, and the substrate of index nsu. The device features
grated sections of 16 uniform teeth, both on top and beneath
the slab waveguide with the groove depths of the top and bot-
tom gratings denoted by gt and gb, respectively. The grating is
further characterized by a periodicity of Λ ¼ 200nm and a
duty cycle of 0.5, yielding a total length of 3:32 μm for the
(grating section) device. This grating structure with the ex-
posed teeth is similar to the one investigated in a recent work
[17] using the SOI technology [18,19] for better sensing perfor-
mance [19]. Only the TE or s-polarized light (polarization
along the z axis) propagating in the x direction will be con-
sidered in this study. The structure will be excited by a guided
mode entering the structure from the left-hand side, employ-
ing an ungrated input feeder waveguide of the same width.

In this work, the effects of changing the structural as well as
material parameters are investigated with certain ranges of
variation. Our major attention is, however, focused on the ef-
fects induced by structural variations which include the case
with one-sided grating (gb ¼ 0) considered previously [16] for
useful comparison. The ensuing numerical study is further
concentrated on the basic model of the GWg with symmetrical

double-sided grating (gt ¼ gb). A number of additional local
structural variations of this model are considered for the
purpose of exploring the possibility of producing further
improvements on the device characteristics.

For the numerical analysis of those effects, we employ the
Green’s function formulation adopted in the previous study
[16], because the effects of small local structural variations
considered in the later part of this work can be conveniently
handled by this method. For the sake of easy reference, a brief
summary of the above mentioned formulation is given in the
following. In this formulation, the electric field in the system is
generally evaluated in terms of the associated Green’s func-
tion by the following equation:

EzðrÞ ¼ EB
z ðrÞ þ

Z
A

Gðr; r0Þk20Δεðr0ÞEB
z ðr0Þdr0; ð1Þ

with the Green’s function G given by

Gðr; r0Þ ¼ GBðr; r0Þ þ
Z
A

GBðr; r00Þk20Δεðr00ÞGðr00; r0ÞdA00; ð2Þ

where EB
z is the background field of the fundamental TE

mode of the ungrated slab waveguide of thickness 160nm,
and GB is the background Green’s function of the ungrated
three-layer system. Note further that ðr; r0Þ ¼ ðx; y; x0; y0Þ, k0 ¼
ω=c which is the free-space wave number, Δε ¼ ε − εB which
is the contrast between the permittivities of the scatterer (ε)
and the background (εB), while A is the area of integration
covering the entire computational domain. The complete
and detailed expressions of GB in terms of its Fourier compo-
nents for each layer in this structure were derived in [16] fol-
lowing the method formulated in previous works [20–22]. It is
worth noting that this method implicitly includes a built-in
perfectly transparent boundary, and hence a relatively small
computational window is sufficient to produce reliable com-
putational results. We have accordingly defined the computa-
tional window in this study by ½xl; xr � ¼ ½0; 8� μm and ½yl; yu� ¼
½−0:04; 0:2� μm, with the corresponding meshes are chosen to
be Δx ¼ 10nm and Δy ¼ 20nm. It is also important to note
that the system considered is assumed to be intrinsically
lossless.

The transmittance (T), reflectance (R), and loss per unit
length (L) parameters of the device are calculated on the basis
of the following definitions:

T ¼
R
h
0 jEzðxt; y; λÞj2dyR
h
0 jEz;0ðxi; y; λÞj2dy

; ð3Þ

R ¼
R
h
0 jEzðxi; y; λÞ − Ez;0ðxi; y; λÞj2dyR

h
0 jEz;0ðxi; y; λÞj2dy

; ð4Þ

L ¼ 1 − T − R

LG

; ð5Þ

respectively, where LG ¼ 3:32 μm is the total length of the
grated section, while xi and xt denote the positions located
at 0:5 μm from the left and right grating ends, respectively,
which are far enough to eliminate the effects of scattered

Fig. 1. Sketch of the symmetric double-sided GWg considered and
the associated system parameters.
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fields. Further, Ezðxi; y; λÞ and Ezðxt; y; λÞ are the fields at xi
and xt, respectively, while Ez;0ðxi; y; λÞ is the guided
fundamental modal field at xi.

The other two additional parameters to be investigated are
the group index (Ng) and the quality of energy confinement
(W). The group index is calculated according to the following
definitions, respectively, [23]:

Ng ¼
cτg
LG

¼ −

λ2dϕ=dλ
2πLG

; ð6Þ

where τg is the group-delay of the resonator, while ϕ is the
phase of the following complex transmission coefficient:

t ¼
R
h
0 EzðxR; y; λÞdyR
h
0 Ez;0ðxL; y; λÞdy

: ð7Þ

Here, xL and xR denote the positions of the left and right grat-
ing ends, respectively. It is clear from the definition of the
group index (6) that the time-delay slope is defined as follows:

dτg
dλ ¼ LG

c

dNg

dλ : ð8Þ

Note that the time-delay slope (8) is proportional to the
group-index slope dNg=dλ. For the calculation of the energy
W confined within a certain area A, we adopt the following
definition:

W ¼
Z
A

εslabjEj2dA; ð9Þ

where A covers the ungrated waveguide area in the grated
section.

3. RESULTS AND DISCUSSIONS
A. Effects of Increasing Refractive Index Contrast
Let us first consider the case having one-sided grating with
nco ¼ 1:98, nsl ¼ 3:48, nsu ¼ 1:98, gt ¼ 40nm, and gb ¼ 0 nm.
The upper and lower resonance wavelengths are given in this
case by λures ¼ 1073 nm and λlres ¼ 1187nm, respectively. For
the upper resonance, we find T ¼ −0:146dB, R ¼ −29:59dB
and L ¼ −4:503dB=μm, Ng ¼ 4:007, dNg=dλ ¼ 0:029 nm−1,
jEmaxj2 ¼ 4:339 ða:u:Þ, and W ¼ 5:132 ða:u:Þ, while for the
lower resonance the calculated result gives T ¼ −0:078 dB,
R ¼ −36:38dB and L ¼ −5:280dB=μm, Ng ¼ 3:941, dNg=dλ ¼
−0:026nm−1, jEmaxj2 ¼ 4:150 ða:u:Þ, and W ¼ 5:160 ða:u:Þ. This

is to be compared with the result for the same geometrical
structure, but with a refractive index profile specified by
nco ¼ 1, nsl ¼ 1:98, nsu ¼ 1:44, calculated previously for xi
and xt at 1 and 3 μm from the left and right ends of the grating,
respectively, in order to avoid the more extended scattered
fields [16]. It was found for this case that: T ¼ −0:177dB,
R ¼ −30:22dB, L ¼ −4:247dB=μm, Ng ¼ 2:092, dNg=dλ ¼
0:008 nm−1, jEmaxj2 ¼ 3:318 ða:u:Þ, and W ¼ 2:931 ða:u:Þ at the
upper resonance wavelength of λures ¼ 627nm. On the other
hand, for the lower resonance at λlres ¼ 693nm, the calculated
result for the parameters are given by T ¼ −0:082dB,
R ¼ −40:46dB, L ¼ −5:220dB=μm, Ng ¼ 2:029, dNg=dλ ¼
−0:010 nm−1, jEmaxj2 ¼ 3:107 ða:u:Þ, and W ¼ 2:919 ða:u:Þ.
Compared with the present case of the symmetric index pro-
file, the previous structure exhibits more asymmetric trans-
mission characteristics and relatively higher losses, as well
as less confined energy and upper group indices at both upper
and lower resonances. Thus, we have shown that an overall
improvement is achieved with a larger index contrast, with the
group index acquiring the most pronounced enhancement
marked by roughly twofold increases at both resonances.

B. Further Improvements with the Double-Sided Grating
Structure
Next, we consider structural variation from the case of sym-
metric index profiles with one-sided grating to the case with
symmetric double-sided grating structures of three different
groove depths namely gt ¼ gb ¼ 20, 40, and 60nm. Presented
in Fig. 2 are the transmittance (T) spectra of those three dif-
ferent structures with the upper and lower first resonance
wavelengths given respectively by λures ¼ 1075, 1016, 917:6 nm
and λlres ¼ 1189, 1156, 1124:6 nm for each of the three cases

Fig. 2. (Color online) Transmittance T for the cases with groove
depths gt ¼ gb ¼ 20 nm (red dotted curve), 40nm (black solid curve),
and 60nm (blue dashed curve).

Table 1. Calculated Operational Parameters of the Symmetric (gt � gb) Double-Sided GWg for Different Groove

Depths at the Upper Resonance and Lower Resonance, Showing the Most Favorable Improvement Attained with a

60 nm Groove Depth

Upper Resonance
gt, gb (nm) λures (nm) T (dB) R (dB) L (dB=μm) Ng dNg=dλ (nm−1) jEmaxj2 (a.u.) W (a.u.)

20 1074 ∼0 −51:56 −23:06 3.970 0.031 4.68 12.17
40 1016 −0:002 −43:98 −10:05 6.501 0.275 14.14 15.57
60 917.6 −0:252 −36:99 −3:765 16.68 1.975 52.66 23.95

Lower Resonance
gt, gb (nm) λlres (nm) T (dB) R (dB) L (dB=μm) Ng dNg=dλ (nm−1) jEmaxj2 (a.u.) W (a.u.)

20 1189 ∼0 −44:06 −18:48 3.950 −0:024 4.29 12.10
40 1156 −0:001 −35:53 −14:15 6.693 −0:207 11.56 14.00
60 1124.6 −0:079 −36:58 −5:265 15.20 −1:225 33.26 15.79
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of different groove depths, as displayed in the figure. It is seen
that the resonance wavelengths are consistently shifted to the
smaller values (blue shifted) with an increasing groove depth.
The most remarkable is the effect on the gap characteristics,
which exhibit the changes toward deeper and broader gaps
as the groove depth is increased, indicating the increased
influence of the grating structure.

Further, the calculated results of the operational param-
eters are summarized in Table 1 for the upper and lower
resonances. It is observed that except for the case with the
shallowest grooves, which feature closely equivalent opera-
tional characteristics at the two resonance wavelengths, the
other two cases of larger groove depths generally possess per-
ceptibly different characteristics at the two edge resonances.
Most remarkable are the monotonous and considerable in-
crease of Ng, jEmaxj2, and W with increasing groove depth at
both the upper and lower resonances, yielding the largest val-
ue of Ng ¼ 16:68, jEmaxj2 ¼ 52:66 ða:u:Þ, and W ¼ 23:95 ða:u:Þ
at the upper resonance for groove depth 60nm. Although this
is achieved at the expense of a concurrent and monotonous
increase of the loss, even the largest loss of −3:765dB=
μm found for the case of the 60 nm groove depth at λures ¼
917:6 nm to be still a relatively insignificant increase com-
pared with the value L ¼ −4:247dB=μm attained in the case
of one-sided GWg cited earlier. This is indeed a small price
that one has to pay compared with the great benefit gained
from the very large increases in those three important param-
eters. Compared with the result obtained in the previous case
of a one-sided grating with an asymmetric refractive index
profile and a 40nm groove depth, the increases marked
by more than 15-folds for jEmaxj2 and more than 8-folds for
Ng and W . It is important to add that along with the largest
group index of the device, Ng ¼ 16:68 attained at the upper
resonance also offers the corresponding group index slope
of dNg=dλ ¼ 1:975 nm−1 which amounts to a time-delay slope
of 0:022ps=nm for the total length of LG ¼ 3:32 μm: This is to
be compared with the performance characterized by a time-
delay slope 6 ps=nm as reported previously for a 4mm PhCW
operated at the third telecom window [5]. The comparison
clearly suggests the possibility of achieving the desirable per-
formance with further device miniaturization.

C. Effects of Further Structural Modifications
The following study is focused on the effects of the basic
patterns of performance variations affected by shifting the

two adjacent middle teeth for various distances denoted by
the shift parameter d, denoted in Fig. 1, with d > 0 and d < 0
referring to the outward and inward shifts, respectively. For
this study, the case of a 40nm instead of a 60nm groove depth
has been chosen for the study of detailed effects mentioned
above as the former is less demanding on the computational
labor and time. Note that for d ¼ 200 nm, each of the teeth
ends up merging fully with its outer neighboring tooth, leaving
a 500 nm wide groove in the middle of the newly formed GWg.
On the other hand, for d ¼ −100 nm, both teeth merge fully
into a single tooth in the middle of the new structure, sepa-
rated from the adjacent tooth on each side with a grooves
width of 200 nm.

Fig. 3. (Color online) Left (black solid circle) and lower (red solid
square) resonance wavelenghts for gt ¼ gb ¼ 40nm.

Fig. 4. (Color online) Transmittance (T) (red solid curve) for gt ¼
gb ¼ 40nm and (a) d ¼ 70nm, (b) d ¼ −100nm, and (c) d ¼ 200nm,
along with T for d ¼ 0 nm (black dashed curve).
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Similar to the g dependence of λures and λlres exhibited in the
unshifted case (d ¼ 0 nm), the resonance wavelengths are
also found to vary with d, as shown in Fig. 3 for the variation
of d over the range d ¼ −100 to 200 nm. It is seen that both λures
and λlres appear to vary nonmonotonously in opposite trends,
and their difference tends to decrease at d ¼ −100 nm and
d ¼ 200 nm. Depicted in Figs. 4(a)–4(c) are the transmission
characteristics for the cases of d ¼ 70nm, d ¼ −100 nm, and
d ¼ 200 nm, respectively. Compared to the case of d ¼ 0nm
represented by the dashed spectrum, an outward shift with
d ¼ 70 nm is found to move both resonance wavelengths to-
ward the gap center, resulting in a narrower gap with a slight
decrease in T at the upper resonance. On the other hand, for
cases with d ¼ −100nm and d ¼ 200 nm, only the lower reso-
nance wavelengths are seen to move further toward the gap

center with each associated transmittance showing a percep-
tible decrease. Meanwhile, the upper resonance in each case
appears to move back toward its original position by the same
amount of shifts in the corresponding λlres, leaving the gap
width roughly unchanged.

The detailed variations of the transmittance (T), reflec-
tance (R), and loss per unit length (L) as well as Ng, jEmaxj2,
andW as functions of d are given in Figs. 5 and 6, respectively.
All of them show nonmonotonous and generally different, and
mostly opposite variations with respect to d, leading to the
appearance of intersecting points indicated in the Figures.
The only exception is the behavior of R which remains low
over the entire range of d at both resonance wavelengths.
Further, the effects on the spatial intensity distribution related

Fig. 5. (Color online) Variations of the (a) the transmittance (T),
(b) reflectance (R), and (c) loss per unit length (L) with respect
to d at the upper (black solid circle) and lower (red solid square)
resonances. Fig. 6. (Color online) Variations of the parameters (a) Ng,

(b) jEmaxj2, and (c) W with respect to d at the upper (black solid
circle) and lower (red solid square) resonances.
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with the confined energyW are described in Figs. 7. The result
presented in Fig. 7(c) shows the highest maximum intensity at
λures ¼ 1033nm for d ¼ 70nm, featuring a 1.988 fold enhance-
ment with respect to jEmaxj2 of the unshifted case. The inten-
sity distribution depicted in the figure exhibits a very sharp
profile at the center of the GWg, indicating the presence of
a defect mode characterized by an exponential decay (locali-
zation) of the field as indicated by the intensity profile men-
tioned above. For this particular case, the enhancement
factors for Ng and W with respect to the unshifted case are
1.257 and 1.198, respectively, amounting to roughly 20%
enhancement. Although these favorable improvements are ac-
companied by an increase of the loss from L ¼ −10:05dB=μm
to L ¼ −5:241dB=μm, it is still slightly less than the best figure
(L ¼ −5:220 dB=μm) obtained previously with the one-sided

GWg [16]. The intensity profile shown in Fig. 7(d) for the same
case at λlres ¼ 1141 nm is clearly devoid of the same exponen-
tial intensity profile and yields even smaller enhancement
factors of Ng, jEmaxj2, andW of 1.089, 1.246, and 1.114, respec-
tively, but a remarkably smaller loss of L ¼ −10:30dB=μm. It
is interesting to note, however, that the intensity profiles
shown in Figs. 7(c) and 7(d) for d ¼ 70nm display roughly
an opposite pattern of contrast compared to those presented
in Figs. 7(e) and 7(f) for d ¼ −100nm, although the corre-
sponding pairs [Figs. 7(d) and 7(e) and Figs. 7(c) and 7(f)]
do appear to differ from each other in some peculiar details.

The effects of different d’s on all the pertinent operational
parameters at both resonances are summarized in Table 2.
Apparently, no general pattern of variation has emerged from
the calculated variations of the operational parameters due
to systematic changes of the shift parameter d. In other words,
a trade-off among those parameters must be considered for
each specific application. In spite of that, we have been
tempted to look into the possible relation between the de-
tailed variations of Ng and W given in Figs. 6. The results
plotted in Fig. 8 do reveal an interesting, nearly linear correla-
tion which is worthy of further study.Fig. 7. Spatial distribution of jEj2 along the x axis at z ¼ 0:08 μm at

the upper resonance (left panel) for (a) d ¼ 0 nm, (c) d ¼ 70nm,
(e) d ¼ −100nm, and (g) d ¼ 200nm, with (b), (d), (f), and (h) present
the distributions for the same series of d’s at lower resonance
(right panel).

Table 2. Further Variations of the Operational

Parameters as the Results of Shifting the Two Adjacent

Middle Teeth by Different Distances for the Upper and

Lower Resonances

Upper Resonances
d

(nm)
λures
(nm)

L

(dB=μm) Ng

dNg=dλ
(nm−1)

jEmaxj2
(a.u.)

W

(a.u.)

0 1016 −10:05 6.501 0.275 14.14 15.57
70 1033 −5:223 8.173 0.200 28.11 18.66

−100 1023 −5:446 7.023 0.161 17.40 16.53
200 1011 −7:913 5.975 0.223 11.87 14.50

Lower Resonances
d

(nm)
λlres
(nm)

L

(dB=μm) Ng

dNg=dλ
(nm−1)

jEmaxj2
(a.u.)

W

(a.u.)

0 1156 −14:15 6.693 −0:207 11.56 14.00
70 1141 −10:30 7.286 −0:199 14.40 15.60

−100 1125 −3:172 8.449 −0:226 23.03 17.85
200 1121 −2:949 8.625 −0:182 26.03 18.18

Fig. 8. (Color online) Correlation between the variations of Ng and
W deduced from the calculated results at the upper (black solid circle)
and lower (red solid square) resonances as presented in Fig. 6. The
blue solid diamond denotes the ðNg;WÞ of an unshifted structure.
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4. SUMMARY
Employing the Green’s function method, this numerical
study has demonstrated the possibility of achieving high
performance GWg with a double-sided grated structure and
proper choice of the material indices as well as the structural
parameters. It is shown that a symmetric two-sided GWg with
a slab thickness of 160nm and uniform groove depth of 60nm
may deliver the best performances marked by Ng ¼ 16:68,
dNg=dλ ¼ 1:975nm−1, jEmaxj2 ¼ 52:66 ða:u:Þ,W ¼ 23:95 ða:u:Þ,
and L ¼ −3:765dB=μm at λures ¼ 917:6nm and Ng ¼ 15:20,
dNg=dλ ¼ −1:225 nm−1, jEmaxj2 ¼ 33:26 ða:u:Þ, W ¼ 15:79
ða:u:Þ, and L ¼ −5:265dB=μm at λlres ¼ 1124:6 nm. Further im-
provements of more than 20% in Ng, jEmaxj2, and W can also
be achieved by an appropriate shift of the two innermost ad-
jacent teeth of the gratings. In addition to that, the detailed
variations of Ng and W are shown to exhibit an unexpected
and interesting near linear correlation.
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