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a b s t r a c t

We consider an MRI scanning facility run by a Radiology department. Several hospital departments com-
pete for capacity and have private information regarding their demand for scans. The fairness of the
capacity allocation by the Radiology department depends on the quality of the information provided
by the hospital departments. We employ a generic Bayesian game approach that stimulates the disclo-
sure of true demand (truth-telling), so that capacity can be allocated fairly. We derive conditions under
which truth-telling is a Bayesian Nash equilibrium. The usefulness of the approach is illustrated with a
numerical example.
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1. Introduction

We consider an MRI scanning facility run by a Radiology depart-
ment, that has to distribute MRI scan capacity among several com-
peting hospital departments. The departments have private
information regarding their future demands. For a fair allocation,
Radiology depends on the information that the departments pro-
vide. How can the Radiology department motivate the users to give
an honest forecast of their demands in order to ensure a fair
allocation?

Various types of MRI scans exist, each used to inspect different
parts of the body [12]. Examples are scans of the heart, breasts,
nervous system, and bones. It is common practice in most hospitals
to dedicate adjacent time slots (blocks) in the appointment sche-
dule to identical MRI types. The demand for MRI scans can vary
widely over time, especially in academic institutions. New treat-
ment protocols may result in an in- or decrease of MRI requests;
the same holds for the recruitment of new patient cohorts and
changes in the hospital’s patient mix. This asks for a periodical allo-
cation of MRI capacity. For this it is common that hospital depart-
ments provide Radiology with a demand forecast for the next
period. Overestimating demand may be tempting, since it is likely
that this leads to a larger share of the scarce capacity. The quality
of the MRI schedule depends on the quality of the forecast. It is
therefore essential for the Radiology department that hospital

departments put maximum effort into providing a reliable and
honest forecast, and do not over- or underestimate their demand.

1.1. Problem example

We illustrate the necessity of a reliable and honest forecast with
an example of a facility with two scanning types. For the first scan-
ning type, a forecast that is lower than the actual demand for the
next period is provided. For the other scanning type, a forecast that
is higher than the actual demand for the next period is provided.
Suppose that the capacity allocated by Radiology equals the fore-
cast of demand. Then for the first scanning type, a waiting list
develops because of incorrect allocation (Fig. 1(a)). For the second
scanning type, not all allocated capacity is needed and thus the
scanner sits idle (Fig. 1(b)). We see that it is very well possible that
in the same period, the MRI scanners are idle during certain blocks
due to less actual demand for one type of scans, while at the same
time the waiting list for another scan type increases caused by a
lack of capacity.

1.2. Approach

The problem of capacity allocation to multiple competing users,
as sketched above, has several key properties. Namely (i) the users
do not cooperate, (ii) the actual demands of the users are private
information, and (iii) the resource wants the users to truthfully re-
veal their actual demand. Relevant models that capture these prop-
erties are combinatorial auction models [3], where multiple
bidders can place bids on several items at the same time, and
Bayesian games [5–7], non-cooperative games where each player
has incomplete information about the characteristics of the other
users. While in a Bayesian game only the demand of the users is
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needed, in a combinatorial auction also the price the users are will-
ing to pay is required. This, combined with the relatively simple
analysis of the Bayesian game model compared to that of the com-
binatorial auction model, determined our choice for the Bayesian
game approach. We are interested in conditions under which the
users tell the truth, that is, they provide the resource with their
actual demand.

1.3. Literature

Bayesian games are extensively described by Harsanyi [5–7].
For an introduction on this class of games we refer the reader to
[4]. In the literature on Bayesian games, two types of models are
often studied. In the first type of model a single resource commu-
nicates with several users. The users do not cooperate, and the re-
source has private information. An application of this model is
given in [8]. In the second type of model a single resource commu-
nicates with a single user. Now, the user has private information.
Examples can for instance be found in [14,21]. Unlike these types
of models, we consider a single resource and multiple non-cooper-
ative users with private information. To the best of our knowledge,
this has hardly been studied so far.

There is a vast body of literature on capacity allocation with
truth-telling in the area of supply chain management, see, for
example [2,9,20]. The main research questions are how a supplier
should allocate his capacity, and how the supplier can induce his
buyers to reveal their private information. Furthermore, many pa-
pers on capacity and/or resource allocation in health care are avail-
able, such as [18], but these do not consider private information
and truth-telling. This paper contributes to the literature by study-
ing capacity allocation under private information in a health care
setting.

Several other problems in a health care context have been stud-
ied using Bayesian games. An application area is the patient–doctor
relationship, where either the patient [21] or the doctor [15] has
private information. Another example is given in [19], where the
authors consider the principle of kidney exchange. Patients waiting
for a kidney transplant present one or more potential donors.
These donors however are not a match to the patient they are re-
lated to. In order to find matching pairs, an exchange group of sev-
eral patients and their donors is formed. In the paper it is
demonstrated with a Bayesian game that it is advantageous in
some cases for patients not to reveal all information they possess
about their donors. In [1] an economic application is given. Multi-
ple hospitals are regulated by a central authority; hospitals do not
cooperate with each other. The regulator has incomplete informa-
tion on the production information hospitals possess. A Bayesian
game is used to study the effect of the information gap on the pro-
duction contracts the regulator offers the hospitals. We conclude
this paragraph with [11], in which the international trading and
pricing of pharmaceuticals is studied. The author suggests to intro-

duce asymmetric information with respect to the local demand
function of the country the products are sold to. When the problem
is modeled as a Bayesian game, it can be shown that in equilibrium
parallel imports of pharmaceuticals occur, in contrast to the com-
plete information situation.

1.4. Contents of paper

Since the approach is not limited to the MRI scan example, we
use generic terminology (resources and users) in Sections 2–4. First
we provide a detailed description of the model. In the Results sec-
tions that follows we show that for two allocation mechanisms an
optimal strategy for users is to provide an honest forecast of their
demand, which enables the resource to make a fair allocation. We
demonstrate the approach with a numerical example in Section 5.
We conclude with Section 6.

2. Model

In this section we formulate the Bayesian game. An overview of
the notation introduced is given in Table 1.

The allocation of capacity goes as follows. Users provide their
forecast Fi for the next period. The resource allocates capacity,
resulting in an allocated amount Ai per user. During the period
the users reveal their actual demand. This process is repeated each
period. We make the following assumptions:

(i) All users make rational choices, i.e. they want to maximize
benefits and minimize costs.

(ii) The total amount requested by the users exceeds the
resource’s capacity:

P
jFj > C.

(iii) The shared resource cannot allocate more capacity than is
available:

P
jAj 6 C.

(iv) No user has an actual demand that is higher than the
resource’s capacity: 0 6 Di 6 C.

(v) No user has any information about the private demand of
any other user. Let D�i = {Dj}j–i represent the demands of
users other than user i. We model the knowledge of user i
by the uniform distribution on [0,C]n�1,

Table 1
Notation introduced in model section.

Symbol Description

C Total amount of capacity available
Fi Forecast of demand by user i (i.e. request to resource)
Ai Capacity allocated to user i
Di Actual demand of user i
x Reward per unit of allocated capacity
y Penalty cost per unit of surplus capacity

Fig. 1. Example for two scanning types.
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piðD�iÞ ¼
1

Cn�1 ; if D�i 2 ½0;C�n�1
;

0; else;

(

thus all demands are equally likely.

2.1. Utility function

User i has a utility function Vi that measures the immediate
happiness or reward [17]. The reward is the weighted difference
between the allocated amount Ai and a penalty for overestimation.
The weights are x per unit of allocated capacity and y per unit that
is overestimated, x, y > 0. The utility function for user i is given by

Vi ¼ xAi � y maxfFi � Di;0g: ð1Þ

Each user aims to maximize its utility.

2.2. The allocation mechanism

The resource needs an allocation mechanism to distribute the
capacity over the users. Desirable properties of an allocation mech-
anism are:

(i) Each user receives a nonnegative amount: Ai P 0.
(ii) All capacity is allocated:

P
jAj ¼ C.

(iii) Each user receives at most the amount it requests: Ai 6 Fi.
(iv) If the capacity of the resource increases, then all users

should obtain more (until they reach their forecast): Ai is
increasing in C.

Many allocation mechanisms satisfy these properties. Three
mechanisms that are used often in practice are the proportional
rule, the constrained equal award rule and the constrained equal
loss rule [16]. The proportional rule allocates capacity proportional
to the forecasts:

Ai ¼
FiP

jFj
C:

The constrained equal award rule divides the capacity equally
among the users, with the constraint that a user cannot obtain more
than was requested:

Ai ¼minfa; Fig

with a such that
P

jAj ¼ C. Third, the constrained equal loss rule di-
vides the shortage of capacity equally among the users such that
any user receives a nonnegative amount:

Ai ¼maxfFi � b;0g

with b such that
P

jAj ¼ C.

2.3. Bayesian game formulation

Now we formulate the problem as a Bayesian game. Each user
provides a forecast Fi, which is a function of his private actual de-
mand Di. We write Fi(Di) to denote this dependency. This forecast
reflects the claim of user i on the available capacity. The allocated
capacity Ai depends on all requests Fj(Dj), j = 1, . . . ,N, and hence
also on all the private demands.

The goal of each user is to maximize his expected utility by
selecting a suitable strategy. A strategy Fi(Di) of user i specifies
which forecast the user should announce as a function of its private
information Di.

The strategies F� ¼ ðF�1ðD1Þ; . . . ; F�NðDNÞÞ are a so-called Bayesian
Nash equilibrium if for each user i and for any private demand Di

the requested number of units F�i ðDiÞ maximizes the expected
utility of the user:

F�i ðDiÞ ¼ arg max
Fi

Z
½0;C�n�1

ViðF��i; Fi; DiÞpiðD�iÞdD�i;

where ðF��i; FiÞdenotes the strategies F⁄ in which the strategy F�i ðDiÞ of
user i is replaced by Fi, D�i = {Dj}j–i is the collection of private de-
mands for users other than i, and pi(D�i) is the prior belief of user i
about D�i [13]. Hence, given the uncertainty on the private demands
of the other users, it does not pay for user i to deviate from his equi-
librium strategy because that will result in lower expected utility.

3. Results for proportional rule

In this section the capacity is allocated according to the propor-
tional rule. Then the utility function of user i is

ViðF; DiÞ ¼ x
FiP

jFj
C � y maxfFi � Di;0g; ð2Þ

which depends on the demands F = {F1, . . . ,FN} of all users, and on
the user’s privately known actual demand Di.

We show that when the number of users exceeds 3, it is optimal
for the users to provide an honest forecast. When the number of
users is equal to 2 or 3, the same result holds under weak
conditions.

3.1. Equal cost and reward parameters

To simplify calculations, we set x = y = 1 in the utility function,

so ViðF; DiÞ ¼ FiP
j
Fj

C �maxfFi � Di;0g (we consider other cost and

reward parameters in Section 3.2). We investigate when truth-tell-
ing, Fi(Di) = Di, is a Bayesian Nash equilibrium. Without loss of gen-
erality we consider user i = 1. His expected utility, given that the
other users truthfully reveal their demand, equals

E½V1ðF; D1Þ� ¼
Z C

0
� � �
Z C

0

F1

F1þ
PN

j¼2
Dj

C �maxfF1 � D1;0g

CN�1 dD2 � � �dDN

¼ 1
CN�2

Z C

0
� � �
Z C

0

F1

F1 þ
PN

j¼2Dj

dD2 � � �dDN �maxfF1 � D1;0g:

To analyze when truth-telling maximizes this expected utility,
we calculate the derivative with respect to F1. The values of F1

where the derivative equals zero or does not exist, and the bound-
ary values 0 and C are candidate values for a maximum. If the
derivative equals zero for some value F1 then we use the second
derivative of the expected utility to check whether this value is in-
deed a maximum or minimum. These derivatives and their proper-
ties are as follows.

Theorem 1. Consider the situation with N users. The derivative of the
expected utility equals

@E½V1ðF;D1Þ�
@F1

¼ 1

CN�2

Z C

0
� � �
Z C

0

PN
j¼2Dj

F1þ
PN

j¼2Dj

� �2 dD2 � � �dDN� IfF1>D1g;

ð3Þ

where IE is the indicator function of the event E that takes the value 1 if
E is true and 0 otherwise. This derivative is positive if Fi < Di; the ex-
pected utility is then increasing in Fi.

The second derivative of the expected utility,

@2E½V1ðF; D1Þ�
@F2

1

¼ 1
CN�2

Z C

0
� � �
Z C

0

�2
PN

j¼2Dj

F1 þ
PN

j¼2Dj

� �3 dD2 � � �dDN; ð4Þ

is always negative. So, the derivative of the expected utility is decreas-
ing in Fi, in particular for Fi > Di.
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Proof. Without loss of generality let i = 1. If F1 < D1, then the deriv-
ative (3) reduces to

1
CN�2

Z C

0
� � �
Z C

0

PN
j¼2Dj

F1 þ
PN

j¼2Dj

� �2 dD2 � � �dDN;

which is always positive; the expected utility is increasing in F1.
It is easy to see that the second derivative (4) is negative. Hence,

the derivative (3) of the expected utility is decreasing in F1, in
particular for F1 > D1. h

According to this theorem, the expected utility is increasing if
F1 < D1. Therefore, user 1 wants to set F1 as large as possible. Be-
cause F1 < D1, user 1 sets F1 = D1 in the limit.

Also by Theorem 1 the derivative of the expected utility is
decreasing in F1. Now if this derivative is negative for all forecasts
F1 > D1, then the expected utility is decreasing in F1. So, user 1 wants
to choose F1 as small as possible. Because F1 > D1, user 1 wants to
select F1 = D1 in the limit. In this case we conclude that truth-telling
is a Bayesian Nash equilibrium; user 1 always tells the truth. In the
next subsections we investigate for several numbers of users when
the derivative of the expected utility for Fi > Di is indeed negative,
and under which conditions truth-telling is an equilibrium.

3.1.1. Truth-telling in case of two users
In this section we analyze the allocation problem with two

users. Then the derivative (3) of the expected utility for F1 > D1

equalsZ C

0

D2

ðF1 þ D2Þ2
dD2 � 1 ¼ ln

F1 þ C
F1

� �
þ F1

F1 þ C
� 2; ð5Þ

We want to know for which values of F1 this derivative is neg-
ative. If so, then the expected utility of user 1 is decreasing and this
user will select F1 = D1—the truth-telling outcome—to maximize its
expected utility.

Theorem 2. Consider the situation with two users. Truth-telling is a
Bayesian Nash equilibrium if the private demand of any user is at least
18.9% of the total capacity.

Proof. Without loss of generality consider user i = 1. By Theorem 1,
the derivative (5) is a decreasing function in F1. This derivative is
negative for all requests F1 2 (D1,C] if it is negative for F1 = D1:

ln
D1 þ C

D1

� �
þ D1

D1 þ C
� 2 6 0:

This inequality holds if D1 P b2C with b2 � 0.189, where b2 is
such that the derivative (5) is equal to zero for F1 = b2C. h

In other words, the private demand of either of the two users
should be larger than roughly one-fifth of the capacity of the re-
source. The lower bound of 18.9% on the proportion of privately
known demand to the resource’s capacity may be too restrictive.
What happens if this lower bound is not met for user i, so
Di < 0.189C? According to the analysis in the proof of Theorem 2
the expected utility of this user is maximal in forecast Fi � 0.189C.
This forecast is larger than the actual demand Di; user i overesti-
mates its private demand.

3.1.2. Truth-telling in case of three and more users
For three to six users, the results are as follows.

Theorem 3. Truth-telling is a Bayesian Nash equilibrium for N = 3
users if the private demand of any user is at least 8.0% of the total
capacity. For N = 4, 5, and 6 users, truth-telling is a Bayesian Nash
equilibrium.

Proof. First consider N = 3 users. Without loss of generality focus
on user 1 and on the case F1 > D1. According to (3), the derivative
of the expected utility of user 1 equals:
1
C

Z C

0

Z C

0

D2 þ D3

ðF1 þ D2 þ D3Þ2
dD2dD3 � 1

¼ 2F1

C
ln

F1ðF1 þ 2CÞ
ðF1 þ CÞ2

 !
þ 2 ln

F1 þ 2C
F1 þ C

� �
� 1:

We know from Theorem 1 that this expression is decreasing in
F1. Hence, truth-telling is a Bayesian Nash equilibrium if this
expression is non-positive for F1 = D1,
2D1

C
ln

D1ðD1 þ 2CÞ
ðD1 þ CÞ2

 !
þ 2 ln

D1 þ 2C
D1 þ C

� �
� 1 6 0:

Numerical evaluation reveals that this inequality holds if
D1 P b3C with b3 � 0.080.

For the situation with more than three users, the complexity of
the derivatives (3) increases rapidly. We use the computing
software Maple [10] to perform the calculations. Thereafter, we
once again use Theorem 1 to establish that truth-telling is a
Bayesian Nash equilibrium if the first derivative is non-positive for
F1 = D1. Numerical evaluation by Maple reveals that the inequality
is satisfied for N users for all D1 P 0. Hence, truth-telling is always
a Bayesian Nash equilibrium for four till six users. h

Hence, for a Bayesian Nash equilibrium in a situation with three
users, we have a lower bound on the demand per user. Note that
this bound is smaller than the bound in the situation with two
users. The lower bound disappears if we consider at least four
users. For situations with seven users, we were not able to perform
the necessary calculations within reasonable time limits. We
therefore conducted a simulation study. We tested 10 cases, for
I = 7–10, 12, 15, 20, 30, 50 and 100 departments. In each case, we
used a fixed capacity C equal to 2500,1 and randomly drew from a
uniform (0,C) distribution the forecast and demand values for I � 1
departments. Then for the remaining department i we checked
whether it was optimal, given the utility function (2), to provide a
forecast that was equal to the demand. We tested each case 1000
times, and for all 10 � 1000 = 10,000 instances truth telling was an
optimal strategy for the department we studied.

Based on these results, we conjecture the following proposition.

Proposition 1. If there are more than six users, then truth-telling is a
Bayesian Nash equilibrium.

Note that truth-telling is not a unique Bayesian Nash equilib-
rium, since there is another (trivial) Bayesian Nash equilibrium,
namely Fi = 0 for all i. However, this is not of any practical value
considering the problem setting.

3.2. Different cost and reward parameters

In this section we return to the general utility function Vi(F;Di)
without the restriction x = y = 1. We analyze what happens to the
lower bounds on the actual demands of the departments, as stated
in the Theorems 2 and 3.

The expected utility for user 1 now equals

E½V1ðF; D1Þ� ¼
x

CN�2

Z C

0
� � �
Z C

0

F1

F1 þ
PN

j¼2Dj

dD2 � � �dDN � yðF1 � D1Þþ:

The following theorem generalizes Theorem 1, and is therefore
presented without proof.

1 The value of C = 2500 is based on the average capacity of one MRI scanner per
year, given that it operates 50 weeks/year for 10 h/working day, processing scans that
on average take 1 h.
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Theorem 4. Consider the situation with N users. The derivative of the
expected utility,

@E½V1ðF; D1Þ�
@F1

¼ x

CN�2

Z C

0
� � �
Z C

0

PN
j¼2Dj

ðF1 þ
PN

j¼2DjÞ2
dD2 � � �dDN

� yIfF1>D1g;

is positive if Fi < Di; the expected utility is then increasing in Fi.
The second derivative of the expected utility,

@2E½V1ðF; D1Þ�
@F2

1

¼ x

CN�2

Z C

0
� � �
Z C

0

�2
PN

j¼2Dj

F1 þ
PN

j¼2Dj

� �3 dD2 � � �dDN;

is negative. The derivative of the expected utility is decreasing in Fi, in
particular for Fi > Di.

First, consider N = 2 users. According to Theorem 4, the ex-
pected utility is increasing for F1 < D1. Hence, user 1 chooses
F1(D1) = D1 in the limit in case F1 < D1. If F1 > D1 then the derivative
of the expected utility equals

x ln
F1 þ C

F1

� �
þ F1

F1 þ C
� 1

� �
� y; ð6Þ

which is a generalization of (5). Also by Theorem 4, this derivative is
decreasing in F1. Hence, if it is non positive for F1 = D1 then it takes
negative values for all F1 > D1. This happens if D1 P b2C where the
lower bound b2 is a root of expression (6) after substituting
F1 = b2C. Thus b2 solves

ln
b2 þ 1

b2

� �
þ b2

b2 þ 1
� 1� y=x ¼ 0: ð7Þ

This equation shows that lower bound b2 is a function of y/x, the rel-
ative value of the ‘cost’ parameter y to the ‘reward’ parameter x (see
Fig. 2).

Observe that for y/x = 1 the lower bound b2 agrees with the re-
sult in Theorem 2. If y/x increases then the penalty function with
weight y becomes more and more important compared to the va-
lue of the allocated capacity with weight x. Since the user adds so
much relative value to the penalty, truth-telling more and more
easily becomes a Bayesian Nash equilibrium. The lower bound b2

decreases, and in particular, b2 tends to zero as y/x increases.
We perform the same analysis for situations with three and four

users, see the Fig. 3(a) and (b), respectively. For three users, the

lower bound b3 is positive as long as y/x 6 1.3. For larger values
of y/x there is no positive solution to (7). Thus, if y/x > 1.3 then
truth-telling is always a Bayesian Nash equilibrium; there is no
lower bound on the demand of the users to ensure an equilibrium.

We observe the same for four users. The lower bound b4 is po-
sitive for y/x < 0.8. For larger values of y/x truth-telling is always a
Bayesian Nash equilibrium. The analysis for five and more users
goes along the same lines, and is therefore omitted.

4. Results for constrained rules

In this section we analyze the effects of capacity allocation
when using the constrained equal award rule or the constrained
equal loss rule.

4.1. Results for constrained equal award rule

If the capacity is allocated according to the constrained equal
award rule, then the utility function of user i is

ViðF; DiÞ ¼ x minfa; Fig � y maxfFi � Di;0g;

with a such that
P

j minfa; Fjg ¼ C. Consider the situation with two
users. For simplifications we set x = y = 1 in the utility function.
Without loss of generality consider user i = 1. Assume the second
user is truthful, F2(D2) = D2. Then

a ¼

C=2; F1 P C=2; D2 P C=2;
C � F1; F1 < C=2 6 D2;

C � D2; D2 < C=2 6 F1;

C=2; F1 < C=2; D2 < C=2:

8>>><
>>>:

We investigate if and when truth-telling is a Bayesian Nash
equilibrium.

Theorem 5. Consider the constrained equal award rule and N = 2
users. Then truth-telling is a Bayesian Nash equilibrium.

Proof. First, if F1 6 C/2 then

E½V1ðF; D1Þ� ¼
Z C

0
minfa; F1g �maxfF1 � D1;0gð Þ 1

C
dD2

¼ 1
C

Z C

0
F1dD2 �maxfF1 � D1;0g

¼ F1 �maxfF1 � D1;0g:

Second, for F1 > C/2

E½V1ðF; D1Þ� ¼
1
C

Z C�F1

0
F1dD2 þ

1
C

Z C=2

C�F1

ðC � D2ÞdD2

þ 1
C

Z C

C=2

1
2

CdD2 �maxfF1 � D1;0g

¼ � F2
1

2C
þ F1 þ

1
8

C �maxfF1 � D1;0g:

The derivative of the expected utility of user 1 is

@E½V1ðF; D1Þ�
@F1

¼
1� IfF1>D1g; F1 < C=2;

� F1
C þ 1� IfF1>D1g; F1 > C=2:

(

First consider D1 6 C/2. If F1 6 C/2 then the maximal expected util-
ity is D1 for F1 2 [D1,C/2]. If F1 > C/2 then the maximal utility in the
limit for F1 ? C/2 is also D1. Hence, there are multiple best replies
for user 1. Truth-telling is an equilibrium.

Second, consider D1 > C/2. If F1 6 C/2 then the maximal
expected utility is C/2 for F1 = C/2. For F1 > C/2 the maximal
expected utility is 5

8 C for F1 2 (C/2,D1]. Hence, given F2 = D2 the
Fig. 2. Lower bound b2 as a function of y/x.
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best reply of user 1 is to set F1 such that C/2 < F1 6 D1. Truth telling
is a mutual best reply. Therefore, truth-telling is a Bayesian Nash
equilibrium. h

Under the constrained equal award rule, truth-telling is an equi-
librium, but it is hard to determine the other equilibria. Further-
more, the analysis of the constrained equal award rule increases
in complexity with the number of users. Therefore, the resource
might prefer the proportional rule. For this reason, we restrict
our analysis of this rule to the case of two users.

4.2. Results for constrained equal loss rule

When using the constrained equal loss rule, the utility function
of user i is

ViðF; DiÞ ¼ x maxfFi � b;0g � y maxfFi � Di;0g;

with b such that
P

j maxfFj � b;0g ¼ C. Consider a situation with
two users. At first, we set x = y = 1 in the utility function for simplic-
ity. Assume the second user is truthful, F2 = D2. Then

b ¼ 1
2
ðF1 þ D2 � CÞ

is the equal amount of loss for both users. We investigate if and
when truth telling is a Bayesian Nash equilibrium. Without loss of
generality consider user 1.

Theorem 6. Consider the constrained equal loss rule and N = 2 users.
Then truth-telling is a Bayesian Nash equilibrium.

Proof. Since

1
C

Z C

0
maxfF1 � b;0gdD2 ¼

1
C

Z C�F1

0
F1dD2

þ 1
C

Z C

C�F1

1
2
ðF1 � D2 þ CÞdD2 ¼ F1 � F2

1=ð4CÞ;

the expected utility of user 1 equals

E½V1ðF; D1Þ� ¼ F1 �
F2

1

4C
�maxfF1 � D1;0g:

The derivative with respect to F1 is

@E½V1ðF; D1Þ�
@F1

¼ 1� F1

2C
� IfF1>D1g:

The expected utility is increasing for F1 6 D1 and decreasing for
F1 > D1. Hence, Fi(Di) = Di, is the unique best response. Truth-telling
is a Bayesian Nash equilibrium. h

The constrained equal loss rule performs better than the pro-
portional rule, since truth-telling is an equilibrium without a lower
bound on the private demands of the users.

Next, we consider situations with three users. We consider the
expected utility of user 1 and assume that the users 2 and 3 tell the
truth, Fi(Di) = Di, for i = 2,3. To determine the value of the loss b that
is equally divided, we consider several cases.

First, suppose that all users obtain a positive part of the capac-
ity, Ai > 0 for all i. Then F1 � b + D2 � b + D3 � b = C, or
b = (F1 + D2 + D3 � C)/3. Thus

A1 ¼ F1 � b ¼ 1
3
ð2F1 þ C � D2 � D3Þ: ð8Þ

This amount is positive, A1 > 0, if and only if
D2 þ D3 < C þ 2F1: ð9Þ
Similarly, A2 > 0 if and only if
�2D2 þ D3 < C � F1; ð10Þ

and A3 > 0 if and only if

D2 � 2D3 < C � F1: ð11Þ

Notice that at least two users should get a positive amount. If not,
then one user gets all capacity, which can only happen if his request
exceeds the other requests by more than the capacity C. This cannot
occur since 0 6 Fi 6 C for all users. The table below shows the di-
verse values of A1 for the different cases that can occur. For refer-
ence below, we numbered the cases from I to IV.

Case True inequalities A1

I (9)–(11) (2F1 � D2 � D3 + C)/3
II (10) and (11) 0
III (9) and (11) (C + F1 � D3)/2
IV (9) and (10) (C + F1 � D2)/2

Theorem 7. Consider the constrained equal loss rule and N = 3 users.
Then truth-telling is a Bayesian Nash equilibrium.

Proof. The expected utility for user 1 is

E½V1ðF;D1Þ� ¼
Z C

0

Z C

0
maxfF1�b;0g�maxfF1�D1;0gð Þ 1

C2 dD2dD3

¼ 1
C2

Z C

0

Z C

0
maxfF1�b;0gdD2dD3�maxfF1�D1;0g:

Fig. 3. The lower bounds bNC for N = 3 and N = 4 users as a function of y/x.
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We focus on the calculation of the first term for several values of F1.
First, if F1 = 0 then the outcome of the double integral is also 0. Next,
consider 0 < F1 < C/2. Taking into account the four cases in the table
above, we obtain

1
C2

Z C

0

Z C

0
maxfF1�b;0gdD2dD3

¼
Z Z

I
ð2F1�D2�D3þCÞ=3dD2dD3þ

Z Z
II

0dD2dD3

þ
Z Z

III
ðCþF1�D3Þ=2dD2dD3þ

Z Z
IV
ðCþF1�D2Þ=2dD2dD3

¼ 1

36C2 ð2C3þ12C2F1þ24CF2
1�29F3

1Þþ0þ F3
1

6C2þ
F3

1

6C2

¼ 1

36C2 ð2C3þ12C2F1þ24CF2
1�17F3

1Þ:

Similarly, for C/2 6 F1 6 C we obtain

1
C2

Z C

0

Z C

0
maxfF1 � b;0gdD2dD3 ¼

1
36C2 ð24C2F1 � F3

1Þ:

For 0 6 F1 < C/2, the derivative of this expected utility with respect
to F1 is

1
36C2 ð12C2 þ 48CF1 � 51F2

1Þ � IfF1>D1g:

The first term is between 0 and 1 due to F1 2 [0,C].
For C/2 < F1 6 C, the derivative of the expected utility with

respect to F1 is
1

12C2 ð8C2 � F2
1Þ � IfF1>D1g:

Also here, the first term lies between 0 and 1. So, F1 = D1 is the un-
ique maximum. In both cases, the expected utility is increasing for
F1 6 D1 and decreasing otherwise. Hence, F1 = D1 maximizes the ex-
pected utility. We conclude that truth-telling is a Bayesian Nash
equilibrium. h

Once again, the constrained equal loss rule has truth-telling as an
equilibrium. This result is better than the proportional rule, since
now we have no lower bound on the private demand of the users.

If there are more than three users, the complexity of the analy-
sis grows rapidly. For N users we have to consider 2N � N � 1 spe-
cial cases. Again, we use simulation to study these cases. In the
simulation study for I = 4–10, 12, 15, 20, 30, 50 and 100 depart-
ments, truth telling is an optimal strategy.

4.2.1. Different cost and reward parameters
In this paragraph we analyze general utility functions with

x – y. We are interested for which values of x and y truth-telling
remains a Bayesian Nash equilibrium. Given the complexity of
the analysis we restrict ourselves to the case with N = 2 users.

Theorem 8. Consider the constrained equal loss rule, N = 2 users and
weights x – y in the utility function. Truth-telling is a Bayesian Nash
equilibrium if

y
x

P 1� 1
2C

minfD1;D2g:

Proof. From the proof of the previous theorem, the expected util-
ity of user 1 is

E½V1ðF; D1Þ� ¼ x F1 �
F2

1

4C

 !
� yðF1 � D1Þþ:

The derivative with respect to F1 is

x 1� F1

2C

� �
� yIfF1>D1g:

Hence, the expected utility is increasing for F1 6 D1. User 1 has max-
imal expected utility in F1 = D1 if the expected utility is decreasing
for F1 > D1. This occurs if x(1 � D1/(2C)) � y 6 0, or y/x P 1 � D1/
(2C). The result follows since this inequality should hold for all
users.

5. Numerical example

We illustrate the model with a numerical example, which is
based on the experience of one of the authors while working as a
hospital consultant. We return to the MRI scanner example from
the Introduction section, and consider four departments that each
make requests for a specific scanning type, namely oncological (O),
cardiovascular (C), neurological (N), and musculoskeletal (M).
Capacity is distributed proportionally according to the requests,
and the cost and reward parameters are both equal to 1, as in Sec-
tion 3.1. The MRI scan facility has a fixed capacity C of 1000 scans
per month. In this example we chose to use the proportional allo-
cation mechanism. Since we consider more than three depart-
ments, there is no lower bound on the demand of the users. Also,
the proportional allocation rule is intuitive and easy to apply.

We start in month 1, and obtain the estimates of future demand
(Fi). Recall that capacity is allocated by the Radiology department,
having no knowledge on the actual demand Di. The demand fore-
casts Fi and allocated capacities Ai are given in the first two col-
umns of Table 2. At the end of month 1, the actual demand Di is
known. This information can be used to penalize the departments,
if necessary. The other columns of Table 2 give the actual demand
Di, the deviation of the allocated amount Ai and forecast Fi from Di,
and the value of the utility function Vi.

We see that in month 1 the waiting list increases with 107 MRI
scans (scanning types oncological, neurological, and musculoskele-
tal), while there is unused capacity of 34 MRI scans (scanning type
cardiovascular). Note that there is no penalty on the surplus de-
mand related to the allocated capacity (i.e. D � A), since we only fo-
cus on the truth-telling element in the problem. In the example, it
is implicitly assumed that surplus demand is lost. This lost demand
could represent MRI scans that are performed at another institu-
tion, or not performed at all, because the physician decides upon
another method of diagnostics.

We assume that the departments learn from the penalty given
at the end of month 1 and therefore in month 2 provide an honest
estimate (i.e. Fi = Di for all i). Without loss of generality, we assume
that the actual demands of the departments in month 2 equal that

Table 2
Month 1: forecast of demand Fi, allocated capacity Ai, actual demand Di, deviation of
Di from Fi and Ai, and utility Vi.

Department Fi Ai Di Fi � Di % Fi � Di Ai � Di Vi

O 137 126 127 10 8 �1 116
C 130 119 85 45 53 34 74
N 630 578 623 7 1 �45 571
M 193 177 238 �45 �19 �61 177

All 1090 1000 1073 17 2 �73 938

Table 3
Month 2: forecast of demand Fi, allocated capacity Ai, actual demand Di, deviation of
Di from Fi and Ai, and utility Vi.

Department Fi Ai Di Fi � Di % Fi � Di Ai � Di Vi

O 127 118 127 0 0 �9 118
C 85 79 85 0 0 �6 79
N 623 581 623 0 0 �42 581
M 238 222 238 0 0 �16 222

All 1073 1000 1073 0 0 �73 1000
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of month 1. Capacity is again allocated proportionally to the re-
quests. See Table 3 for results.

In month 2 the waiting list increases with 73 MRI scans, which
equals the capacity shortage of

P
jDj � C, but there is no unused

capacity. Fig. 4 compares the difference between the allocated
capacity Ai and actual demand Di for both months. Furthermore,
we see an increase in utility for all departments compared to
month 1, while capacity is distributed more fairly.

6. Discussion and conclusions

In this paper we have studied a Radiology department (the re-
source) that has to distribute MRI scanning capacity among com-
peting hospital departments (the users). Radiology uses forecasts
of demand, provided by the hospital departments, to distribute
the scanning capacity. The actual value of their demand is only
known to the hospital departments. When the departments over-
or underestimate the demand it can occur that the actual demand
is less than the allocated capacity (i.e. the scanner sits idle) or the
actual demand is larger than the allocated capacity. Both situations
can arise simultaneously. In order to have a fair allocation, where
all available capacity is actually used, Radiology should motivate
the departments to provide an honest forecast of their demand.

We have introduced a generic approach to study the allocation
of capacity to the users. Using a Bayesian game framework we
show that under several capacity allocation mechanisms it is an
optimal strategy for each user to provide an honest demand fore-
cast (the truth-telling equilibrium), and as a result the resource
can fairly distribute the available capacity. When the number of
users is small, certain restrictions on the relative size of the de-
mands apply for the proportional allocation mechanism.

Topics for further research would for instance be the reward
users place on allocated capacity. Even though the three capacity
allocation mechanisms are intuitively appealing, and satisfy the
desired properties of an allocation mechanism as stated in Section
2.2, other allocation mechanisms also might be of interest and may

be better related to reality for some practical cases. Also, using a
combinatorial auction to model the problem, as mentioned in the
introduction section, could be a valuable extension.

We have shown that even with minor restrictions on the behav-
ior of users, it is possible to attain a truth-telling equilibrium,
where the shared resource is fairly allocated and all capacity is
used.
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