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Abstract The range of potential applications for indoor

and campus based personnel localisation has led researchers

to create a wide spectrum of different algorithmic approa-

ches and systems. However, the majority of the proposed

systems overlook the unique radio environment presented by

the human body leading to systematic errors and inaccura-

cies when deployed in this context. In this paper RSSI-based

Monte Carlo Localisation was implemented using com-

mercial 868 MHz off the shelf hardware and empirical data

was gathered across a relatively large number of scenarios

within a single indoor office environment. This data showed

that the body shadowing effect caused by the human body

introduced path skew into location estimates. It was also

shown that, by using two body-worn nodes in concert, the

effect of body shadowing can be mitigated by averaging the

estimated position of the two nodes worn on either side of

the body.

Keywords Localisation � Wearable � RSSI �
Personnel � Monte Carlo � Body centric �
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1 Introduction

Active radio frequency identification (RFID) localisation

systems have particular advantages for healthcare applica-

tions where knowledge of patient and employee movements

and interactions can be used to improve overall organisa-

tional efficiency as well as quality of care. Substantial

reductions in administrative costs may be achieved through

automated data collection and monitoring in areas such as

staff work patterns, processing of patients through triage, and

ward or theatre utilization. Such a system will also ensure an

appropriate frequency of staff and patient interactions,

maintenance of adequate hygiene procedures, full trace-

ability and an improved level of safety and security for both

staff and patient.

Research interest into localisation systems has produced a

wealth of positioning algorithms each with varying levels of

complexity and infrastructural requirements. Much of this

interest is due to the fact that determining the location of

people within a building or other large area has many

potential benefits and applications, such as assisting health-

care professionals within medical centres or maintaining

security within transportation hubs.

Providing the location of people is challenging for any

potential localisation scheme, not least because above all

practical systems must be inexpensive and unobtrusive

otherwise they would not see deployment nor would they

be readily adopted by the users. Localisation based upon

the received signal strength indicator (RSSI) is attractive

then as RSSI values are routinely supplied by low power

short-range wireless transceivers such as those found in

active RFID systems.

In general, localisation systems determine the location of

nodes by ranging, which is measuring the distance between

adjacent nodes in the network, and then processing this data
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to estimate positions. The RSSI can be used to give distance

estimates by mapping the decay of radio signal strength but

RSSI is not the only way to determine distance between

nodes within a network. One of the most intuitive methods is

to use time of arrival and measure the flight time of sent

packets to determine the distance between sender and

receiver, however this method requires synchronised nodes

[1]. To overcome this drawback time difference of arrival

may be used which measures the time taken to make a two

way round trip between the nodes [2]. Time difference of

arrival may also be provided by transmitting both radio and

ultrasound signals at once with the difference in their prop-

agation speeds creating a time difference that can be mea-

sured [3]. Of these methods RSSI is still the preferred method

for sensing the environment, despite having the lowest

reported accuracy of the methods mentioned [1], since its

implementation requires no extra hardware other than the

radios that are most likely already required by the desired

application. For this reason the work presented here focussed

on an RSSI based localisation scheme as it enabled imple-

mentation with inexpensive, off-the-shelf components.

The research into RSSI based localisation falls into two

broad categories which are either range-free or range-based.

Range-free methods are just a measure of connectivity that

simply allows communicative nodes to know that the dis-

tance between each other is less than their maximum trans-

mission range. Despite this coarse approach, much research

has been carried out into using range-free methods which

either define an area in which the node could be located, like

centroid [4] and convex position optimisation [5] or use the

geometry associated with a large number of network nodes

such as ad hoc positioning system [6] or multidimensional

scaling [7].

Range based methods remove the requirement for large

numbers of nodes and may be invoked via simple trilatera-

tion [8], more complex procedures that account for channel

variance [9] or by creating a signal strength map and refer-

ring to it when a position is needed [10]. The problem with

these methods is that they do not explicitly account for node

movement, which is important for the highly dynamic sce-

nario of person localisation, unlike Monte Carlo localisation

(MCL) [11] which incorporates node movement as a key

principle of its operation. As a range-free localisation

scheme MCL has seen a number of improvements that

incorporate inferred orientation data [12], the position esti-

mate of neighbouring nodes [13], or better error estimates

[14]. In addition to these refinements there is also a range-

based version, RSSI-based Monte Carlo localisation

(RMCL) [15], which is implemented in this work and

detailed in a later section.

For the localisation of people this still leaves the prob-

lem of complex and largely unpredictable radio wave

interactions with the human body. While the effect of the

user’s orientation upon RSSI has been noted in the litera-

ture before [10], it has been largely overlooked in the

design and implementation of localisation algorithms

leading to inaccurate position estimates caused by body

shadowing [16]. With this in mind this work gathered

empirical data over a number of scenarios using commer-

cial off-the-shelf hardware in order to establish the effect of

the human body upon RSSI and ultimately the quality of

the localisation estimates. This data was used to localise a

person using RMCL with both the original data and with

data modified by techniques designed to mitigate any del-

eterious effects caused by radio interactions with the body.

To the best of the authors’ knowledge this work is the only

empirical study of multimode RMCL localisation for per-

sonnel localisation using multiple nodes. The work in this

paper builds on, and is a significant advance over, the

authors’ previous work concerning single wearable node

RMCL based personnel localisation [17].

This work is detailed in the subsequent sections as fol-

lows; an overview of RMCL is described in Sect. 2, while

the testing environment and hardware are detailed in Sect.

3. In Sect. 4 the results from these experiments are pre-

sented and discussed. The final section closes with a con-

clusion and briefly outlines future work.

2 Algorithm Detail

2.1 Channel Model

The channel model used throughout this work was based

on the log-distance path loss model. This is the one of the

most common models found in localization literature and it

is the model used in RMCL [15]. In this channel model the

received power at a distance d is given as

RSSI dð Þ ¼ P0 � 10np log10

d

d0

þ Xn ð1Þ

where P0 is the reference power at a reference distance d0

and np is the path loss exponent. In this model Xn signifies

the noise component which is modelled as Gaussian with

variance rn
2 and a mean of zero.

2.2 Overview of Monte Carlo Localization

The main idea behind MCL [11] is to represent the loca-

tions of the nodes within a network by a set of samples

which cover possible locations that the node may occupy.

With each new time step as the node moves a prediction is

made as to the new location of the node by moving all the

samples according to a transition distribution. The next step

is filtering which removes all locations deemed impossible

by the observations taken during the time step. Prediction
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and filtering repeat in every time step taking the samples

from the previous time step, moving, and refining them.

With the range-free methods for MCL [11] filtering means

removing samples by giving each sample a binary

weighting of zero or one. While some schemes [13, 14] are

able to add granularity to the weighting by estimating the

accuracy of an individual node’s position they still disre-

gard information provided by the signal strength.

2.3 RSSI-based Monte Carlo Localization

RMCL [15] is able to utilise the information provided by

signal strength by giving each sample point, hi
k ¼ x; yð Þ, an

associated weight wi
k:Where k is the time step, i = 1,2,…Ns,

and Ns is the total number of samples. At each new time step

predictions are made based on the transition distribution

p hkjhk�1ð Þ:As the subject’s orientation is unknown and they

may change direction between time steps the transition dis-

tribution is

p hi
kjhi

k�1

� �
¼

1

pd2
max

; dist hi
k; h

i
k�1

� �
� dmax

0; dist hi
k; h

i
k�1

� �
[ dmax

8
<

:
ð2Þ

where dmax is the maximum distance between sequential

location predictions and dist hi
k; h

i
k�1

� �
is the Euclidean

distance between hi
k and hi

k�1. This makes any direction,

within the radius dmax, from the previous sample equally

likely. After prediction the weight of each sample is

calculated using

wi
k ¼

w�ikPNs

j¼1 w�jk

ð3Þ

where w�ik is the non-normalised weight. If one sets the

transition prior as the importance density this allows

recursive calculation of the non-normalized weight [18].

The non-normalised weight is then worked out with,

w�ik ¼ w�ik�1p mkjhi
k

� �
ð4Þ

where mk is the set of measurements made at time step k.

The probability that a given signal strength is received at a

certain distance is dependent upon the channel model and

its noise characteristics. Using the model shown in (1) this

probability is

p Pjdij

� �
¼ 1

r
ffiffiffiffiffiffi
2p
p exp �

P� P0 þ 10np log10
dij

d0

2r2
n

( )

ð5Þ

where P is the power received and dij is the distance between

nodes i and j. With the samples and their associated weights

calculated from previous equations the posterior distribution

can be approximated as

p hkjm1:kð Þ ffi
XNs

i¼1

wi
kd hk � hi

k

� �
ð6Þ

where d �ð Þ is the Dirac delta function. From this a single

estimated location is chosen by taking the weighted mean

of all the sample points,

ĥk ¼
XNs

i¼1

hi
k � wi

k: ð7Þ

However, RMCL can fall to the degeneracy problem,

where all but one sample will have a negligible weight

value. To avoid this the effective sample size is calculated

using,

bNeff ¼
1

PNs

i¼1 wi
k

� �2
: ð8Þ

If bNeff is below the threshold value then systematic

resampling [18] is applied and each sample weight is reset

to 1/Ns. Following [15] the threshold value is set at Ns/10.

To start the algorithm p h0ð Þ is initialised as a collection of

random samples uniformly distributed throughout the

sample area with all of their weights set to 1/Ns. Starting

from this RMCL predicts new locations and recalculates

their weights in every new time step. Each time step is also

accompanied with a check of the effective sample size, and

the samples are resampled if necessary.

3 Experiment Overview

3.1 System Overview

The localisation system utilized within these experiments

was based on activCampus, a commercial active RFID

localisation system supplied by ACT Wireless Ltd.1 Within

this system there were four activReader RFID reader units

operating at 868 MHz and two wrist worn nodes (referred

to as tags). The wrist-worn arrangement was chosen to be

representative of potential healthcare applications where

either patients or healthcare personnel are to be localized

within medical facilities. The readers were stationary and

placed in known locations within the test environment and

so acted as anchor nodes. Based on the Texas Instruments

CC1110 system on a chip transceiver,2 the active RFID

readers were set up to allow synchronous recording of

RSSI levels at multiple readers during each interrogation

with a range of -20 to -100 dBm and a resolution of

0.5 dBm for each 8 bit sample. All captured data was

forwarded to a central server via Ethernet which enabled

1 http://www.act-wireless.com
2 http://www.ti.com/product/cc1110f32
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analysis of the gathered data to be completed off-line

during post processing.

The worn tags were a pair of eZ430-Chronos wrist-watch

style wireless development systems from Texas Instruments

which were programmed with custom firmware that enabled

control of the packet rate while also incorporating a medium

access control scheme that allowed the tags to transmit

without interfering with each other by choosing a timeslot

that minimised interference. The tags’ individual interroga-

tion rate was set at 8.33 Hz, allowing RSSI updates once

every 120 ms from each tag.

3.2 Environment Overview

The experiments were conducted in a large open office

space within the Old Science Library at Queen’s University

Belfast with a number of wooden partitions present along

the long walls as shown in Fig. 1. Each partition had a

height of 2.4 m and formed a cubicle containing computer

workstations, chairs, desks, wooden shelves, and metal

filing cabinets. The main experimental space was confined

to the subset of this room as defined by the position of the

four readers. The readers were mounted at a height of 2 m

above the floor attached to support columns, forming a

14.4 9 14.4 m square. Both tags were worn by the same

subject (height 1.75 m and weight 63.5 kg) for all of the

measurement scenarios. Tag 1 was worn on the subject’s

left wrist, while Tag 2 was worn on the right wrist.

3.3 Scenario Description

Within the test environment eleven individual scenarios

were considered with the path traced by the user following

four basic shapes, a circle, a square, a straight line, and a

horseshoe like shape. These scenarios are listed in Table 1.

The data for each scenario was gathered over three trials

with the first two runs being used exclusively for channel

characterisation and reader calibration. The third run was

reserved for testing the accuracy of the localisation

scheme.

The circle and square paths were positioned so that the

centre of each shape was aligned to the centre of the reader

defined square. The two circular paths had radii of 3.25 and

6.5 m, with the center at point p9. The circular paths were

traversed in both clockwise and anticlockwise directions.

There were also two separate square paths, the smaller of

which was constructed of a square of side 9.5 m. The

clockwise motion of this path was defined by the points p1,

p2, p3, p4, p1, see Fig. 1, while the anticlockwise was simply

the reverse of this. The larger square path was the perimeter

of the square enclosed by the readers and was also travelled

in a clockwise and anticlockwise direction, starting at Reader

1. The horseshoe shape uses the same points as the smaller

square, taking the path described by p1, p2, p3, p4, p3, p2, p1. In

following this path, the horseshoe incorporates both clock-

wise and anticlockwise motion in a single run. The two

straight line scenarios were simply horizontal and vertical

paths. The horizontal path was between p5 and p6, following

Fig. 1 Floor plan for the test

environment, an open office

environment at Queen’s

University Belfast incorporating

four fixed readers, several

trajectory ‘points’, p1–p9, and

dashed lines illustrating the

circular paths (full details are

provided in Sect. 3 of the text)
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the path p5, p6, p5. Similarly the vertical path follows the path

described by p7, p8, p7.

4 Results

To account for any manufacturing variance the channel

parameters were determined on a per reader basis. Table 2

summarises the channel parameters as calculated by

MATLAB using least squares estimation of the measured

trajectories in the first and second trial runs. When com-

pared to the channel parameters used in previous simulated

work [15] it can be seen that in the empirical data not only

is there a greater variance, and therefore more noise, but

also smaller values of np which means that for any change

in signal strength the effect on the estimated distance will

be greater.

The RSSI data gathered from the tags was processed in

four different ways, resulting in four different localisation

estimates. These were based on:

• Tag 1 only,

• Tag 2 only,

• RSSI averaged from Tag 1 and Tag 2, or

• Position averaged from Tag 1 and Tag 2 estimations.

In more detail the first localisation source was the signal

strength using data gathered only from Tag 1 and the

second used the signal strength data from just Tag 2. The

third method averaged the signal strength data from both

tags. The final method involved independently localising

both tags and then averaging these two positions to produce

a final position estimate. The RSSI used within each time

step of RMCL was made up of the mean power received in

a window of 12 samples long (1.44 s) and each time step

was separated by 4 samples (0.48 s). In all cases the win-

dow and step size were the same. To gauge the effective-

ness of using RMCL with these various localisation

estimates, the error values for each scenario were calcu-

lated in each time step as the Euclidean distance between

the estimated location supplied by RMCL and the true

location taken from known trajectory and time data. These

results are summarised in Table 3 which shows the root

mean square (RMS), mean, and 50th percentile error values

for all of the scenarios. These values are calculated from a

total of 1000 RMCL algorithm iterations for each scenario.

Table 3 also provides the measured walking pace for the

user, calculated from time measurements and the distance

travelled.

Initial examination of the data shows that overall it is,

as expected, less accurate than reported simulation results

[15]. This is due to the combined outcome of the less than

favourable channel model parameters, with lower path

loss exponent and higher noise, and the effects of human

body shadowing. These results are also less accurate than

other empirical measurements made using real people

[17], but the main difference is that this work was con-

ducted at an average user speed that is almost twice as

fast as [17] and with a wider reader coverage area of

almost 52 m2 versus 30 m2, and so larger errors are to be

expected.

It is also worth noting that in all except two scenarios,

all of the metrics used to evaluate the performance of

RMCL were in agreement about the most accurate form of

localisation estimate, e.g., mean position or mean RSSI. So

while RMS error may be the preferred metric for locali-

sation, as it more readily accounts for large but infrequent

errors, for the purposes of assessing the relative accuracy of

localisation methods any of the stated metrics may be used.

This can be readily observed in Fig. 2 which shows the

cumulative distribution function (CDF) of the localisation

error in Scenario 6 and is typical of the error distributions

seen in all scenarios. As well as showing the improvement

in localisation accuracy achieved by combining the data

from both tags, Fig. 2 also illustrates how one tag can

provide a better location estimation than the other tag. This

is due to body shadowing and is explored in the remainder

of this section.

Table 1 Summary of measurement scenarios

Scenario Shape Details Path

1 Circle Radius = 3.25 m Clockwise

2 Circle Radius = 3.25 m Anticlockwise

3 Circle Radius = 6.5 m Clockwise

4 Circle Radius = 6.5 m Anticlockwise

5 Square Side = 9.5 m Clockwise

6 Square Side = 9.5 m Anticlockwise

7 Square Side = 14.4 m Clockwise

8 Square Side = 14.4 m Anticlockwise

9 Horseshoe Side = 9.5 m p1, p2, p3, p4, p3, p2, p1.

10 Straight

Line

Horizontal p5, p6, p5

11 Straight

Line

Vertical p7, p8, p7

Table 2 Summary of the measured channel parameters used by each

reader

Reader P0 np rn
2

1 -49.2 1.28 4.69

2 -50.4 1.36 4.43

3 -52.1 1.52 5.35

4 -56.9 0.82 5.47
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Table 3 Localisation error statistics for each scenario and each localisation source (individual tag, mean RSSI or mean position)

Scenario Location source RMS error (m) Mean error (m) 50th Percentile error (m) Average speed (m/s)

1 Tag 1 4.51 4.26 4.26 1.08

Tag 2 3.37 2.98 2.79

Mean RSSI 3.42 3.19 3.07

Mean Position 3.46 3.29 3.12

2 Tag 1 3.09 2.65 2.33 1.08

Tag 2 2.62 2.42 2.40

Mean RSSI 2.34 2.09 1.97

Mean Position 2.13 1.85 1.63

3 Tag 1 2.89 2.52 2.32 1.04

Tag 2 3.61 3.21 3.00

Mean RSSI 2.79 2.46 2.27

Mean Position 2.59 2.27 2.06

4 Tag 1 4.66 4.34 4.11 1.08

Tag 2 3.66 3.37 3.20

Mean RSSI 3.46 3.24 3.15

Mean Position 3.69 3.52 3.39

5 Tag 1 3.74 3.37 3.22 1.11

Tag 2 3.65 3.04 2.53

Mean RSSI 3.43 2.91 2.60

Mean Position 3.25 2.73 2.57

6 Tag 1 3.22 2.95 2.86 1.08

Tag 2 2.83 2.57 2.50

Mean RSSI 2.57 2.33 2.23

Mean Position 2.49 2.25 2.11

7 Tag 1 2.56 2.14 1.90 1.18

Tag 2 3.11 2.59 2.28

Mean RSSI 2.53 2.08 1.79

Mean Position 2.35 1.99 1.79

8 Tag 1 3.17 2.86 2.75 1.17

Tag 2 2.77 2.43 2.32

Mean RSSI 2.86 2.55 2.46

Mean Position 2.70 2.46 2.40

9 Tag 1 2.94 2.59 2.37 1.10

Tag 2 3.45 2.92 2.58

Mean RSSI 3.10 2.66 2.34

Mean Position 2.92 2.49 2.17

10 Tag 1 3.59 3.20 2.98 1.10

Tag 2 3.24 2.80 2.53

Mean RSSI 3.15 2.72 2.48

Mean Position 3.03 2.60 2.31

11 Tag 1 5.50 4.63 3.82 1.06

Tag 2 3.29 3.12 3.10

Mean RSSI 3.78 3.46 3.11

Mean Position 3.87 3.53 3.15
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4.1 Tag Location and Body Shadowing

The placement of the tag on the body is an important

consideration as human body shadowing can strongly

affect the accuracy of signal strength based localisation

schemes. In the experiments conducted here, this led to a

worst case scenario of a 67 % increase in the RMS error.

Closer inspection of the estimated user trajectories pro-

vided by RMCL shows that human body shadowing can

introduce a skewing effect that causes a constant path

deviation. An example of this is shown in Fig. 3 which

displays the estimated paths for Scenario 6, where the

subject travelled along a square path in an anticlockwise

direction. In Fig. 3 the path estimated using only RSSI data

for Tag 2 tends to fall outside of the square defined by the

true path, whereas the path for Tag 1 tends to be within the

square defined by the true path.

This observed skew was caused by the body shadowing

effect in which the body blocks of the line of sight (LOS)

between the tag and the readers. As Tag 2 was worn on the

right wrist during the anticlockwise path of this scenario, it

had an unobstructed LOS to whichever reader the subject

was closest to. Conversely, Tag 1 had a non-line of sight

(NLOS) path to the closest reader as the user’s body was

blocking the path at all times. The effect of the NLOS path

is shown in Fig. 4 which displays the RSSI measured at

Reader 4 (bottom right corner, Fig. 1) during Scenario 6. It

can be seen that at the peak RSSI level, when the user was

closest to the reader, the signal strength from Tag 1 was

lower than was measured from Tag 2.
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Fig 2 CDF showing the distribution of RMS error in Scenario 6
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Fig. 3 Estimated user trajectories for Scenario 6, where the user

travels anticlockwise in a square
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Fig. 4 Time series of the RSSI measured at Reader 4 from both tags

during Scenario 6

Table 3 continued

Scenario Location source RMS error (m) Mean error (m) 50th Percentile error (m) Average speed (m/s)

All Tag 1 3.63 3.13 2.86 N/A

Tag 2 3.26 2.85 2.69

Mean RSSI 3.06 2.68 2.50

Mean Position 2.98 2.61 2.44

The best results for each scenario and metric are shown in bold
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The lower signal strength provided by the NLOS path

causes an overestimation of the distance between the

closest tag and the reader which leads to an estimated

location that is skewed towards the centre of the testing

area and away from the reader. While Tag 1 was able to

maintain a LOS path to the more distant readers, the

ranging estimate provided by the RSSI for the other readers

would still be less accurate due to the much lower signal

levels.

To combat the body shadowing effect and provide more

accurate location estimates two different methods of

combining data from both tags were tested. In the first

method the gathered RSSI values from the two tags were

pooled and averaged within one localisation window. This

combined RSSI value was determined on a per-reader basis

and used for the RMCL localisation estimate at that par-

ticular time-step. The second method was to average the

independent position estimates obtained using RMCL for

an individual tag at each time-step.

The effect of combining the data like this is displayed in

Fig. 5 which shows a typical path generated from the

average RSSI and average position localisation sources in

Scenario 6. These localisation sources result in paths that

are closer to the true path and individual position estimates

that are more evenly separated, more closely representing

the constant walking pace of the user.

The observed body shadowing effect persisted in all

tested scenarios although it was not always as simple as

skewing the estimated path off of the true path. Inspection

of the estimated trajectories produced in the worst per-

forming scenario, which was Scenario 4 where the user

walked anticlockwise in a large circle, showed that a skew

due to body shadowing was present but it was not centred

about the true path, as shown in Fig. 6.

Inspection of the RSSI time series for Scenario 4

revealed a dramatic fade at approximately 15 s into the

scenario, see Fig. 7a. This prolonged fade allowed for a

distance estimate at that time of nearly 150 m which is

several times larger than expected (Fig. 7b). For compari-

son the distance estimates between Tag 1 and Reader 2 are

displayed in Fig. 7c, showing that such extreme overesti-

mates are rare. That fact that this reader was unable to

cause a large deviation in the path of Tag 1 shows the

robust nature of RMCL over other memoryless localisation

algorithms.

Despite the overall poorer performance for Scenario 4, the

effect of averaging the RSSI data from the tags produced

more accurate results. This was similar to the improvements

observed for Scenario 6 (see Fig. 5), were the combined data

localisation sources produce paths that are more accurate,

with more evenly spaced position estimates, and with fewer

large deviations.
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Fig. 6 Estimated user trajectories for Scenario 4 for all four localisation sources (each individual node, average RSSI and average position)
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This qualitative assessment of the improvement is sup-

ported by the summary error statistics presented in Table 3.

It can be observed that while both methods of error mitiga-

tion offer an accuracy improvement, the average position

method provided the most accurate localisation method in

the majority of scenarios. The main exception was in Sce-

nario 11, although this result may be explained via obser-

vation of the RSSI levels and noting their resulting effect

upon the location estimation. For Scenario 11 an unusually

low signal level was measured by Reader 1 from Tag 1 at the

very start of the experiment which caused an initial location

that was skewed towards the centre of the testing area, as can

be seen in Fig. 8. Since RMCL uses previous location esti-

mates to generate new locations this error is propagated

through several time steps. It should be noted that even after

the recovery of the position estimate, the path skew due to

body shadowing observed in Fig. 3 is still present and forces

the position estimate off the true path. In Fig. 8 this can be

seen on the downwards estimated path where it is skewed to

the right of the true path.

Despite this outlying scenario the results in Table 2

illustrate that it is still advantageous to use the average

position of both tags as the user’s location. This is in contrast

to the findings of [19] which show that the average RSSI is a

better means of combining data from multiple tags. How-

ever, the tags in [19] were kept at a fixed distance from one

another whereas in this work they were wrist-mounted on a

human frame resulting in a dynamic and constantly changing

separation distance. For this body-centric scenario the

average position is the best localisation technique as during a

standard human gait (where one arm is in front of the body

and the other is symmetrically behind) despite the changing

separation, the mean position of the two tags will always be

at the centre of the user’s body. Not only is it the most

accurate location estimate in the majority of cases but

choosing this localisation method will allow one to calculate

a position estimate without having to determine the LOS

condition of the tag in each time step and then compensate for

it. While knowledge of the LOS status between the node and

reader allows for greater accuracy [17] this improvement

needs to be weighed against the additional complexity and

processing that a NLOS compensation system would require.

4.2 Initialisation Phase

Aside from errors directly related to body interaction there

are other errors associated with MCL. The start up error

seen in Scenario 11 is a common phenomenon exhibited in

many MCL systems [11–14]. Termed as the initialisation

phase, this is the period of time in which the location error

starts off relatively high but decreases as new observations

are incorporated. Although not all initialisation phases are
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Fig. 7 Time series of a RSSI from Tag 1 recorded at Reader 4 and

the estimated distance between Tag 1 and b Reader 4 and c Reader 2

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

X (metres)

Y
 (

m
et

re
s)

Path Up

Path Down
True Path

Fig. 8 Estimated user trajectories for Tag 1 in Scenario 11, where the

user followed a straight line up and down the testing area
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as dramatic as those seen in Scenario 11, see Fig. 9, all of

the tested scenarios suffer from this to some extent.

This initialisation phase could potentially lead to

increased error levels if used within the framework of a

more extensive localisation system where each individual

room or area would have their own set of readers. In such a

system the initialisation phase would occur every time the

user enters a new localisation area, defined by the bound-

aries of each room or subsections of a larger area due to

partition shadowing or limits on received signal strength

due to limited transmit power in wearable and portable

devices. There are a number of methods one could use to

alleviate this problem, ranging from a trilateration scheme

which is activated as the user passes chokepoints such as

the entrance to a room to the use of a map of the building

with known location of entrance and exit points. To

investigate the benefit of implementing this type of scheme

a variant of RMCL was evaluated in which the known

starting location was seeded into the localisation system at

the first time step. Table 4 shows the RMS error of RMCL

and Seeded RMCL taken over 1,000 trials of all of the

scenarios.

From Table 4 it can be seen that Seeded RMCL per-

forms better overall for every localisation source although

its effectiveness decreases for the combined sources. This

shows that a component of the error observed in the ini-

tialisation phase is due to the effect of the human body and

can be partially overcome by application of body shad-

owing mitigation techniques.

5 Conclusions and Future Work

In this paper an implementation of RMCL was presented

that employed commercial off-the-shelf hardware that

enabled the collection of empirical data for personnel

localisation within a typical operating environment. Inves-

tigation of this data showed that the position of the tag upon

the user is an important consideration with regards to

localisation accuracy due to the body shadowing effect.

Body shadowing causes a reduction in signal strength for

the LOS path between the tags and the readers which leads

to an overestimation of this distance resulting in a constant

path skew that was observed in all scenarios. Techniques to

compensate for the path skew caused by body shadowing

have been presented. These have shown that taking the

average position of the two tags offered the most accurate

location estimate for the majority of the scenarios consid-

ered here. This was because the tags were situated on

opposite wrists which meant that the path skew for each was

in opposing directions.

These positive results have illustrated the potential of

the stated approach and it is the intention of the authors to

conduct additional experiments to further establish the

robustness of this location estimator, particularly in more

complicated environments. With regards to the algorithm

itself, future work into RMCL for body-centric applica-

tions will involve adaptation specifically for wearable

multi node applications such as body area networks. Here,

the use of multiple nodes could lead to the generation of a

confidence measure for each position estimate and pro-

viding this to subsequent time steps. For example, con-

sidering the two node example presented in this paper, this

confidence measure may be computed by evaluating the

Euclidian distance between the estimated position of Tag 1

and Tag 2. The closer their positions are, the more confi-

dent the system can be about this position estimate as their

proximity is indicative of reliable ranging from each reader

for each tag.
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Scenario 11 illustrating how an inaccurate starting location can lead to

residual errors

Table 4 RMS error for all the scenarios in both RMCL and Seeded

RMCL

Localisation method Tag 1 Tag 2 Mean RSSI Mean position

RMCL 3.63 3.26 3.06 2.98

Seeded RMCL 3.26 2.96 2.78 2.72

Improvement (%) 10 9 9 9
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