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Abstract
We present a computational model of a thalamocortical relay neuron for exploring basal
ganglia thalamocortical loop behavior in relation to Parkinson’s disease and deep brain
stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that
oscillatory interaction within and between basal ganglia nuclei is very often accompanied by
synchronization at Parkinsonian rest tremor frequencies (3–10 Hz). These oscillations have a
profound influence on thalamic projections and impair the thalamic relaying of cortical input
by generating rebound action potentials. Our model describes convergent inhibitory input
received from basal ganglia by the thalamocortical cells based on characteristics of normal
activity, and/or low-frequency oscillations (activity associated with Parkinson’s disease). In
addition to simulated input, we also used microelectrode recordings as inputs for the model. In
the resting state, and without additional sensorimotor input, pathological rebound activity is
generated for even mild Parkinsonian input. We have found a specific stimulation window of
amplitudes and frequencies for periodic input, which corresponds to high-frequency DBS, and
which also suppresses rebound activity for mild and even more prominent Parkinsonian input.
When low-frequency pathological rebound activity disables the thalamocortical cell’s ability
to relay excitatory cortical input, a stimulation signal with parameter settings corresponding to
our stimulation window can restore the thalamocortical cell’s relay functionality.

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder
characterized by the loss of nigrostriatal dopaminergic neurons
and accompanied by abnormal synchronous oscillatory
activity at multiple levels of the basal ganglia–cortical loop
(Hammond et al 2007). The primary motor symptoms of the

disease are tremor at rest, bradykinesia, akinesia and rigidity.
Deep brain stimulation (DBS) is a established technique to
alleviate these symptoms. DBS can be applied in several
nuclei including the subthalamic nucleus (STN) (Hashimoto
et al 2003, Levy et al 2000), globus pallidus interna
(GPi) (Anderson et al 2003) and the ventral intermediate
thalamic (VIM) nucleus (Benabid 2003). Thalamic DBS is
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mainly effective in reducing tremor; however, when DBS is
predominantly applied at the STN or GPi, it relieves other
PD motor symptoms, including rigidity and bradykinesia.
A prospective study of 49 patients who were treated with
bilateral STN stimulation resulted in an average improvement
of their UPDRS scores at 5 years for motor functions by 54%
(p < 0.001), while off medication, and those for activities
of daily living improved by 49% (p < 0.001), as compared
with base line (Krack et al 2003). Remarkably, DBS was
only effective for the different target nuclei within very
specific parameter ranges, most notably at high frequencies
(>100 Hz) and with lower amplitudes at higher frequencies
(Rizzone et al 2001, Moro et al 2002). These parameter
settings for DBS are based on several studies (Benabid
et al 1991, Limousin et al 1995, Volkmann et al 2002, 2006).
Despite high clinical success rates, the mechanism by which
DBS prevents pathophysiological responses of the motor
network remains unknown. Several hypotheses regarding
DBS’s effectiveness have been formulated, including (1)
stimulation-induced disruption or desynchronization of
pathological network activity (McIntyre et al 2004, Tass
2001, Benabid et al 2009, McIntyre and Hahn 2010), (2)
downstream effects of axonal activation such as synaptic
inhibition or regularization of GPi activity (McIntyre et al
2004, Rubin and Terman 2004, Benabid et al 2009, Johnson
et al 2008, Montgomery and Gale 2008), (3) resonances in the
cortico-basal ganglia–thalamocortical loop (Montgomery and
Gale 2008) and (4) anti-dromic stimulation of afferent axons
projecting to the stimulated nucleus (Gradinaru et al 2009). In
this study, we focus on a combination of downstream effects
and regularization of activity.

The pathophysiology of PD is characterized by increased
firing rates of neurons in the basal ganglia (BG), and a tendency
toward bursting and abnormal synchronization in the neurons
of STN and globus pallidus (GP) (Brown 2003). Experimental
studies have linked synchronization that occurs at frequencies
within the 3–10 Hz-band and beta band (15–30 Hz) with
PD. The beta (15–30 Hz) oscillations are probably driven
from the motor areas of the cortex, but at tremor frequencies
(i.e. 3–10 Hz) it is the opposite direction of connectivity that
dominates the synchronized activity. Coherence between STN
and GPi activity has been confirmed at tremor frequencies;
moreover, STN activity leads to activity in the GPi (Brown et al
2001). Additionally, these nuclei showed coherence between
the GPi’s thalamic projection site, the ventralis anterior thalami
and the cortex. This coherence is also characterized by
thalamic activity preceding cortical activity (Brown 2003).
These findings emphasize the influence of the oscillatory
mode in the STN and GPi on the cortico-basal ganglia-
thalamocortical circuit at tremor frequencies. In this circuit,
the thalamus is in a key position as it receives the convergent
afferent input from the GPi, the cortex and the peripheral
system, which it then projects back to the cortex, including
motor areas (Smith et al 1998).

When thalamic neurons become hyperpolarized for
50–100 ms at tremor frequency, they show oscillatory bursting
patterns (Jahnsen and Llinàs 1984). The ionic mechanism
underlying this rebound behavior is the slow, low-threshold

T-type Ca2+ current. Responses of thalamic neurons to
afferent (inhibitory) signals from the GPi under both PD
and DBS conditions would appear to be vital to our
understanding of the DBS mechanism(s). This conclusion
is also supported by findings showing that DBS modulates the
BG’s output, as received by thalamus, rather than restores it
to a normal state (Dostrovsky and Lozano 2002, Hashimoto
et al 2003, Rubin and Terman 2004). In their pioneering
work, Rubin and Terman (2004) strongly indicated that the
thalamic relay function could be restored by STN-DBS-
induced synchronized activity at high frequencies (i.e. around
167 Hz, somewhat higher than the commonly clinically used
frequency of 130–145 Hz). They also showed that the
input from the BG with Parkinson-related frequency content
(<30 Hz) impaired thalamic processing. Their later
computational model used a single thalamocortical (TC) relay
cell, as well as a heterogeneous population of TC cells, to
determine TC relay fidelity. This model used both simulated
BG output and experimentally recorded GPi spike trains from
normal (control) monkeys and from Parkinsonian (MPTP)
monkeys (Guo et al 2008). Similar conclusions could be
reached based on inputs for the TC neuron model from both
the simulated and recorded GPi activity. The results of these
computational studies have led to significant advances in
understanding the mechanism underpinning the efficacy of
(STN-)DBS. However, results validating the existence of a
clinically effective stimulation window that combines low-
stimulation amplitudes and high frequencies have yet to be
presented.

The aim of this study, which complements the work
of Rubin and Terman, is to explore the amplitude and
frequency dependence with respect to the generation and
suppression of rebound activity in a TC relay cell. We
modeled a single TC relay neuron and simulated input
conditions that represent the characteristic behavior of the
BG network. Therefore, irrespective of the exact network
architecture, BG output is considered as an integrated signal
representing normal, Parkinsonian and stimulation-induced
activity patterns conforming to experimental data. This takes
into account the fact that a group of GPi neurons converges
onto a single, thalamic cell (Raz et al 2000, Smith et al 1998).
The model was also simulated using microelectrode recordings
(MER) from the GPi as input for the model. The power
spectrum of this input has a prominent peak around 5 Hz.
As a result, we focus primarily on the effectiveness of the
stimulation with respect to PD tremor reduction.

2. Methods

We investigated the response of a TC neuron for a
frequency range of 0–200 Hz corresponding to normal
constant input resulting from the integration of irregular
firing patterns, low-frequency signals (3–30 Hz; associated
with Parkinsonian oscillatory behavior and/or low-frequency
electrical stimulation), and for signals representing high-
frequency stimulation (>30 Hz). The input based on recorded
GPi data is combined with an idealized signal representing
electrical stimulation for a frequency range from 0 to 200 Hz.
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In addition, a simplified model signal for the Parkinsonian
input is considered to study the frequency dependence and the
role of synchronization in the generation of rebound responses.

We also took a number of conditions into consideration as
follows. First, the output from GPi is synaptically transmitted
to the TC relay cell. Secondly, pathological oscillations due
to PD are assumed to remain (partially) present in BG output
when stimulation is applied. This is in accordance with clinical
observations showing that firing patterns of some STN neurons
appear unaltered during DBS at standard settings (Carlson
et al 2010) and that PD symptoms prevail during sub-
therapeutic DBS (Moro et al 2002, Rizzone et al 2001,
Hashimoto et al 2003, Butson and McIntyre 2005).
Stimulation might only affect part of the stimulated nucleus
and corresponding pathways in the BG (Johnson and McIntyre
2008). We therefore also assume that the GPi output
is due to both the stimulation and remaining pathological
Parkinsonian activity in the BG. The presence of oscillatory,
low frequency inputs from the GPi (3–10 Hz) assumes a central
oscillator within the BG, which would also be responsible
for Parkinsonian rest tremor (Deuschl et al 2000). Thirdly,
we are aware that DBS may act through electrical high-
frequency stimulation of either STN or GPi, via orthodromic
and/or antidromic activation of efferent and/or afferent axons.
Irrespective of the target nucleus, we assume that the DBS-
induced, high-frequency patterns are transmitted through the
BG network and result in a tonic high-frequency synaptic input
to the thalamus through GPi (Lozano et al 2002). Regarding
STN-DBS, in an earlier computational model of a small BG
network we showed that the DBS frequency is transmitted
via the GPi output to the thalamus (Cagnan et al 2009).
Fourthly, the response to pathological synchronized oscillatory
input from the BG is considered with and without additional
excitatory (sensorimotor) inputs. In the absence of external
excitatory inputs, we assume that the thalamic relay cell should
not spike. This represents a physiological resting state.

2.1. The TC relay neuron model

The TC relay neuron is represented by a single compartment
model with membrane dynamics based on earlier modeling
work (McIntyre et al 2004, Cagnan et al 2009) and
neurophysiological data (Huguenard and McCormick 1992,
McCormick and Huguenard 1992, Destexhe et al 1998).
All currents are conductance based except for the T-type
calcium current, which includes the Goldman–Hodgkin–Katz
ion current equation. It can be concluded from experimental
studies that highest T-current densities are found in distal
dendrites (dendritic region at >11 μm from the soma).
Without including dendritic compartments T-type channel
behavior can be included in the single compartment model
under the constraint that its I–V curves are similar to those
of intact cells (Destexhe et al 1998). In this way, the
model enables the generation of low-threshold burst responses
consistent with experiments. The time derivative of the

membrane potential V of the thalamic neuron, the gating
variables and the calcium concentration are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dV

dt
= −(INa,t + IK,DR + IK,s + IT + Ih + IA

+ INa,leak + IK,leak + IGPi,Th + ICtx,Th),

dX

dt
= (X∞ − X)/τX,

d[Ca]i
dt

= ([Ca]buf − [Ca]i )/τCa − kCaIT .

(1)

Here, INa,leak and IK,leak represent sodium and potassium
leak currents, respectively, IK,DR represent fast, IK,s slow
and IA inactivating potassium currents, INa,t is a transient
sodium current, IT is a low-threshold T-type Ca2+ current
and Ih stands for a hyperpolarization-activated current. The
synaptic input received by the thalamic cell from GPi
neurons is described as IGPi,Th. Excitatory input from
the cortex is described by ICtx,Th. The gating variables
X ∈ {m, k, n,mT , hT , c, d, e1,2, f1,2, h1,2} satisfy first-order
differential equations. The functions X∞ and τX are described
in the appendix, but we briefly mention here that currents are
expressed in μA cm−2, conductances in mS cm−2, times are
in ms, voltages in mV and concentrations in mM).

In the absence of inputs from the GPi or the cortex, the
TC cell is understood to be at rest at a potential near −60 mV.
The application of a depolarizing input current results in a
tonic spiking mode, whereas the TC cell’s response to a release
from a hyperpolarizing input current elicits a train of action
potentials, i.e. a rebound burst (Smith et al 2000, Sherman
2001, Destexhe and Sejnowski 2003). Both simulated
responses are shown in figure 1. T-type calcium channels
play an important role in the generation of the post-inhibitory
rebound action potentials. In particular, the T-inactivation
variable hT de-inactivates when the neuron receives inhibitory
(synaptic) input. Upon release from inhibition, the membrane
potential repolarizes to the rest membrane potential. The
T-activation gate mT acts on a much shorter time scale than hT ,
and this results in the T-type Ca2+ channels remaining open
for a limited amount of time. This calcium current depolarizes
the neuron and rebound spikes are observed until hT is
again inactivated, thereby decreasing the T-type current. The
A-current restrains the effect of T-type current (Pape et al 1994,
Molineux et al 2005). Initially, we set gA = 0 and next we
investigate the influence of the inactivating potassium current
IA on our results.

2.2. Inputs to the TC neuron model

2.2.1. Characteristics of GPi Parkinsonian activity derived
from MER data. GPi single unit activity was retrieved
from a single patient with advanced PD who received a
DBS electrode implantation in the GPi. The procedure
for DBS was a one-stage bilateral stereotactic approach,
using frame-based three-dimensional MRI reconstructions
for target calculations and path-planning, including MER.
The standard target coordinates used were 21 mm lateral to
the midplane, 2 mm anterior to the midcommissural point
and 5 mm below the intercommissural point for the GPi.
The patient was awake during the surgical procedure and
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Figure 1. Response of the TC neuron model to input currents.
Upon release of a hyperpolarizing input current (2 μA cm−2 applied
for 150 ms starting at t = 50 ms), a rebound burst appears, while the
neuron fires tonically in response to a depolarizing input
(2 μA cm−2 for 100 ms starting at t = 350 ms and gA = 0).

without any sedatives. Surgery and MER were performed
following overnight withdrawal of anti-Parkinson medication.
Extracellular single/multi-unit MER was performed with small
(10 μm width) polyamide-coated tungsten microelectrodes
(Medtronic; microelectrode 291; impedance 1.1 ± 0.4 M�;
measured at 220 Hz, at the beginning of each trajectory)
mounted on a sliding cannula. Signals were recorded with
the amplifiers (10 000 times amplification) of the Leadpoint
system (Medtronic), and were analog bandpass filtered
between 500 and 5000 Hz (−3 dB; 12 dB/oct). The signal
was sampled at 12 kHz, by use of a 16 bit A/D converter
and afterward up-sampled to 24 kHz offline. Following a 2 s
signal stabilization period after electrode movement cessation,
multi-unit segments were recorded for 5–40 s. Starting for GPi
12 mm above the MRI-based target, the microelectrodes were
advanced in steps of 500 μm toward the target by a manually
controlled microdrive. When the needles were inside the GPe
(globus pallidus externus) and GPi at each depth the spiking
activity of the neurons lying close to the needle (an area with
a radius up to about 200 μm) could be recorded. Depending
on the neuronal density, no more than 3–5 units were recorded
simultaneously. More distant units were indistinguishable
from the background level. More details can be found in Bour
et al (2010). Spikes were identified using the envelope method
(Dolan et al 2009). On the basis of spike sorting we selected
only those spikes that were most likely due to a single cell.
The first 5 s of the spike train are shown in figure 2(A), and see
figure 4(A) for a detailed enlargement. The power spectrum
of the signal was then calculated according to Halliday et al
(1995) and showed a strong frequency component near 5 Hz
in the theta band, coherent with the Parkinsonian tremor of the
patient’s arm (Bour et al 2010), see figure 2(B).

2.2.2. Normal and Parkinsonian GPi output patterns. The
input IGPi,Th is assumed to be a convergent (GABA-ergic)
inhibitory input from GPi (Smith et al 1998). This input
may contain constant background activity representing normal
(physiological) activity, oscillatory Parkinsonian activity and
DBS-induced activity. It is described as

IGPi,Th = (gPDsPD(t) + gDBSsDBS(t))(V − EGABA). (2)

The synaptic variable sPD(t) is modeled as an impulse
response that decays exponentially with time constant τGABA =
10 ms (i.e. s(t) = exp(−(t − ti)/τGABA) with ti the
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Figure 2. (A) First 5 s of the experimental GPi spike train. Each bar
represents a spike. (B) Autospectrum of the experimental GPi time
series with S(f ) the Fourier transform of the spike times.
Asymptotic value of the spectrum (dashed) and 95% confidence
levels (solid) are also indicated. There is a significant peak near
5 Hz.

time of the most recent GPi action potential). The GPi
spike times for Parkinsonian conditions were taken from
the experimentally recorded GPi time series as described
above. A characteristic time series of the input is shown in
figure 4(B), in which a typical tremor frequency of 5 Hz
can be observed. The DBS signal (second term of (2)) has
a periodic, exponentially decaying pulse shape sDBS(t) =
exp(−mod(t, 1000/fDBS)/τGABA) with f DBS the stimulation
frequency. This represents highly synchronized activity being
transmitted to the thalamus via the GABAergic projection from
the GPi regardless of whether the nucleus targeted by DBS is
the STN or GPi. The parameters gPD and gDBS represent
the maximum conductances of the signals. During DBS, the
activity of the target nucleus is partially overwritten, depending
on the volume of tissue activated (McIntyre et al 2004, Butson
and McIntyre 2005, Hahn and McIntyre 2010). Indeed,
some studies show a minor improvement of symptoms for
subtherapeutic stimulation amplitudes (Hashimoto et al 2003,
Guo et al 2008). This motivated us to use gPD = gPD,max(1−λ)

and gDBS = βgPD,maxλ. We varied gPD,max to gauge how
strong the GPi output should be in order to elicit pathological
oscillatory responses in the thalamic neuron model. The
recruitment factor λ between 0 and 1 represents the fraction of
the input that is now due to DBS. The parameter β accounts for
an increase in activity within the target nucleus due to electrical
stimulation. For previously quiescent cells that may become
active upon stimulation, the range is from 1 to 2 (Reese et al
2008, Hahn et al 2008). Finally, we set EGABA = −85 mV
for the GABA reversal potential (Rubin and Terman 2004,
McIntyre et al 2004).

In order to perform a thorough analysis of the thalamic
neuron model, a complete range of the frequencies associated
with low-frequency Parkinsonian oscillatory activity is
required. And since the single-unit activity data retrieved
from MER only contain a 5 Hz tremor component, we needed
an additional representation of GPi input. We therefore used
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a waveform consisting of a dc component and the dominant
frequency of oscillation:

IGPi,Th = gGPi,Th(1 + αP sin(2πfP t))(V − EGABA). (3)

This waveform is characterized by an average activity level
gGPi,Th and oscillation frequency fP . The parameter αP

is a modulation amplitude that gives a measure of the
synchronization level within GPi; its value ranges between 0,
or no Parkinsonian input, and 1, or complete synchronization.
For equation (3) we have gPD,max = gGPi,Th(1 + αP ).

2.2.3. Sensorimotor input. The excitatory (glutamatergic)
synaptic input from the cortex, ICtx,Th, is modeled as a
sequence of block pulses sCtx,Th(t) with a pulse width of 5 ms
(s = 1 during the pulse and s = 0 otherwise) and pulse
amplitude gexc. This is similar to Rubin and Terman (2004)
and Guo et al (2008):

ICtx,Th = gexc sCtx,Th(t) (V − EGlut). (4)

The reversal potential for glutamate (AMPA receptors) is
EGlut = 0 mV (Kim et al 1997, Destexhe et al 1998, Terman
et al 2002, Rubin and Terman 2004, McIntyre et al 2004).

2.3. Simulation protocol

Time signals were computed with the aid of MATLAB (version
7.3, The MathWorks, Inc.) and by using ‘ode15s’ with
maximal timestep 0.1 ms for solving the differential equations.
Input patterns are defined to enable investigation of switches
from normal to Parkinsonian behavior; the effect of high-
frequency stimulation on oscillatory behavior and the TC cell’s
ability to perform its relaying function of sensorimotor input
signals. The numerical bifurcation analysis of the TC model
was performed using the MATLAB toolbox MATCONT,
a continuation and bifurcation toolbox for the interactive
numerical study of dynamical systems (Dhooge et al 2003).
Periodic orbits have been computed using 80 mesh points and
standard tolerances.

2.3.1. Normal and PD patterns. We distinguish between
normal and PD responses based on the appearance of rebound
responses. The response of the TC cell was investigated
with GPi input only (i.e. without high-frequency stimulation
and sensorimotor input (gDBS,max = gCtx,Th = 0 mS cm−2)).
First, we increased gPD,max to a value where the low
frequency oscillations in the experimental GPi time series
elicited rebound responses. Subsequently, we considered the
sensitivity of our results with respect to the level of synchrony
and frequency using (3). To that end, we varied the parameters
of the synaptic input gGPi,Th, fP and αP . Initially, fP in
(3) is set to 8 Hz and gGpi,Th = 0.1 mS cm−2. When we
increase αP , there is a critical value αc1, which indicates the
threshold between the generation of subthreshold oscillations
and rebound spikes. We then reversed the direction, starting
at αP = 1 and decreasing αP , to discover αc2 implying
a threshold between the generation of rebound spikes and
subthreshold oscillations. Both thresholds αc1 and αc2 are
detected automatically within MATCONT. We determined
both critical values while varying gGpi,Th and fP < 20 Hz.

2.3.2. Stimulation induced patterns—rebound suppression
and relay reliability. By applying a stimulation signal we
investigated if, how and under which conditions application of
high-frequency inhibitory input to thalamus would prevent the
TC cell from responding to a synchronized pathological drive
(<30 Hz). Here, we used only the experimentally recorded
GPi time series for the Parkinsonian signal.

To analyze the performance of stimulation in suppressing
rebound responses we defined the suppression level S as
the ratio of the number of suppressed rebound spikes and
the number of rebound spikes without stimulation. When
a rebound response consisted of multiple spikes, it was
counted as one response. We tested the relay function
of the TC cell using the relay level R in the presence of
cortical excitatory input pulses, and with R defined as the
ratio of successfully relayed input pulses and the number of
excitatory pulses. The expected relay spike times are based
on the excitatory input and aid in classifying the generating
mechanism for each of the TC cell’s action potentials. We
make a distinction between responses to excitatory input
pulses and rebound responses to synchronized inhibitory burst
input from GPi. The definition of the suppression and relay
level enables the separate investigation of the two different
responses that may be attributed to pathology: the inability of
relaying sensorimotor signals, and the generation of rebound
responses resulting in transmission of BG oscillatory content
to cortex (S > 0.9 is considered to indicate sufficient rebound
suppression and R > 0.9 to indicate sufficient relay).

Simulations were performed for stimulation frequencies
starting at 20 Hz up to 200 Hz (specifically 20, 25, 30 to
100 in steps of 10, 135, 185 and 200 Hz). We varied λ, the
level of overwriting PD activity, between 0 and 1 (with an
average step size of 0.05). We used gPD,max = 0.4 mS cm−2

and tested β = 1.0, 1.2, 1.5, 2.0. For the excitatory input
level we used gexc = 0.13, 0.15 or 0.17 mS cm−2. Lower
values lead to a low success rate, while for values larger than
0.2, each excitatory input yields two TC spikes which we also
classify as a bad relay. The timing of the excitatory pulses is
stochastic. We take the interpulse interval from an exponential
distribution with a mean of 60.6 ms (a rate of 16.5 Hz). We
then imposed a minimal interpulse interval of 10 ms similar
to Rubin and Terman (2004), Guo et al (2008) to prevent
overlapping which would make classification ambiguous. We
generated five such input trains, determined the maximal and
minimal λ for sufficient relay and suppression, respectively, for
each train and averaged over these five values. Additionally,
in order to test the sensitivity of the model neuron, we
increased the maximum permeability level of calcium, pCa,
corresponding to the strength of the T-type Ca2+ current, from
0.1 to 0.15 10−3cm s−1. We also compared the R and S curves
when the A-current was included in the model. The simulation
of each of the conditions spans a period of 40 s.

3. Results

3.1. Normal and PD modes of the TC cell

We simulated the TC response with input according to (2)
while increasing gPD,max from 0 to 0.5 mS cm−2 without DBS
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Figure 3. Characteristics of the response of the TC cell to GPi input. (A) The number of rebound responses as a function of gPD,max. For
gPD,max > 0.35 some rebound responses consist of multiple spikes. For increasing values of gA the number of responses diminishes (dashed
and dotted lines). Power spectrum of the TC response for gPD,max = 0.5 mS cm−2 and gA = 0 mS cm−2 (B) and gA = 1.5 mS cm−2 (C) with
S(f ) the Fourier transform of the TC spike times. The dashed horizontal lines indicate the asymptotic values. The solid horizontal lines
demarcate the 95% confidence intervals with two peaks above, one near 5 and the other around 90 Hz. The first is due to the GPi burst
frequency, and the second due to bursts consisting of multiple spikes. The spectra without and with the A-current are very similar apart from
a scaling factor as with the A-current there is less power.

input (gDBS = gexc = 0). For small gPD,max there is only
subthreshold TC activity, while the TC cell shows rebound
activity above a threshold of gPD,max ≈ 0.15 mS cm−2, see
figure 3(A) (solid line). During 40 s of the simulation the TC
cell has around 200 spikes for sufficiently high gPD,max which
results in a frequency around 5 Hz. This is confirmed in the
power spectrum, see figure 3(B). We concluded that the TC
cell is transmitting the low frequency GPi oscillation. It is
known that the A-current influences the generation of calcium
T-type rebound responses (Pape et al 1994, Molineux et al
2005). For subthreshold values of the potential, these currents
have an opposite effect. While the T-current is depolarizing,
the A-current is hyperpolarizing, which makes it more difficult
to spike. We have investigated this interplay for various values
of the conductance gA. First, for increasing values of gA the
minimal value of gPD,max that generates rebound responses
increases. For very high values of gA no rebound responses
appear at all. Second, we see that fewer rebound responses
are generated for increasing gA. This can be understood by
inspecting the time series as follows.

The rebound responses of the TC cell occur during silent
intervals after a GPi burst (see figure 4(A–D)). During the GPi
burst, the T-current de-inactivates providing the depolarizing
drive for the post-inhibitory spike. Note that also a longer
pause can lead to a response, e.g. around t = 2750 ms. When
we include the A-current, e.g. we set gA = 1.5 mS cm−2,
we observe that the rebound response around t = 2750 ms
disappears. The GPi input pause is not preceded by a true
burst so that the T-current is only moderately strong. At
this moment the A-current provides enough hyperpolarizing

current to counteract the drive by the T-current. We concluded
that the A-current acts as a filter such that only GPi bursts
cause rebound responses.

Next, we investigated variations of the model and the
synaptic input using equation (3). Initially fP in equation (3)
is set to 8 Hz and gGPi,Th = 0.1 mS cm−2. When simulating
the input into the TC cell according to (3) and while no
synchronization is present within GPi, i.e. αP = 0, the
input is constant and the neuron responds by settling to a
steady state. For small αP the membrane potential responds
with small sub-threshold oscillations. When increasing αP

from 0 to 1 it is observed that for values of αP below a
critical value, αc1, no rebound action potentials are generated.
Above this value, however, the thalamic neuron will always
fire (at least once per period). When the experiment is
reversed by decreasing αP from 1 to 0 until the rebound
action potential disappears, the critical value αc2 then becomes
smaller than αc1, indicating a region of bistability. Figure 5
shows both critical values as a function of the frequency of
the Parkinsonian oscillations. From this figure we conclude
that the frequency selectivity of the thalamic neuron model
has a large overlap with experimentally observed frequencies
related to synchronized activity during PD (Brown et al
2001, Magill et al 2000, Magnin et al 2000, Nini et al
1995, Raz et al 2000). This is specifically true for
higher values of αP , which indicates that input from GPi
is more synchronized, and synaptic input with frequencies
in a Parkinsonian regime can elicit rebound action potentials
continuously. For a frequency fP of 8 Hz, at which value the
threshold level is near a minimum, αc1 = 0.81 and αc2 = 0.79.
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Figure 4. Characteristic part of time series of the dynamics of the
TC cell in response to Parkinsonian input (gPD,max = 0.3 mS cm−2,
gDBS = gexc = 0). (A) the presynaptic GPi spike times; (B) the
synaptic input sPD; (C) the calcium inactivation gating variable hT ;
(D) the membrane potential V of the TC cell for gA = 0 (solid) and
gA = 1.5 mS cm−2 (dotted). The two traces are very similar except
near t = 2750 ms when without the A-current there is a rebound,
but not for the simulation with the A-current.
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Figure 5. For the frequency range from 3 to 20 Hz the threshold
levels for the generation of rebound action potentials (APs) and no
rebound APs are plotted. The two curves indicating αc1 (dotted) and
αc2 (solid) enclose a region of bistability. The dot represents the
parameter values used in figure 6 (gGPi,Th = 0.1 mS cm−2).

The bi-stable behavior of the thalamic cell for this situation is
presented in figure 6.

The instability boundaries of the spiking and non-
spiking solutions consist of saddle-node and period-doubling
bifurcations. These boundaries depend smoothly on other
system parameters (Chow and Hale 1982, Kuznetsov 2004).
We have investigated how these boundaries change for
different values of gGPi,Th. For other values of gGPi,Th the
curves have a similar shape to those shown in figure 5.
For fP near 5 Hz, the boundaries exist for gGPi,Th � 0.075
(or gPD,max � 0.15); this accords with the result shown
in figure 3. As gGPi,Th values increase, we noted that
the minimum value of αP (i.e. where the TC cell is most
sensitive) is at lower values of fP and the instability region
narrows.

3.2. Stimulation of the TC cell: rebound suppression and
relay reliability

The addition of stimulation-induced inhibitory and excitatory
input alters the response of the TC cell. Depending on
the parameters of the input, several qualitatively different
scenarios exist. Examples of these different responses are
shown in figure 7 in which the membrane potential of
the TC cell and the excitatory input are presented. For
the Parkinsonian signal derived from the GPi recording
we set gPD,max = 0.4 mS cm−2. For the stimulation,
we set the frequency fDBS = 135 Hz, with a rate of
activity increment β = 1.2 and the overwriting parameter
(‘stimulation amplitude’) λ is set low (0.05), intermediate
(0.1–0.2) or complete (1.0).

Without excitatory inputs (gexc = 0) rebound responses
still exist during low amplitude DBS (figure 7(A)). For
intermediate values of gDBS, rebounds are suppressed due to
a little extra inhibition which keeps the membrane potential
below a firing threshold (figure 7(B)). Even at low values of
λ, many, but not all, rebounds are suppressed (figure 7(C)) in
the presence of excitatory inputs. For intermediate strength
of λ, rebounds completely disappear (figure 7(D)). As can be
seen in the corresponding figures, most of the excitatory inputs
were relayed. A stronger DBS signal, however, induces more
inhibition causing relay failure (figure 7(E)). Relay failure
also occurs if the strength of the excitatory inputs is too low
(figure 7(F)). As soon as stimulation is stopped rebound
activity re-appears. Note that only the scenarios shown in
figures 7(B) and (D) seem desirable as both rebounds are
suppressed and excitatory inputs are relayed sufficiently.

Next, we systematically varied the parameters λ and f DBS

to find regions with sufficient rebound suppression (S > 0.9)
and relay reliability (R > 0.9) (see figure 8). For each
frequency f DBS we determine a value of the parameter λ

corresponding to these thresholds resulting in S-curves and
R-curves, respectively. In all panels, rebounds are suppressed
above the S-curves (dashed) and sufficient relay occurs below
the R-curves (bold).

Figures 8(A)–(D) show S-curves presenting the minimally
required recruitment λ for a given stimulation frequency f DBS

in order to suppress transmission of the Parkinsonian drive
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Figure 6. For fP = 8 Hz, αP = 0.8 and gGPi,Th = 0.1 mS cm−2 the TC model neuron described by (1) has both stable non-spiking (A) and
stable spiking (B) solutions. This region of bistability ranges from αc2 ≈ 0.79 < αP < αc1 ≈ 0.81.
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Figure 7. The behavior of the TC cell under Parkinsonian conditions for different stimulation settings. For the input (2) we fix
gPD,max = 0.4 mS cm−2 and β = 1.2. The stimulation frequency is set at fDBS = 135 Hz. The upper traces represent the membrane voltage
of the TC cell. For (C)–(F) the precise timing of the excitatory input (mean rate 16.5 Hz) is displayed beneath each voltage trace. (A)
λ = 0.05 and gexc = 0: DBS too weak; (B) λ = 0.2 and gexc = 0: DBS sufficiently strong; (C) λ = 0.05 and gexc = 0.15: DBS too weak,
still rebound responses; (D) λ = 0.2 and gexc = 0.15. Perfect relay and no rebounds; (E) λ = 1.0 and gexc = 0.15: relay failure due to too
strong DBS; (F) λ = 0.1 and gexc = 0.10. Input too weak.

when no excitatory inputs are applied. For the S-curves
(dashed) we could consider two cases: with and without
excitatory input to be relayed. We find that these two curves
hardly differ and that the one without relay is always slightly
higher. Therefore, we present the case without relay only.
Below we discuss the effect of the relay input on rebound
suppression in more detail.

The S-curves show two asymptotes: for frequencies
above 100 Hz an almost flat plateau occurs, while for lower
stimulation frequencies the minimal recruitment λ increases.
Stimulation below 40 Hz even fails to suppress rebound
activity in most cases. The chance of an excitatory input
occurring during high levels of inhibition, however, increases
for higher f DBS. When f DBS is very high (>150 Hz), the
minimum and maximum values of the synaptic variable sDBS

differ less and they are nearly constant. Therefore, the R-curve
decreases for increasing f DBS.

Most importantly, the combined S- and R-curves show
that certain combinations of stimulation amplitude and

frequency, represented by λ and f DBS, respectively, satisfy
the condition for both sufficient relay (below R-curve) and
rebound suppression (above S-curve). Within this amplitude–
frequency window, the stimulation prevents transmission of
the pathological oscillatory input, but does not impair the
relay of sensorimotor input, provided this input is sufficiently
strong. Generally speaking, this parameter window ranges for
frequencies above 50 Hz and with λ between 0.15 and 0.3.

The size of this amplitude–frequency parameter window
varies with slightly altered parameters. First, varying the
strength of the excitatory input has a strong effect on the R-
curve, but not the S-curve (figure 8(A)). This is as expected
as it mainly influences the chance for successful relay. For
low amplitudes of cortical input pulses the R-curve would
overlap with or lie below the S-curve, e.g. R1-curve for
gexc = 0.13 mS cm−2. In such cases, stimulation will not
be able to both suppress rebounds and provide sufficient
relay. Second, changing β from 1.0 to 2.0 confirms that
the R-curve lowers with increasing β (figure 8(B)). This is
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Figure 8. Sufficient suppression occurs above the S-curves (dashed), determined without relay (gexc = 0), while sufficient relay is found
below the R-curves (solid). Parameters are set to gPD,max = 0.4 mS cm−2, β = 1.5, gexc = 0.15 mS cm−2, gA = 0 mS cm−2, and
pCa = 0.1 × 10−3 cm s−1 unless explicitly specified otherwise. (A) Different amplitudes for the excitatory input gexc = 0.13 (R1),
0.15 (R2), 0.17 (R3) mS cm−2. (B) Different amplitudes for β = 1.0 (R4), 1.2 (R3), 1.5 (R2), 2.0 (R1). The arrow indicates the direction of
increasing β. (C) Same as (A) with stronger T-current pCa = 0.15 × 10−3 cm s−1. (D) Same as (A) with A-current gA = 1.5 mS cm−2.

expected: excitatory input is less easily relayed as the level
of inhibition increases. Another trend, indicated by the arrow,
is that increasing β also lowers the S-curves. This follows
from the fact that stimulation with higher β induces more
inhibition, which in turn makes it easier to suppress rebounds.
As the shape of the four S-curves remains similar with varying
β, we plot the mean of these curves together with the minimal
and maximal value for each stimulation frequency indicated
by a shaded area. Here the minimal and maximal λ differ
by 0.075 only. Because the effect on the R-curve is much
stronger than that on the S-curve, the window of suitable
parameters is smaller for larger β. We also observed that with
β = 1.0, in other words where there was no extra activity due
to stimulation, there was only a minimum value of λ because
sufficient relay still occurs for λ = 1 for most frequencies
(R4-curve). Third, a comparison of figures 8(A) and (C)
reveals that a stronger T-current (pCa = 0.15 × 10−3cm s−1

instead of 0.1 × 10−3) makes it harder to suppress rebounds
raising the S-curves. Another observation is that, during an
excitatory input, the T-current provides some extra driving
force that enables the relay to succeed; this makes the cell
more responsive. This raises the R-curve. The combined
effect is a smaller window. Fourth, the general effect of the
A-current is that it slightly lowers the R- and S-curves by

impeding spiking a little. As a consequence, the amplitude–
frequency window shifts to lower values of the amplitude
only. Finally, we also tested the effect of different mean
rates of the excitatory input fexc = 5 in steps of 5–40 Hz,
see figure 9, without DBS (λ = 0). We observe that for
higher frequencies in the high-beta and low-gamma range
many rebounds are suppressed by the excitatory input. This
can be explained from the dynamics of the T-current, in
particular the inactivation variable hT . The excitatory input
(gexc = 0.15 mS cm−2) ensures rapid inactivation of the
T-type Ca2+-channels, thereby preventing a rebound response.
At the end of each GPi burst, therefore, the T-current is less
de-inactivated in the presence of excitatory inputs. The higher
the excitatory rate, the more often this occurs leading to
increasing rebound suppression for higher rates.

Finally, we briefly mention that rebound activity is not
suppressed by the application of low stimulation frequencies.
First, stimulation applied without the oscillatory inhibitory and
excitatory inputs (λ ≈ 1) causes rebounds for low frequencies
up to 21 Hz. However, in order to generate these rebounds,
stimulation amplitudes needed to be higher than those used
for the situations shown in figure 8 (gDBS > 0.4 mS cm−2).
Second, low stimulation frequencies enhance the generation
of rebound activity. In this case, even with weak Parkinsonian
amplitudes, stimulation with a reasonably strong amplitude
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Figure 9. The fraction of rebounds suppressed due to the presence
of the excitatory input increases with higher rates of the excitatory
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Figure 10. Time series of V during weak oscillatory Parkinsonian
drive (gPD,max = 0.25 mS cm−2), moderately strong stimulation
(β = 1.5 and λ = 0.5) of low frequency (fDBS = 20 Hz) and no
excitatory input (gexc = 0 mS cm−2). Low frequency stimulation
can enhance rebound responses.

(λ ≈ 0.5) partially overwrites the PD signal to the extent
that this is no longer able to generate rebounds by itself.
However, the combined PD and DBS signals still generate
rebound activity (see figure 10). We have observed this
enhancement for stimulation frequencies f DBS up to 25 Hz.
This contrasts with high frequencies, for which λ ≈ 0.2
suppresses rebounds even where the then-weaker PD could
generate rebounds (figure 8(A)).

4. Discussion

We investigated the modulation of TC functionality during
DBS as a function of stimulation frequency and amplitude.
We considered two effects of DBS on TC functionality,
namely rebound suppression and relay suppression. We have
shown that stimulation frequency influences the relay of low-
frequency oscillations: low-stimulation frequencies enhance
T-type rebound bursts, while high frequencies suppress them.
The suppression of low-frequency oscillations requires a
minimal stimulation amplitude, but too-high amplitudes block
the relay of excitatory input. Taken together, this approach
yields a parameter window that corresponds to therapeutic
stimulation. Partial suppression of rebounds may also be
achieved by applying excitatory input without stimulation.

It has been suggested that two principal modes of
synchronized activity within the human subthalamo-pallidal-
thalamo-cortical circuit are present: low frequency oscillations

(<30 Hz) facilitate slow idling rhythms in the motor areas of
the cortex and high-frequency oscillations (>60 Hz) restore
dynamic task-related cortical activity (Brown 2003). The
numerical bifurcation analysis described here shows that the
thalamic relay neuron responds to PD-related frequencies
in the experimentally observed low-frequency range. This
suggests that the TC cell could be involved in transmitting
such slow rhythms to the motor cortex. The neuron becomes
more responsive at lower frequencies when the amplitude
of the input from GPi, gGPi,Th, is increased. This indicates
that frequency selectivity is an intrinsic property of the
TC cell membrane. In particular, low frequency responses
consist of rebound action potentials because the T-current is
acting as a driving force in the generation of post-inhibitory
action potentials. This extends an earlier observation in
Cagnan et al (2009). Qualitative bifurcation theory (Chow
and Hale 1982, Kuznetsov 2004) asserts the robustness
of the neuron’s behavior with respect to perturbations of
other system parameters. Furthermore, frequency-dependent
responses were previously discovered for thalamic cells in
the investigations of Smith et al (2000, 2001) and Coombes
et al (2001). Their approach explored the effect of an applied
oscillating current within a reduced integrate-and-fire model
for bursting with frequencies of 0.1–10 Hz. Note that a direct
comparison between their setting and our synaptic pathway is
not straightforward.

According to Brown (2003), a subdivision can be made in
the lower frequency range and depending on the dominating
direction of connectivity between GP and cortex. At
frequencies below 10 Hz, the GPi leads and thus the net
driving force for Parkinsonian rest tremor could be expected to
occur through the GPi-thalamo-cortical pathway. Simulations
in which the pathological oscillations are forwarded to the
thalamus through GPi revealed that the TC neuron is most
sensitive at a frequency band corresponding to the (rest) tremor
frequencies observed in PD patients (see figure 5). Figures 5
and 6 show the result of bifurcation analysis revealing bi-stable
behavior of the neuron, i.e. a non-spiking or silent mode and
a rebound spiking mode. This bi-stability may be part of
an explanation of the natural fluctuation in tremor intensity
observed in PD patients (Timmermann et al 2002).

Model simulations reveal that rebound activity can be
stopped by afferent sensory input directly to the thalamus, if
the amplitude of the pathological low-frequency oscillation
was not too high. This cortical (excitatory) input may involve
sensory information (e.g. visual information for guidance of
movements, or preparatory information for the execution of
movements) being able to suppress PD tremor, as was observed
by Amirnovin et al (2004). The presence of excitatory
inputs makes it easier to suppress rebounds since (successful)
relay disrupts calcium de-inactivation that generates a less de-
inactivated state of the T-type channels. In turn, the driving
force to generate a rebound spike is decreased. This may offer
an indication why Parkinsonian rest tremor is usually absent
during voluntary movement.

DBS may be effective through overwriting of PD activity
and/or regularization of firing patterns (Rubin and Terman
2004, McIntyre et al 2004, Kuncel et al 2007). Rubin and
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Terman (2004) assumed full overwriting such that increased
GPi activity restores the relay functionality of TC cells. More
recently, Cagnan demonstrated the link between stimulation
amplitude and frequency with respect to the effectiveness
of stimulation in a network model, and that full overwriting
was unnecessary for restoring TC relay functionality (Cagnan
et al 2009). Here, we considered the role of stimulation
on TC function in more detail. In particular, we regard
stimulation to be effective when the generation of rebound
activity in response to oscillatory input at tremor frequencies is
diminished and where the ability to relay cortical information
is preserved. As shown in figure 8, successful relay occurs
for amplitude–frequency combinations that remain below the
R-curves. On the other hand, successful suppression of
rebound activity requires that these combinations must be
selected such that they remain above the S-curves. Therefore,
the R- and S-curves represent the clinically effective window
for stimulation. It follows that for frequencies below 40 Hz
the stimulation amplitude must be high in comparison to
stimulation frequencies above 70 Hz. This is in accordance
with the observed inverse relationship between therapeutic
frequency and amplitude (Benabid et al 1991, Limousin et al
1995, Gao et al 1999, Rizzone et al 2001). The window created
by the R- and S-curves is reduced for lower frequencies.

We have shown that high-frequency DBS is effective
even in the presence of a PD signal. This suggests that
overwriting is not the main mechanism. Our explanation for
the efficacy of high-frequency DBS is that a regularized input
of moderate amplitude prevents rebound spike generation.
Such regularization also underlies the effect of increasing rates
of the relay input, which decreases the variance, (figure 9)
and other recent computational studies (Cagnan et al 2009,
Dorval et al 2010). When the DBS amplitude is too high,
the relay functionality fails by overinhibition resulting in a
loss of information. Relay functionality would also fail in
the case of thalamotomy, i.e. ablating part of the thalamus.
Thalamotomy and thalamic stimulation have been found to be
equally effective, but thalamic stimulation results in a greater
improvement in function (Schuurman et al 2000). This would
suggest that during DBS thalamic relay output is preferable
over no output after lesion. In our model, the efficacy of
stimulation is tied to improvement of the relay functionality
of the TC relay cells. Therefore, our model cannot explain
the clinical improvement after lesion. To capture this effect,
the entire basal ganglia–thalamocortical loop would need
to be modeled to investigate whether thalamotomy leads to
clinical improvement by disrupting the relay of low frequency
oscillations around the loop by breaking the circuit at a key
point. We have observed that the rebounds occur during silent
periods after GPi bursts. This observation suggests a more
efficient stimulation protocol if we intend to prevent the TC cell
responding to a GPi burst. Then only temporary stimulation
for suppressing rebounds might be needed. This might be more
energy efficient and perhaps less distorting to other functional
processes. However, we have used only a single recording
of a single cell. This will probably be too unreliable to base
a protocol upon. Therefore, we should investigate the GPi
output of more cells and in local field potentials for population
activity in a similar way as in Smirnov et al (2008).

Experimental observations show that (electrical)
stimulation at frequencies below 60 Hz deteriorates PD
symptoms (Rizzone et al 2001, Moro et al 2002,
Timmermann et al 2004, Fogelson et al 2005, Eusebio
et al 2008, Gradinaru et al 2009). Low frequency
(<60 Hz) stimulation input in the model requires a higher
stimulation amplitude to suppress rebound activity, the effect
of which would disrupt the relay process. Moreover, for even
lower stimulation frequencies (up to 20 Hz and within the
beta band) the addition of stimulation may actually enhance
the transmission of pathological BG oscillations, as shown in
figure 10. Various system and input parameters have been
varied to test the robustness of these qualitative findings.
Although we have simulated only a single cell, this suggests
that the response of a population of TC cells would be similar.
It remains an open question how such a population responds
if the TC cells are interconnected. Also here, the observation
that excitatory inputs alone can partially suppress responses to
GPi bursts could be tested in a TC population.

Our model is a gross simplification of the output and
activity of the combined BG and cortico-thalamic network.
We simulate only a single cell and we use a single recording for
our pathological input. The input resulting from stimulation
is idealized and the sensory input artificially generated. We
also consider only a single pathological condition, i.e. tremor.
Yet, the simulation’s results are in good agreement with
experimental data (Benabid et al 1991, Limousin et al 1995,
Gao et al 1999). For some of our model input, we used
experimental data in a method similar to that of Guo et al
(2008). There is also scope for extending this method to
measurements involving stimulation at several frequencies.
As an intermediate step, the TC cell could be included
in a network model that also includes STN, GPe and GPi
neurons, with a view to aiding differentiation between STN
and GPi stimulation similar to Pirini et al (2009). Assuming
that low-frequency pathological oscillations in the range of
10–30 Hz are driven from the motor areas of the cortex (Brown
2003, Brown and Williams 2005), this work could also be
extended by exploring the responses of such a network to such
oscillations, particularly as they are most likely to be associated
with anti-kinetic symptoms. It is an open question how to
relate these symptoms with network activity in computational
models. If this can be characterized with simple criteria, then
one can explore the effect of stimulation on other pathological
symptoms in computational models. In our model, the relation
of rebounds to tremor is fairly straightforward and supported
by experimental observations of tremor during recording.
Other symptoms could very well result from interactions of
multiple nuclei and their respective cells.

However, it must be kept in mind that pathophysiological
changes in PD not only result from changes in firing patterns,
but also from changes in firing rates, as well as changes in
network connections. These lead in turn to, for example,
the loss of functional segregation resulting in interference
between competing motor circuits and a reduced ability to
suppress unwanted movements (Molnar et al 2005, Moroney
et al 2008). It could therefore be expected that stimulation is
acting on the motor symptoms of PD by different mechanisms
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(Temperli et al 2003). Supporting this hypothesis is the fact
that tremor intensity is almost instantaneously reduced (within
seconds) when the stimulation is applied, as is the case in our
model. However, the alleviating of bradykinesia, rigidity and
axial symptoms requires more time to take effect (minutes)
(Johnson et al 2008). The same conclusion can be drawn
from the fact that the effectiveness of DBS is different for the
different symptoms over a 5 year period. Krack found that the
worsening of akinesia, speech, postural stability, freezing of
gait and cognitive function between the 1st and the 5th year
were consistent with the natural history of the disease (Krack
et al 2003).

In summary, this study primarily focuses on the
effectiveness of DBS as a mechanism for reducing PD tremor.
Our results show that the effectiveness of high-frequency
DBS may result from selective suppression of the relay of
oscillations from BG to TC circuitry at tremor frequencies.
The relay of sensorimotor information is, however, not affected
for mid-range to moderately high DBS amplitudes. Failure
of the relay function is only observed at very high DBS
amplitudes and would appear to be nearly independent of
frequency. Our study further suggests that low-frequency DBS
(< 20 Hz) may enhance the transmission of tremor signals
from BG into thalamocortical circuits. This is in accordance
with clinical results.
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Appendix. Constants

Parameters for the gating variables in models (1) are based
upon (Destexhe et al 1998, McCormick and Huguenard
1992, Huguenard and McCormick 1992, McIntyre et al 2004,
Cagnan et al 2009) such that X∞ = αX/(αX + βX) and
τX = 1/(αX + βX).

Sodium current INa = gNam
3h(V − ENa) with αm =

0.32(V + 55)/(1 − exp(−(V + 55)/4)), βNa = −0.28(V +
28)/(1 − exp((V + 28)/5)), αh = 0.12 exp(−(V + 51)/18),
βh = 4/(1 + exp(−(V + 28)/5)),

Potassium currents IK,DR = gKn4(V − EK) and IKs =
gKsd(0.4e1 + 0.6e2)(V − EK) and IA = gAd(0.6f 4

1 h1 +
0.4f 4

2 h2)(V −EK) with αn = 0.032(V +63.8)/(1−exp(−(V +
63.8)/5)), βn = 0.5 exp(−(V + 68.8)/40), d∞ = 1/(1 +
exp(−(V +43)/17))4, τd = 2.5+0.253/(exp((V −81)/25.6)+
exp(−(V + 132)/18)), e1,2,∞ = 1/(1 + exp((V + 58)/10.6)),
τe1 = 30.4 + 0.253/(exp((V − 13.29)/200) + exp(−(V +

130)/7.1)), τe2 = 2260 if V > −70 and τe2 = τe1 if
V � −70, f1,∞ = 1/(1 + exp(−(V + 60)/8.5)), f2,∞ =
1/(1+exp(−(V −36)/20)), τf,1,2 = 1/(exp((V +35.8)/19.7)+
exp(−(V + 79.7)/12.7)), h1,2,∞ = 1/(1 + exp((V + 78)/6.0)),
τh,1 = 1/(exp((V + 46)/5.0) + exp(−(V + 238)/37.5)) if
V < −63 and τh,1 = 19 if V � −63, τh,2 = τh,1 if V < −73
and τh,2 = 60 if V � −73,

Hyperpolarization activated cation current Ih = gKc4(V −
Eh) with c∞ = 1/(1 + exp((V + 85)/5.5)), τc =
1/(exp(−15.45 − 0.086V ) + exp(−1.17 + 0.0701V )),

T-type calcium current IT = m2
T hT F (V, V, [Ca]i , [Ca]o)

with mT,∞ = 1/(1 + exp(−(V + 60)/6.2)), hT,∞ = 1/(1 +
exp(−(V + 84)/4)), τmT

= 0.204 + 0.333/(exp(−(V +
135)/16.7) + exp((V + 19.8)/18.2)), τhT

= 9.33 +
0.333 exp(−(V + 25)/10.5) if V � −81, τhT

=
0.333 exp((V + 470)/66.6) if V < −81 and the Goldman–
Hodgkin–Katz ion current equation for (1) is given by

F(V, [Ca]i , [Ca]o) = pCa
Z2F 2V

RT

× [Ca]i − [Ca]o exp(−ZFV/RT )

1 − exp(−ZFV/RT )
.

The membrane capacitance C is assumed to be unity and
the reversal potentials are set to ENa = 45, EK = −95,
Eh = −43 mV, the conductances to gNa = 30, gK = 3,
gKs = 0.7, gh = 0.5, gNa,leak = 0.0207, gK,leak = 0.05 mS
cm−2. For the calcium concentration: kCa = 5.1821e − 5,
[Ca]buf = 0.00024 mM, [Ca]o = 2 mM, τpump = 5 ms,
pCa = 10−4 cm s−1 the maximum T-type calcium channel
permeability, Z is the charge of a calcium ion, F is Faraday’s
constant in J (V mol)−1, R is the gas constant in J (K mol)−1

and T = 309.15 K.
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