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a b s t r a c t

This paper presents a decision algorithm for the analysis of the stability of a class of planar switched linear
systems,modeled by hybrid automata. The dynamics in each location of the hybrid automaton is assumed
to be linear and asymptotically stable; the guards on the transitions are hyperplanes in the state space.
We show that for every pair of an ingoing and an outgoing transition related to a location, the exact gain
in the norm of the vector induced by the dynamics in that location can be computed. These exact gains
are used in defining a gain automaton which forms the basis of an algorithmic criterion to determine if a
planar hybrid automaton is stable or not.
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1. Introduction

A hybrid automaton [1,2] is an automaton with locations
and transitions between the locations, together with continuous
dynamics in the locations, usually described by differential
equations, and constraints on both locations and transitions. This
is a prominent model for the study of hybrid systems [3].

The analysis of the stability of a hybrid system is an important
and interesting problem. Even in the case of switched linear
systems with asymptotically stable dynamics in each location, it is
possible that the switching regime gives rise to a global behavior of
the system that is unstable (see e.g. [4]). For an overview of results
on hybrid stability see [5–10]. Some results assume arbitrary
switching between locations [9,11]; it is then possible to look for
a Lyapunov function common to all locations [8,12]. The arbitrary
switching assumption would be unsuitable in general for hybrid
automata, since there the possible switchings are restricted by the
guards of the transitions and the invariants of the locations.

Another stability criterion is that of multiple Lyapunov func-
tions [4,13,8]. Each location is assumed to have a Lyapunov func-
tion. Then all behaviors of the system should satisfy the so-called
non-increasing sequence property: when a location is visited for
the second time, the value of its Lyapunov function should be less
thanwhat it was the last time the locationwas visited. This is a suf-
ficient condition for the stability of a hybrid automaton. In general,
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checking the non-increasing sequence propertymay be difficult, as
checking all possible behaviors of a hybrid system is clearly not an
option.

A different approach relies on the construction of Lyapunov
functions that are either piecewise linear [14] or piecewise
quadratic [15–17]. In the latter case the piecewise quadratic
function should be continuous on the switching boundaries, which
can be checked efficiently by solving a linear matrix inequality.
The approach has originally been formulated for piecewise affine
systems, where the state space is divided into regions, and to
each region corresponds a dynamics. It is not so easy to adapt the
approach to the more general model of hybrid automata.

For a restricted class of hybrid systems, [18] proposes a
sufficient condition for stability that relies on the construction of
optimal quadratic Lyapunov functions to provide estimates of the
maximal ratio between the norm of an outgoing and an incoming
vector induced by the dynamics of a location.

The only source of instability is the switching regime of a cycle.
It is therefore sufficient to prove that for every cycle the product of
the gains of consecutive transitions is less than one to guarantee
stability. However, this technique is inconclusive for systems of
three or more dimensions, or when there is a cycle with a gain of
more than one.

In this paper we present a decision algorithm for the stability
of planar switching linear systems. Switching is enabled by linear
guards. This yields a homogeneous switching system in the sense
that scalarmultiples of admissible trajectories are again admissible
trajectories. By restricting ourselves to this case, we are able
to show that the maximal gains can be computed exactly by
transforming the dynamics to its real Jordan form instead of using
a quadratic Lyapunov function to provide an upper estimate of the
gain.
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By providing an upper and a lower bound to this gain, we
characterize a cycle of the automaton as being (strictly) contractive
if the upper bound is (strictly) less than 1, expanding if the lower
bound is larger than 1. The absence of (non-strict) non-contractive
cycles is a sufficient condition for the (asymptotic) stability of the
hybrid automaton. The presence of expanding cycles is a sufficient
condition for the instability of the hybrid automaton. In the planar
case, the absence of non-contractive (or expanding) cycles is a
necessary and sufficient condition for the stability of the hybrid
automaton.

The remainder of the paper is organized as follows. Section 2
gives basic definitions about hybrid automata and defines the
class of hybrid automata considered in this paper. In Section 3
we give the definition of stability of a hybrid automaton and
provide sufficient conditions for the stability or instability based
on the absence or presence of non-contractive cycles. Section 4
introduces the notion of gain automaton. This is an automaton that
is associated to the hybrid automaton under consideration and is
used to detect, in a systematicway, the presence of non-contractive
or expanding cycles. Section 5 shows how to compute maximal
gains exactly for planar systems using the real Jordan form of the
matrices. Finally, in Section 8, we give conclusions and directions
for future research. For basic notions of systems theory used in this
paper we refer to [19].

2. Planar LCH

A planar Linear Continuous Hyperplane hybrid automaton [18]
is a hybrid automaton [1,2] such that the continuous dynamics are
linear in R2, the guards of the transitions are lines through the
origin, and there are no resets associated with a transition.

Definition 2.1 (Hybrid Automaton). A Planar Linear Continuous Hy-
perplane hybrid automaton is a tuple H = (X, L, Init, f , E,Guard,
Σ) where:

• X = R2 is the state space ranged over by the state vector x.
• L is a finite set of locations.
• Init = L′

× R2 is the set of initial location–state pairs for a set
L′

⊆ L of locations. So for a given initial location we can start
from any state, which is technically convenient when studying
stability.

• f : L → R2×2 assigns to each location ℓ a matrix Aℓ ∈ R2×2.
• E ⊆ L × L is a finite set of transitions, also called switches

between locations.
• Guard : E → R2

\{0} assigns to each transition a nonzero vector
ve ∈ R2. The corresponding guard is the line through the origin
perpendicular to ve ∈ R2: {x | vT

e x = 0}.
• Σ is a set of transition labels. We assume a labeling function

lab : E → Σ and refer to transitions by their labels (assuming
uniqueness).

Remark 2.2. The intuitive interpretation of the formal definition
above is as follows. The automaton has a finite number of locations.
In each location the continuous state evolves according to the
dynamics d

dt x = Aℓx. Furthermore, for all pairs of locations for
which there exists a transition from the first to the second location,
the transition is enabled if and only if the continuous state passes
through a line specific to that transition. The automaton contains
no invariants and the continuous state is never reset.

Definition 2.3 (Hybrid Trace). A hybrid trace of an LCH hybrid
automaton is a finite or infinite sequence of the form σ = x1e1x2e2
· · · xm−1em−1xm, . . . , with an associated monotonically increasing
timing sequence τ0τ1 · · · τm, . . . (with τ0 = 0, τi ∈ R ∪ {∞}), such
that
• each ei is a transition from location ℓi to location ℓi+1
• each xi is a mapping from [τi−1, τi] to Rn satisfying d

dt xi = Aℓixi
• initial and switching constraints and assignments are respected,

so (ℓ1, x1(0)) ∈ Init, and for all 1 ≤ i ≤ m − 1: vT
eixi(τi) = 0

and xi(τi) = xi+1(τi).

Assumption 2.4. To avoid Zeno behavior we impose that for every
location, the guards of any incoming transition and any outgoing
transition are different. That means that transitions are delayed by
a fixedminimal dwell time. As a consequence, for any infinite trace
we have limi→∞ τi = ∞.

3. Stability

Definition 3.1 (Stability). An LCH hybrid automaton is stable if
∀ϵ > 0 ∃δ > 0 such that for all hybrid traces x1e1x2e2 · · · with
∥x1(0)∥ < δ and ∀i∀t ∈ [τi−1, τi] : ∥xi(t)∥ < ϵ. An automaton
that is not stable is called unstable.

Definition 3.2 (Asymptotic Stability). An LCH hybrid automaton is
asymptotically stable if it is stable and for any infinite hybrid trace
x1e1x2e2 · · · and for all sequences {ti} with τi ≤ ti ≤ τi+1 we have
limi→∞ ∥xi(ti)∥ = 0.

It is well known that even if for each location ℓ the dynamics
is asymptotically stable, so the matrix Aℓ is Hurwitz (i.e., all
eigenvalues have negative real part, see [19]), still the hybrid
automaton can be unstable (see e.g. [4] for a simple example)
because of the switching. We say that a hybrid automaton has
Hurwitz locations (with some abuse of terminology) if for each
location ℓ the matrix Aℓ is Hurwitz.

Our problem consists in analyzing the stability of an LCH hybrid
automaton with Hurwitz locations. We first introduce the concept
of gain associated with a pair of an incoming and an outgoing
transition from a given location. We then show how gains can be
used to give sufficient conditions for the stability or instability of
an LCH hybrid automaton. The analysis of the stability is based on
the analysis of the cycles of the automaton. Because we consider
Hurwitz locations, instability can arise only from executions with
infinite switching. Indeed, in case of only a finite number of
switches the continuous state remains in a single location from a
certain time instant on and hence converges to zero.

3.1. Gains

Suppose a location ℓ is entered via a transition a with a state
vector xa and is left via a transition b with a state vector xb. An
indication as to how the location contributes to the stability or
instability is the ratio of the norm of the outbound state and the
inbound state. A ratio below one is in favor of stability whereas a
ratio above one points at instability.

Since the actual ratio depends on the trace and the state
trajectory (and in particular on the dwell time in a location)
we consider the maximal gain that only depends on the pair of
inbound and outbound transitions of a given location.

Definition 3.3 (Maximal Gain). The maximal gain when entering
location ℓ via transition a and leaving it via transition b is γab ∈

R+
∪ {⊥} such that, for any solution x(t) of d

dt x = Aℓx with
vT
ax(0) = 0 we have:

• γab = ⊥ if ̸ ∃t s.t. vT
bx(t) = 0

• γab > 0 if ∃t∗ s.t. vT
bx(t

∗) = 0 and ∥x(t∗)∥
∥x(0)∥ = γab

• ∀t if vT
bx(t) = 0 then ∥x(t)∥

∥x(0)∥ ≤ γab.
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A maximal gain equal to ⊥ means that location ℓ entered via a
will never be left via b. A gain strictly greater than 0 means that
the location can be left via b and that the corresponding gain in the
norms of the vectors will be γab in the worst case. The existence
of the maximum is ensured because we consider stable locations
and linear dynamics. It is easy to see that for planar systems the
maximal gain is attained when the system leaves the location at
the first possible occasion.

In the following, we assume that we know a lower and an upper
bound of the maximal gain, i.e. αab, βab ∈ R+ such that 0 ≤ βab ≤

γab ≤ αab.

3.2. Contractive cycles

Suppose we have a hybrid automaton with Hurwitz locations.
If for each location that can be visited infinitely often the gain
is ≤ 1, then it can be seen that the hybrid automaton is stable:
since the number of locations in a trace that are visited only once
(seen as a function of a trace) is bounded, there is a bound to the
gains corresponding to the traces. However, such a condition is
unnecessarily restrictive as it does not take into account situations
where a higher gain in one location is compensated by a lower gain
in another location. So we need a more global condition.

Definition 3.4. Let H be a hybrid automaton, then a (strictly)
contractive cycle of H is a sequence of transitions C = e1e2 · · · em
such that each ei is a transition from ℓi to ℓi+1, with ℓ1 = ℓm+1, and
α(C) = αe1e2αe2e3 · · · αeme1 ≤ 1(< 1). The scalar α(C) is called the
upper estimate of the cycle gain.

Theorem3.5 provides a sufficient condition for the (asymptotic)
stability of an LCH hybrid system based on the absence of (non-
strict) non-contractive cycles.

Theorem 3.5. Let H be an LCH hybrid automaton with Hurwitz
locations. If all cycles in H are (strictly) contractive then H is
(asymptotically) stable.

Proof. Let σ be an infinite trace and σn the first n steps of σ , say:

σn = x1e1 · · · en−1xn.

Denote the number of locations of the hybrid automaton by N .
Every sub-trace of length N + 1 contains a cycle C:

σn = x1e1 · · · C · · · en−1xn.

The cycle C gives a contribution α(C) to the gain of σn. Remove
C from σn and proceed inductively on the remainder to conclude
that:

α(σn) ≤ α0α
k,

where α ≤ 1 is the maximum over all cycle gains and α0 the
maximum over all possible finite traces of length smaller than
N + 1. Furthermore, k > N−1

n . The latter lower bound on k follows
from a reduction step on σn that can be repeated as long as the
length after reduction exceeds N + 1. As a consequence we have
that:

∥xn(τn)∥ ≤ α0α
k
∥x0(0)∥.

Notice furthermore that there exist positive constants d0, d1 such
that within any location we have that

d0∥x(τi)∥ ≤ ∥x(t)∥ ≤ d1x(τi+1)∥.

Therefore (asymptotic) stability can be concluded from the
behavior at the switching times τi. The conclusion is that if
all cycles are contractive, implying that α ≤ 1, we have at
least stability, and if all cycles are strictly contractive we have
asymptotic stability. �
3.3. Expanding cycles

Definition 3.6. Let H be a hybrid automaton, then a (strictly)
expanding cycle of H is a sequence of transitions C = e1e2 · · · em
such that each ei is a transition from ℓi to ℓi+1, with ℓ1 = ℓm+1,
and β(C) = βe1e2βe2e3 · · · βeme1 > 1. The scalar β(C) is called the
lower estimate of the cycle gain.

Theorem 3.7 provides a sufficient condition for the instability
of an LCH hybrid system based on the detection of (strictly)
expanding cycles.

Theorem 3.7. Let H be an LCH hybrid automaton with Hurwitz
locations. If H has a strictly expanding cycle then H is unstable.

Proof. If H has an expanding cycle, then there exists a trace that
keeps cycling through that cycle. Obviously such a trace will grow
without bound if the initial continuous state is nonzero. �

4. Interval gain automata and cycle analysis

Theorem3.5 provides uswith a sufficient condition for stability,
namely the absence of non-contractive cycles, and Theorem 3.7
with a sufficient condition for instability, namely the presence
of expanding cycles. In order to check for non-contractive or
expanding cycles we first transform a hybrid automaton into what
we call gain automaton.

Definition 4.1. An interval gain automaton is a tuple GA = (S,
S0,G) where

• S is the set of nodes,
• S0 is the set of initial nodes,
• G ⊆ S× (R+

×R+)×S is the set of edges labeledwith intervals
of gains.

Definition 4.2. Let H be a planar LCH, then the gain automaton for
H is defined by GA(H) = (SH , S0H ,GH) where

• The nodes of the gain automaton are the transitions of H , i.e.
SH = E.

• The initial nodes S0H are the transitions from an initial location
of H .

• For each pair of adjacent transitions a and b in H such that
a

→ l
b

→ and αab ≠ ⊥ there is an edge a
βab,αab
−→ b in GH .

It must be noted that there is an edge in the interval gain
automaton only if the maximal gain corresponding to the pair of
transitions in H is well defined.

We present an algorithm on the gain automaton of a hybrid
automaton for the detection of non-contractive and expanding
cycles. This algorithm is inspired by the well-known algorithm for
transforming an automaton into an equivalent regular expression
(see e.g. [20,21]). Itworks by successively deletingnodes of the gain
automaton, while transforming the edges. The basic steps of the
algorithm are:

• Node elimination: a node is eliminated, as illustrated in Fig. 1(a).
Each possible pair of an incoming and outgoing edge of this
node leads to a new edge, labeled with the product of the
interval gains defined as (β1, α1) ⊗ (β2, α2) = (β1β2, α1α2).

• Double edge elimination: as illustrated in Fig. 1(c), if two edges
have the same initial and final node they are transformed into a
single edge, labeled with the union of the interval gains defined
as (β1, α1) ⊕ (β2, α2) = (min(β1, β2),max(α1, α2)).
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Fig. 1. Basic steps of the algorithm.
• Loop edge analysis: it is possible that deleting a node creates a
loop edge, as illustrated in Fig. 1(b). The algorithm analyzes the
gain of a loop edge and then removes it. If the lower bound of
the gain of such a loop edge is >1 (i.e. an expanding loop edge)
then the algorithm terminates and the system is unstable. If the
upper bound of the gain of such a loop edge is >1 (i.e. a non-
contractive loop edge) then the algorithm marks the system as
non-stable.
The algorithm terminates when an expanding cycle is detected,

and the system is unstable, or when all nodes have been removed,
in which case the system is stable if no non-contractive cycle has
been detected.

Algorithm 4.3.
Input: a gain automaton GA.
stable = True
unstable = False
repeat

check all loop edges;
if a non-contractive loop edge is found

then stable = False;
if an expanding loop edge is found

then unstable = True;
remove all loop edges
eliminate a node;
eliminate all resulting double edges;

until there is only one node or unstable
return unstable, stable

Theorem 4.4. Let H be an LCH hybrid automaton with Hurwitz
locations. If Algorithm 4.3 detects a non-contractive (resp. expanding)
loop edge in GA(H) then H contains a non-contractive (resp.
expanding) cycle.
Proof. See [18, Theorem VI.5]. �

The number of nodes in GA(H) is quadratic in the number of
nodes of H , and the complexity of Algorithm 4.3 is linear in the
number of nodes of GA, so the complexity of Algorithm 4.3 is
quadratic in the number of nodes of H . This means we have a
computationally efficientwayof checking the sufficiency condition
for stability and instability.

5. Exact gain computation for planar systems

In this section we show that for planar LCH systems, the exact
maximal gain for any pair of incoming and outgoing transitions can
be obtained by computing the real Jordan form of the dynamics
matrix. A case by case analysis of the different types of Jordan
form shows that there is an analytic solution to the problem of
finding, for any incoming state, the outgoing state with maximal
gain, which corresponds in the planar case to leaving the location
at the first possible occasion.
With the exact computation of maximal gains we obtain a
necessary and sufficient condition for the stability of planar LCH
from Theorems 3.5 and 3.7. The interval gain automaton of a
planar LCH is such that the lower and upper bounds in every
edge are equal to the corresponding maximal gain. In this case,
Algorithm 4.3 becomes a decision procedure for the stability (or
instability) of the system.

5.1. Gain in real Jordan form

The real Jordan form for a 2×2matrix is of one of the following
forms:

(a)


λ0 0
0 λ1


, λ0 ≠ λ1 (b)


λ0 1
0 λ0


(c)


λ0 0
0 λ0


(d)


α −β
β α


β ≠ 0

where λ0, λ1, α and β are real. The different types of Jordan
forms correspond to the different possibilities of eigenvalues and
eigenvectors. Case (a) corresponds to the case of two different real
eigenvalues, case (b) to the case of one real eigenvalue of algebraic
multiplicity two and geometric multiplicity one, and case (d) is for
two different complex eigenvalues. Case (c) is the case of one real
eigenvalue of algebraic and geometric multiplicity two; it is easy
to deal with.

For every location ℓ with an incoming transition a and an
outgoing transition b determined by vectors va and vb respectively,
we first compute the eigenvalues and eigenvectors of Aℓ to
determine its real Jordan form Jℓ such that Aℓ = MJℓM−1,M being
the matrix of the change of basis from Jℓ to Aℓ.

We show how to compute the maximal gain γ ′

ab for a matrix in
real Jordan form. For that, we assume that the guard of a is given
by a1y = a2x and the guard of b is b1y = b2x in the basis of Jℓ.
To determine the maximal gain, we need to find if and when the
solution of the system ẋ = Jx, with x(0) =


x0
y0


≠ 0 an initial state

in the incoming line (i.e. a1y0 = a2x0), intersects the switching line
b1y = b2x.

Case (a): two different real eigenvalues. Let J =
λ0 0
0 λ1


be a stable

matrix in diagonal formwith λ0, λ1 < 0. The trajectory is given by

x(t) = x0eλ0t y(t) = y0eλ1t .

We can determine exactly if andwhen the trajectory intersects the
outgoing switching line b1y = b2x. It is easy to see that there is
no intersection if any of a1, a2, b1 or b2 is equal to 0. Otherwise,
let a = a1/a2 and b = b1/b2. The intersection of the trajectory
with the guard happens when y0eλ1t = bx0eλ0t , that is, when
aeλ1t = beλ0t . So the intersection happens at

t∗ =
log(b/a)
λ1 − λ0

iff t∗ > 0.
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The exact maximal gain is then given by ⊥ if t∗ < 0, a = 0 or
b = 0, otherwise γ ′

ab =
∥x(t∗)∥
∥x(0)∥ which, after simplification, yields

γ ′

ab =

a
b

 λ0
λ0−λ1


1 + b2

1 + a2
. (1)

Case (b): two equal real eigenvalues, one eigenvector. Let J =λ0 1
0 λ0


be a stablematrixwithλ0 < 0. The solution of this system

is
x(t) = (1 + at)x0eλ0t y(t) = ax0eλ0t .

If a = 0 or b = 0 there is no intersection of the trajectory
with y = bx. Otherwise, the trajectory intersects the switching line
when x(t) = ( 1

a + t)y(t) =
1
by(t), that is for

t∗ =
1
b

−
1
a

iff t∗ > 0.

The exact maximal gain is then ⊥ if t∗ < 0, a = 0 or b = 0,
otherwise γ ′

ab =
∥x(t∗)∥
∥x(0)∥ yields, after simplification,

γ ′

ab =
a
b
eλ0

a−b
ab


1 + b2

1 + a2
. (2)

Case (d): two different complex eigenvalues. Let J =
α −β
β α


be

a stable matrix with α ≠ 0. Using polar coordinates (r, θ) with
r =


x2 + y2 and tan(θ) = y/x, it can be shown that the trajecto-

ries must satisfy ṙ = αr and θ̇ = β and the solution is
r(t) = r0eαt θ(t) = βt + θa

where r0 =


x20 + y20 and θa = atan2(a, 1).

We denote by θb = atan2(b, 1) the angle of the switching line
y = bx. The first possible switching occurs when θ(t) = θ∗ such
that, if the trajectory is anti-clockwise (i.e. β > 0),

θ∗
=


θb if θb − π < θa < θb
θb + π if θb < θa < θb + π
θb + 2π if θb + π < θa < θb + 2π

and if the trajectory is clockwise (i.e. β < 0),

θ∗
=


θb − π if θb − π < θa < θb
θb if θb < θa < θb + π
θb + π if θb + π < θa < θb + 2π.

This intersection will always happen for

t∗ =
θ∗

− θa

β

and the exact maximal gain is then γ ′

ab =
r(t∗)

r0
= eαt∗ so

γ ′

ab = e
α
β

(θ∗
−θa). (3)

5.2. Gain from a change of basis

For planar systemswe can associate a constant gain to a change
of basis. Let ia be a unit vector in the incoming line and ib a unit
vector in the outgoing line (∥ia∥ = ∥bb∥ = 1). Let M be a non-
singularmatrix representing a change of basis and y = Mx = λMia
the image of an incoming vector x by M . Then,

∥y∥
∥x∥

2

=
λ2iTa · MTM · ia

λ2iTa · ia
= iTa · MTM · ia.

Wedefine then the incoming gain γ M
a and the outgoing gain γ M

b
for the change of basisM as:

γ M
a =


iTa · MTM · ia

 1
2

γ M
b =


iTb · MTM · ib

−
1
2
.

Fig. 2. A simple planar LCH.

5.3. Gain in original basis

The gain in the basis of the original matrix is then the product
of the gain in the basis of the Jordan form times the gain for the
change of basis:

γab = γ M
a γ ′

abγ
M
b .

6. Continuity and robustness

Although for the calculation of the gains for the planar case
we distinguish several cases, depending on the location of the
eigenvalues, the gains depend continuously on the matrices in the
locations.

Theorem 6.1. The gain as defined in Definition 3.3 depends analyti-
cally on A.

Proof. Choose Ā such that γab > 0 and vT
ax0 = 0 and ∥x0∥ = 1.

Then t∗ is the smallest positive scalar such that

vT
be

Āt∗x0 = 0.

It follows from the implicit function theorem that there exist an
open neighborhoodΩ of Ā and an analytic function t∗(A), such that
for A ∈ Ω , we have that t∗(A) is the smallest positive scalar with
the property that

vT
be

t∗(A)x0 = 0.

It follows that

γab =
1

∥et∗(A)x0∥
.

Therefore the gain is the composition of two analytic functions and
hence the gain is also analytic. �

7. Example

Let us illustrate the computation of the exactmaximal gainwith
the simple planar LCH hybrid system of Fig. 2. The system has two
locations ℓ1 and ℓ2, a transition a from ℓ1 to ℓ2, and a transition
b from ℓ2 back to ℓ1. The dynamics are given by matrix A1 and A2
respectively with

A1 =


0 1

−2 −3


A2 =


−0.2 0.4
−7.5 −0.1


and the guards are orthogonal to va =


0
1


and vb =


1
0


.

We compute the exact gain of the cycle with the method of
Section 5 and show that the system is (asymptotically) stable,
and that stability cannot be determined using optimal Quadratic
Lyapunov Functions as proposed in [18]. Indeed, in [18] only
a sufficient condition for stability based on optimally selected
quadratic Lyapunov functions is derived. Our example shows once
more the well known fact that quadratic Lyapunov functions are
restrictive in the stability analysis of hybrid systems.
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7.1. Gain in ℓ1

Let’s consider location ℓ1 with incoming transition awith guard
x = 0, and outgoing transition b with guard y = 0, and dynamics
given by ẋ = A1x. The eigenvalues of A1 are λ0 = −1 and λ1 = −2.
Matrix A1 can be put in diagonal form J with the change of basisM
corresponding to the eigenvectors, such that A1 = MJM−1 where

J =


−1 0
0 −2


M =


0.707 −0.447

−0.707 0.894


.

The gains from the change of basis M−1 are computed for the
unit vectors ia =


0
1


and ib =


1
0


. We obtain γ ′

a =
√
7 = 2.645

and γ ′

b = 1/
√
13 = 0.277.

The gain for the diagonal matrix J is computed using Eq. (1). In
this case we have

M−1

0
1


=

√
2

√
5


so a =

√
5/2, and

M−1

0
1


=


2
√
2

√
5


so b =

1
2

√
5/2. Therefore, the gain for J is γ ′

ab =
1
4


13
7 .

The maximal gain in the original basis is

γab = γ ′

aγ
′

abγ
′

b =
1
4
.

On the other hand, the upper bound on the maximal gain obtained
with the optimal Quadratic Lyapunov Function as in [18] is ρab =

1/
√
12.68 = 0.28.

7.2. Gain in ℓ2

Let’s consider location ℓ2 with incoming transition bwith guard
y = 0, and outgoing transition c with guard x = 0, and dynamics
given by ẋ = A2x. The conjugate complex eigenvalues of A2 are
λ0 = −0.15 + 1.731j and λ1 = −0.15 − 1.731j. Matrix A2 is
similar to matrix J with a change of basisM such that A2 = MJM−1

where

J =


−0.15 −1.731
1.731 −0.15


M =


−0.35 −1.731
−7.5 0


.

The gains from the change of basis M−1 are computed for the
unit vectors ib =


1
0


and ia =


0
1


. We obtain γ ′

b = 0.577 and

γ ′
a = 7.497.
The gain for matrix J is computed using Eq. (3). In this case we

have

M−1

1
0


=


0

−0.577


so θb = −π/2, and

M−1


0
−1


=


0.133

−0.004


so θa = −0.029. Since β > 0 and θa − π < θb < θa, then θ∗

= θa.
Therefore, the gain for J is γ ′

ba = e
α
β

(θa−θb)
= 0.875.

The maximal gain for A is

γba = γ ′

bγ
′

baγ
′

a = 3.78.

On the other hand, the upper bound on the maximal gain obtained
with the optimal Quadratic Lyapunov Function as in [18] is ρba =
√
15.77 = 3.97.
Fig. 3. Trajectory of the planar LCH starting at (x, y) = (0, 10) with the
corresponding optimal Quadratic Lyapunov Functions.

Fig. 4. No common Quadratic Lyapunov Function.

7.3. Stability

We conclude that the system is (asymptotically) stable because
the exact maximal gain of the cycle is γabγba < 1. On the other
hand, using the upper bounds obtained with optimal Quadratic
Lyapunov Function we obtain ρabρba > 1 and therefore we cannot
conclude on the stability of the system. Fig. 3 shows the first cycles
of a trajectory of the system which approaches the equilibrium,
and depicts the optimal Quadratic Lyapunov Functions for this
trajectory. As expected, Fig. 4 shows that there is no common
Quadratic Lyapunov Function for the two locations.

8. Conclusions

We have derived a necessary and sufficient condition for the
stability of a planar LCH hybrid automaton, namely the absence
of expanding cycles (i.e. all cycles are contractive), together with
an algorithm for efficiently checking this condition. We have
made use of both systems theoretic concepts (in calculating the
estimated gains) and computer science concepts (in checking the
cycles in the gain automaton), thereby doing justice to both the
continuous and the discrete aspects of hybrid systems.

As future work, we are interested in widening the class of
hybrid systems to which this approach can be applied, for instance
considering a more general type of guards. If this approach cannot
directly be applied to systems of dimension three or more, we
plan to study if it would be possible to do so by making further
assumptions. Finally, by computing gains for unstable locations the
approach might be applied to study the stabilization of unstable
dynamics within the hybrid automaton framework.
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