Neural Process Lett
DOI 10.1007/s11063-012-9274-5

Modular Neural Tile Architecture for Compact
Embedded Hardware Spiking Neural Network

Sandeep Pande - Fearghal Morgan - Seamus Cawley - Tom Bruintjes -
Gerard Smit - Brian McGinley - Snaider Carrillo - Jim Harkin - Liam McDaid

© Springer Science+Business Media New York 2012

Abstract Biologically-inspired packet switched network on chip (NoC) based hardware
spiking neural network (SNN) architectures have been proposed as an embedded comput-
ing platform for classification, estimation and control applications. Storage of large synaptic
connectivity (SNN topology) information in SNNs require large distributed on-chip mem-
ory, which poses serious challenges for compact hardware implementation of such archi-
tectures. Based on the structured neural organisation observed in human brain, a modular
neural networks (MNN) design strategy partitions complex application tasks into smaller
subtasks executing on distinct neural network modules, and integrates intermediate outputs
in higher level functions. This paper proposes a hardware modular neural tile (MNT) archi-
tecture that reduces the SNN topology memory requirement of NoC-based hardware SNN's
by using a combination of fixed and configurable synaptic connections. The proposed MNT
contains a 16:16 fully-connected feed-forward SNN structure and integrates in a mesh topol-
ogy NoC communication infrastructure. The SNN topology memory requirement is 50 % of
the monolithic NoC-based hardware SNN implementation. The paper also presents a lookup
table based SNN topology memory allocation technique, which further increases the memory
utilisation efficiency. Overall the area requirement of the architecture is reduced by an aver-
age of 66 % for practical SNN application topologies. The paper presents micro-architecture
details of the proposed MNT and digital neuron circuit. The proposed architecture has been
validated on a Xilinx Virtex-6 FPGA and synthesised using 65 nm low-power CMOS technol-
ogy. The evolvable capability of the proposed MNT and its suitability for executing subtasks
within a MNN execution architecture is demonstrated by successfully evolving benchmark
SNN application tasks representing classification and non-linear control functions. The paper

S. Pande (&)- E. Morgan - S. Cawley - B. McGinley
Bio-Inspired Electronics and Reconfigurable Computing, National University of Ireland, Galway, Ireland
e-mail: sandeep.pande @nuigalway.ie

T. Bruintjes - G. Smit
Computer Architecture for Embedded Systems, University of Twente, Enschede, The Netherlands

S. Carrillo - J. Harkin - L. McDaid
Intelligent Systems Research Centre, University of Ulster, Derry, Northern Ireland, UK

Published online: 01 January 2013 @ Springer

S. Pande et al.

addresses hardware modular SNN design and implementation challenges and contributes to
the development of a compact hardware modular SNN architecture suitable for embedded
applications

Keywords Modular neural networks (MNN) - Spiking neural networks (SNN) -
Synaptic connectivity - Network on chip (NoC) - EMBRACE

1 Introduction

Artificial neural network (ANN) computing techniques, which are primarily inspired by the
functioning of human brain, can provide promising solutions for designing complex and
intelligent systems [1]. The organic central nervous system includes a dense and complex
interconnection of neurons and synapses, where each neuron connects to thousands of other
neurons through synaptic connections. Computing systems based on spiking neural networks
(SNNs) emulate real biological neural networks, conveying information through the com-
munication of short transient pulses (spikes) between neurons via their synaptic connections.
Each neuron maintains an internal membrane potential, which is a function of input spikes,
associated synaptic weights, current membrane potential, and a constant membrane potential
leakage coefficient [2,3]. A neuron fires (emits a spike to all connected synapses/neurons)
when its membrane potential exceeds the neuron’s firing threshold value.

Brain-inspired computing paradigms such as SNNs offer the potential for elegant, low-
power and scalable methods of embedded computing, with rich non-linear dynamics, ideally
suited to applications including classification, estimation, prediction, dynamic control and
signal processing. The efficient implementation of SNN-based hardware architectures for
real-time embedded systems is primarily influenced by neuron design, scalable on-chip inter-
connect architecture and SNN training/learning algorithms [4]. The authors have investigated
and proposed EMBRACE!, as an embedded hardware neural network architecture [5,6]. The
EMBRACE NoC-based SNN architecture is a 2D mesh topology array of neural tiles each
comprising a single neuron and NoC router. The NoC-based synaptic connectivity approach
employed in the EMBRACE architecture provides a flexible, packet-switched inter-neuron
communication channels, scalable interconnect and connection reconfigurability [7,8].

SNN application topologies are characterised by a large number of synaptic connections
that translate to large distributed on-chip memory in packet switched NoC-based hardware
SNN architectures. The storage requirement for large SNNs poses a serious challenge for
their compact hardware implementation. The modular neural networks (MNN) design strat-
egy partitions complex application tasks into smaller subtasks executing on distinct neural
network modules and integrates outputs in higher level functions [1,9]. The neural net-
work modules in MNN execution architectures maintain internal communication, which is
isolated from other modules and the global communication infrastructure. The orthogonali-
sation of synaptic connectivity suggested in the MNN design paradigm can help tackle the
large connectivity problem of SNN architectures and offer practical system implementation
for embedded applications.

This paper proposes a hardware modular neural tile (MNT) tile architecture, that reduces
the SNN topology memory requirement of NoC-based hardware SNNs by using a combi-
nation of fixed and configurable synaptic connections [10]. The proposed MNT comprises
a 16:16 fully connected feed-forward SNN structure and supports execution of application
subtasks for MNN-based application designs. Fixed connections between the neurons within

1 EMulating Biologically-inspiRed ArChitectures in hardwarE.

@ Springer

Modular Neural Tile Architecture

the MNT remove the requirement for storage of connectivity information. The MNTs inte-
grate in a 2D mesh topology NoC communication infrastructure to form an MNN execution
architecture, where the overall SNN topology memory requirement is 50 % of the previ-
ously reported monolithic NoC-based hardware SNN implementation [5,6]. The paper also
proposes a further architectural enhancement, which involves sharing the SNN topology
memory (within each MNT) between the SNN structure outputs. The proposed lookup table
based memory allocation scheme increases memory utilisation by offering flexible synap-
tic connectivity suitable for practical SNN application topologies, which are characterised
by irregular connectivity patterns [11]. In total, the area requirements of the architecture is
reduced by 66 %.

The paper presents micro-architecture details of the proposed MNT and the digital neuron
circuit used for system validation. The architectural components are synthesised using 65 nm
low-power CMOS technology and silicon area results are presented. The proposed MNT
architecture has been validated on a Xilinx Virtex-6 FPGA and resource usage results are
reported. The evolvable capability of the proposed MNT and its suitability for executing appli-
cation subtasks in a MNN execution architectures is demonstrated by successfully evolving
the XOR benchmark SNN application and a robotics obstacle avoidance controller using the
player-stage robotics simulator and previously reported Genetic Algorithm based hardware
SNN evolution platform. (These benchmark SNN applications represent data classification
and non-linear control functions.)

The structure of the paper is as follows: Section 2 summarises reported hardware SNN
architectures and their suitability as embedded hardware SNNs. Section 3 summarises the
reported EMBRACE NoC-based hardware monolithic SNN architecture and highlights the
impact of SNN topology memory on the overall device size and the challenge of reducing
the SNN topology memory. Section 4 introduces the modular neural network computing par-
adigm, its benefits and its application for reducing topology memory within the EMBRACE
hardware SNN. Section 5 describes the proposed MNT hardware design including neural
computing module, packet encoder/decoder, digital neuron design, topology memory and
SNN configuration memory. This section also reports ASIC and FPGA synthesis results.
Section 6 presents classification and non-linear control benchmark functions implemented
on the EMBRACE MNT FPGA prototype. Section 7 concludes the paper.

2 Hardware SNN Architectures

Inspired by biology, researchers aim to implement reconfigurable and highly interconnected
arrays of neural network elements in hardware to produce computationally powerful and
cognitive signal processing units [12-21]. This section summarises reported hardware and
hybrid SNN architectures and their suitability as embedded hardware SNNs.

A hybrid SNN computing platform is reported in [17]. This platform includes a neuron
model implemented in hardware and the network model and learning implemented in soft-
ware. A time multiplexed FPGA embedded processor SNN implementation [20] reports 4.2K
neurons and >1.9M synapses. The neuron model and partial SNN elements are implemented
on an embedded FPGA processor, where speed—acceleration is the key motivation. The sys-
tem relies on external memory for spike transfer management. Analogue spiking neuron
design approaches can benefit from a compact area implementation due to their ability to
model electrical charge flow in the brain [13,18,22,23]. These architectures rely on digital
components for a flexible communication infrastructure. FACETS, a configurable wafer-
scale mixed-signal neural ASIC system, proposes a hierarchical neural network and the use

@ Springer

S. Pande et al.

of analogue floating gate memory for storage of synaptic weights [19,21]. A mixed-signal
SNN architecture of 2,400 analogue neurons, implemented using switched capacitor tech-
nology and communicating via an asynchronous event-driven bus has been reported in [18].
The chip area is reported to be 3 x 3 mm using 0.5 um CMOS VLSI technology.

Practical SNN systems are characterised by a large numbers of neurons and high intercon-
nectivity through inter-neuron synaptic connections. Each of the SNN execution architectures
presented in [14-21] aim for thousands of neurons and millions of synapses, which is essen-
tial for a powerful neural computing platform. For large scale hardware implementation of
SNNs, the neuron interconnect imposes problems due to high levels of inter-neuron con-
nectivity and often the number of neurons that can be realised in hardware is limited by
high fan in/out requirements [4]. Direct neuron-to-neuron interconnection exhibits switch-
ing requirements that grow exponentially with the network size. Efficient, low area and low
power implementations of neuron interconnect and synaptic junctions are therefore key to
scalable hardware SNN implementations [4].

The NoC design paradigm provides a promising solution for the flexible interconnection
of large SNNs [7]. The SpiNNaker project [14] aims to develop a massively parallel com-
puter capable of simulating SNNs of various sizes, topology and with programmable neuron
models. The SpiNNaker architecture uses ARM-968 processor-based nodes for computation
and an off-chip NoC communication infrastructure. Each NoC tile in the SpiNNaker system
models 1,000 leaky-integrate-and-fire (LIF) neurons, each having 1,000 synapse inputs. Each
SpiNNaker node requires approximately 4 MB of memory for storing synaptic connectiv-
ity information [24]. Hence, the SpiNNaker architecture stores the synaptic connection data
in off-chip SDRAM. The SNN implementations described above are not targeted at com-
pact embedded hardware applications. A clustered embedded hardware SNN is proposed in
[25] along with a process for mapping SNNs to hardware. The variable sized neuron clus-
ters support flexible synaptic connections even from and to within the clusters. The authors
have reported the scalable NoC-based EMBRACE [5] hardware SNN architecture, target-
ing compact embedded hardware applications. The architecture supports large monolithic
SNN topologies. In a monolithic SNN, the neuron connectivity is global (i.e. any neuron
can connect to any other neuron). The EMBRACE topology memory requirement increases
exponentially with network size [10]. Modular neural network techniques investigated in this
paper, can enable trade-offs between the topology memory size and synaptic connectivity,
leading to scalable, more compact, practical embedded hardware SNN structures.

3 EMBRACE: Hardware SNN Architecture

This section summarises the reported EMBRACE NoC-based hardware monolithic SNN
architecture and analyses the impact of SNN topology memory on the overall EMBRACE
device size and the challenge of reducing the SNN topology memory.

3.1 EMBRACE: NoC-based Embedded Hardware Monolithic SNN Architecture

The EMBRACE (Fig. 1) [5] architecture incorporates neural circuits within a digital NoC-
based packet switching interconnect to realise a scalable hardware monolithic SNN archi-
tecture suitable for embedded systems. This architecture offers high synaptic densities while
maintaining a small silicon footprint and low power consumption. EMBRACE is a 2D mesh
topology array of neural tiles (NT) and NoC routers (R). Each neural tile comprises a single
neuron supporting up to 64 input and 64 output synaptic connections. The embedded hardware

@ Springer

Modular Neural Tile Architecture

EMBRACE: Monolothic NT: Single Neuron Tile,
Hardware SNN Architecture R: NoC Router

Y-Tiles ==---»

X-Tiles = ---»

Fig. 1 EMBRACE NoC-based embedded hardware monolithic SNN architecture (the neural tile (NT) com-
prises a single neuron, packet encoder/decoder, SNN configuration and topology memory)

architecture supports the implementation of monolithic SNNs and provides a benchmark for
comparison of the work of this paper. The SNN topology memory defines each inter-neuron
synaptic connection. NoC routers are connected in North (N), East (E), South (S) and West
(W) directions, forming a Manhattan-style, 2D mesh topology NoC architecture. An appli-
cation specific SNN is realised on the EMBRACE architecture by programming neuron
configuration parameters (SNN synaptic weights and neuron firing threshold potential) and
SNN connection topology. Spike communication within the SNN is achieved by routing spike
information within spike data packets over the network of routers. The reported architecture
(Fig. 1) requires 11 MB of SNN topology memory to support a 64K neuron/4M synapse
hardware SNN.

The authors have implemented and reported EMBRACE-FPGA [8], an FPGA proto-
type implementation of the EMBRACE architecture. The EMBRACE-FPGA prototype has
been successfully applied to benchmark SNN control and classifier applications (such as
pole balancer, two-input XOR and Wisconsin cancer dataset classifier). EMBRACE-SysC, a
SystemC-based clock cycle accurate simulation and performance measurement platform for
simulation and analysis of EMBRACE architecture has been reported in [26]. EMBRACE-
SysC enables rapid architectural exploration and performance analysis of the EMBRACE
architecture.

3.2 EMBRACE Hardware Resource Analysis

The transistor count and chip area has been estimated for the EMBRACE architecture to
understand the practicality of realising the EMBRACE architecture in silicon. The silicon
area estimation technique takes into account the transistor count for storage and control logic
of digital components (based on standard SRAM cell design) and actual silicon area for
neurons [23].

@ Springer

S. Pande et al.

250 [JSNN Infrastructure: Neurons
EISNN Infrastructure: Config Memory
ElSNN Infrastructure: Topology Memory

(‘S\ 200 ElNoC Infrastructure: Router

g ONoC Infrastructure: Interconnect

£ 150

s I

o L1
< 100 L]
=} EEREEEE
Q HHHEEEHS
2 HHH
a5 e

e

8K /512K 16K /1024K 32K /2048K 64K /4096K
Number of Neurons/Synapses

Fig. 2 Silicon area proportion (for 32nm CMOS technology) for the EMBRACE hardware monolithic SNN
architecture

Neurons 0.25%

SNN Config Memory 19.22%

SNN Topology Memory 80.53%

Fig. 3 Silicon area proportion for the SNN infrastructure entities within EMBRACE hardware monolithic
SNN architecture

Figure 2 presents the silicon area proportions (in mm?) by scaling the EMBRACE hard-
ware monolithic SNN architecture in 32 nm CMOS VLSI technology. The x-axis indicates the
number of neurons and synapses (neuron/synapse) and the stacked columns in the histogram
denote the silicon area for NoC and SNN architectural entities described below:

e NoC infrastructure: The EMBRACE NoC infrastructure comprises NoC routers, packet
buffers, NoC interconnect channels and associated control circuits. The analytical esti-
mates indicate that the complete NoC infrastructure will occupies 47.27 % of the total
chip area.

e SNN infrastructure: The SNN support infrastructure is made-up of SNN configuration
memory (for storing synaptic weights of 5 bits each and threshold values of 16 bits each)
and the SNN topology memory (for storing synaptic connectivity information) [6]. The
SNN infrastructure also contains the neural elements (which includes synapses, synaptic
weight summing and membrane potential thresholding circuits) [13,22,23]. Due to its
compact implementation, the silicon area for the neural elements is negligible compared
to the rest of the SNN support infrastructure, which occupies 52.74 % of the total chip
area (Figure 3 further enumerates the silicon area of the SNN components within the
EMBRACE architecture).

Architectural techniques to reduce SNN topology memory are crucial for their compact
hardware implementations. This paper presents a novel MNT architecture that reduces the
SNN topology memory area by 50 %.

@ Springer

Modular Neural Tile Architecture

4 Modular Neural Networks

This section introduces the modular neural network (MNN) computing paradigm and exe-
cution architecture. The section highlights the benefits and application of the MNN design
approach to reduce topology memory within the reported EMBRACE hardware monolithic
SNN architecture.

4.1 Biological Motivations for the MNN Computing Paradigm

The biological brain is composed of several anatomically and functionally discrete areas [27].
Various brain areas and neuron groups are dedicated to various sensory and motor tasks. For
example, the visual cortex processes different aspects of the visual information (such as
form, colour and motion) in separate anatomically distinct regions. These different regions
exchange information but remain functionally discrete [28,29]. Damage or deterioration
of part of the visual cortex can result in a partial loss of colour identification, pattern or
motion detection, etc, without considerably affecting other senses. Inspired by this modular
organisation in brain, the MNN design strategy of partitioning application tasks into a number
of subtasks has been developed [30-32].

4.2 Modular Neural Network Computing Paradigm

The MNN computing paradigm is primarily based on the divide-and-conquer strategy.
Figure 4 illustrates the MNN design methodology, which primarily consists of task decom-
position i.e. breaking down a high level application into smaller, less complex, manageable
subtasks. These small subtasks are then solved by individual and distinct neural modules. The
intermediate outputs from these neural modules are combined to solve the high level task or
the whole application [1,9]. Various task decomposition algorithms have been proposed for
the MNN design strategy. These algorithms are based on different techniques such as output
vector partitioning, class relationships, neuro-evolutionary approach and co-evolutionary
methods [33-37]. Similarly, genetic algorithm based technique to find subnetworks from
large sized complex neural networks has been proposed in [38]. Subtasks/subnetworks
obtained after task decomposition are executed as neural modules in MNN computing
architecture.

The MNN approach offers structured implementation, functional partition, functional
mapping and re-mapping, competitive and co-operative mode of operation and fault tolerance
[31]. The Subsumption Architecture, a widely influential computing paradigm for reactive,
behaviour-based autonomous robotic control applications has been developed based on the
MNN design concepts [39].

4.3 Modular Neural Network Execution Architectures

In the MNN design methodology, the task decomposition or partitioning of the overall appli-
cation leads to two types of subtasks; namely the application subtasks (discrete functional
subtasks) and the integration tasks. The application subtasks operate on individual and dis-
tinct system inputs to provide intermediate outputs. The integration subtasks integrate the
intermediate outputs from the application subtasks to generate the overall system output.
Both the application and integration subtasks are similar in terms of input/output inter-
face and computation requirements. Figure 5 illustrates a typical MNN execution archi-
tecture comprising individual neural modules interconnected by a global communication

@ Springer

S. Pande et al.

Monolithic Neural Network Application Organisation

@.@

sinduy woaysAg
sindinQ wesAg

Task Decomposition

sinduy weysAg

Modular Neural Network Application Organisation

~¢

-
| Application
Subtask

-

Application)
Subtask

-~ 5
S0 N 2
! - &
{ Application g
s s 5
{ Subtask - g
-~
N ~ 3
=40/ g
Application
- { Subtask

e

.
i A 2N _ N
| Application }
Va Ry
\

Subtask 7

7
-

sindinQ wesLg

L

Fig. 4 Modular neural network design methodology

Neural

Module

Neural
Module

Neural
Module

Fig. 5 Modular neural network execution architecture

@ Springer

Modular Neural Tile Architecture

infrastructure. Based on the definition of modularity in neural networks [1,9], the individual
neural modules in the MNN execution architecture should:

e Include a group of neurons interconnected using an internal communication infrastructure

e Support multiple inputs and/or multiple outputs

e Include an internal communication infrastructure that is isolated from the other modular
neural elements and the global (external inter-module) communication infrastructure

Since the synaptic communication between neurons in a neural module is isolated from the
rest of the architecture, the requirement for the storage of associated connectivity information
is eliminated. The overall MNN architecture has a considerably lower synaptic connectivity
storage requirement compared to monolithic neural architectures. The SNN topologies for
applications that are inherently non-modularizable exhibit uniform connectivity patterns. The
neural modules in the MNN execution architecture can be cascaded using global communi-
cation infrastructure to realise such large monolithic SNN structures. However, the resource
utilisation of the MNN execution architecture will be higher as compared to hardware SNN
arrays supporting uniform synaptic connectivity.

5 Modular Neural Tile Architecture

This paper presents a novel Modular Neural Tile (MNT) architecture, its digital prototype
and evolvable capabilities. The proposed MNT forms the basic neural module for the MNN
execution architecture (proposed NoC-based modular hardware SNN execution architecture).

Architectural techniques for reducing the SNN topology and configuration memory are
vital for compact silicon implementation of hardware SNN architectures suitable for embed-
ded computing. This section presents the MNT architecture comprising a 16:16 fully con-
nected feed-forward topology SNN structure as the neural computing module (NCM) and the
lookup table-based SNN topology memory sharing scheme. The micro-architecture of an effi-
cient digital neuron model is also described. Detailed ASIC and FPGA synthesis results are
presented. Silicon area requirement of the NoC architecture employing the proposed MNT is
compared with the previously reported EMBRACE hardware monolithic SNN architecture.

5.1 Neural Computing Module

The Neural Computing Module (NCM) forms the basic computing entity within the MNN
execution architecture. The NCM micro-architecture design is primarily influenced by the
following:

e VLSI technology limitations: Fixed interconnections between neurons within the SNN
structure removes the need for synaptic connectivity information storage within the MNT.
The size of the fully-connected hardware SNN structure is limited by the permitted fan-
out of individual neuron circuits. Also, metal layer routing limitations are imposed due
to interconnect crossbar capacitance and crosstalk.

e MNN subtask granularity: The NCM should support sufficient computing power for
MNN application subtasks and integration subtasks. Large NCM designs, can accom-
modate a variety of MNN application subtasks, but would lead to unused neurons in
the case of fine granularity MNN application subtasks. NCM designs with smaller SNN
structures can be cascaded based on the computing requirements of the particular MNN
application and integration subtasks.

@ Springer

S. Pande et al.

Fig. 6 Two layered 16:16 full (-)
8 Y y Neural Computing Module
connected SNN structure as the
neural computing module within
the proposed MNT SDSo] SpikeOutg
SDSq] SpikeOutg
SDSq5 :] SpikeOutys
16x16 Fixed Interconnect
| J
IN
CLOCK
IN
RESET
w CLEAR
TH_POT[15:0]
Membrane . ouU1l
SHIFT | potential Decay Threshold >[] SPIKE_OUT

. e 16-bit
(11%'3;:‘]25];)‘“ -I o CS)mparator

A

IN

H

MPOT_DECAY

v
Synaptic Weight Update
SPIKE-IN 16-bit_Adder/Subtractor

ENABLE (with Satu7{ion Logic

IN
SYN_WT[4:0]

(a) Micro-Architecture

(b) Simulation Waveform

Fig. 7 Digital neuron model

Considering the above, a two-layered 16:16 fully connected feed-forward SNN structure
(Fig. 6) has been proposed as the NCM inside each MNT [10]. The input layer (N[0, n]) and
output layer (N[1, n]) of the NCM comprises 16 LIF neurons. The neurons support a Single
Dynamic Synapse (SDS,,) approach (Fig. 7a), where the synaptic weight is supplied along
with spike input. This shared synapse approach removes the need for internal multiplexers
for selection of synaptic weight and results in compact hardware implementation [40]. Each
of the 16 input layer neurons connects directly to each of the 16 output layer neurons to
form a fully connected feed-forward SNN structure. Each output layer neuron has 16 input
synapses, which individually receive spikes from the corresponding input layer neurons. The
NCM has 16 spike outputs (Spike Out,) each corresponding to the 16 output layer neurons.

@ Springer

Modular Neural Tile Architecture

The NCM in a MNN execution architecture should be capable of solving application
subtasks and integration tasks. The proposed modular NCM made-up of 32 LIF neurons,
supports multiple synaptic inputs and provides 16 spike outputs that can connect to multiple
synaptic inputs in the architecture. This paper demonstrates the suitability of the proposed
NCM by evolving SNN benchmark functions.

5.1.1 Digital Neuron Model

This section describes the multiplier-less, compact hardware digital neuron design.

Based on biological plausibility, computational power and implementation complexity,
various mathematical models representing the spiking behaviour of biological neurons have
been proposed [2,3]. Amongst them the LIF model is a popular choice for hardware SNN
architectures due to its simplicity. The proposed EMBRACE research project ultimately
aims to develop a mixed-signal VLSI architecture with compact, low power, high-resolution
CMOS-compatible analogue synapse and LIF neuron cells [13,23] to achieve very high
synaptic density. The LIF neuron model has multiple synaptic inputs, a single spike output
and maintains an internal membrane potential, which constantly decays (to its resting value)
based on a constant leakage coefficient. The synaptic weight value associated with the input
synapse is summed with the current membrane potential value on receipt of an input spike.
The exhibitory/inhibitory synaptic weights increase/decrease the membrane potential by the
weight value. The neuron fires (emits a spike) when the membrane potential reaches the
threshold potential value. Firing of the LIF neuron causes the membrane potential to reset to
the resting value.

For validation of the proposed MNT architecture on FPGA, a digital neuron circuit exhibit-
ing LIF behaviour with sufficient resolution has been developed (Fig. 7a). The digital neuron
circuit uses a 16-bit shift register for storage of the Membrane Potential value. Stepwise
exponential decay of the membrane potential value is achieved by periodic right shift (divide
by two) controlled by the MPOT_DECAY input pulse. The desired decay rate or Leakage
Coefficient can be controlled by programming the membrane potential decay strobe generator
(Fig. 7b). The membrane potential value is updated by the input Synaptic Weight (SYN_WT)
value using a 16-bit adder/subtractor enabled by the incoming spike pulse (SPIKE_IN). The
overflow/underflow bit of the adder/subtractor is used to determine the upper/lower limit of
the membrane potential value, and activate the saturation logic. A 16-bit comparator generates
the spike output (SPIKE_OUT) if the internal membrane potential >threshold (TH_POT)
input. The generated spike pulse (SPIKE_OUT) is also used to clear the 16-bit shift register,
bringing the membrane potential to the resting value.

Figure 7b shows a simulation waveform for the digital neuron circuit including membrane
potential decay due to MPOT_DECAY pulses, membrane potential variation due to input
spikes, and output spike generation. The synthesizable digital neuron circuit provides the
required resolution for practical SNN applications. The neuron occupies only 12 slices in
the Xilinx Virtex-6 FPGA and occupies 608.4 wm? in 65nm CMOS VLSI technology. This
compact neuron model contributes to the goal of portable embedded hardware SNNs.

5.1.2 Neural Computing Module Architecture
Fixed interconnection between neurons within the neural computing module removes the

need to store synaptic connectivity information. Figure 8 shows the fixed connection micro-
architecture of the NCM. The interconnect architecture transfers the generated spikes from the

@ Springer

S. Pande et al.

Q
g £5
c 3 N([1,0] SynWtq5 P Lo
= = . 2 F oo
o : Sy
= U co kb [
I~ e P
g 2
R 2o FT |~
%) B 0 8
2% N[1,0] SynWtq EIRPE
@
=3
S B
<
4-bit
Neuronp —p| =" 00
& Column 1 Synapse SELECT
Spikeln ——————odf ENABLE
- Y
S
A Sy
b~ F—— \15] - SpikeOutys
4:16 z . bFEs))
Neurony —p| | 4:19 SsELE= SpikeOuty
ecoder AN o —— SpikeOut]
Neuron[0,0] =2 »| Neuron[1,0] » SpikeOutq
H |Column 0| g5 F el J—J
oo e .
*'I’l AI SpikeOut | =
SynWt

i) i

Neuron[0,n] Membrane Potential Decay Neuron[1,n]
Threshold Values Strobe Generator Threshold Values
A A A
1 1 1
1 1 1

L Control Signals from Configuration Memory -

Fig. 8 Neural computing module micro-architecture

input layer neurons to output layer neurons. The interconnect architecture enables selection
of synaptic weights from configuration memory for the output layer neurons while applying
spikes.

The input interface to the NCM consists of neuron number (Neuron,), synaptic weight
(SynWt) and input spike pulse (Spikeln). The NCM layers operate in a pipelined fashion,
where the input spike is applied to the selected input layer neuron during the first clock cycle
and any generated spike is transferred to output layer neurons in the next clock cycle. The
input neuron number (Neuron,,) is stored in a 4-bit register for use in the next clock cycle. The
input synaptic weight is directly connected to all of the input layer neurons. The 4:16 decoder
enables the selected input neuron number. The decoder is enabled by the input spike pulse,
which causes the selected neuron to activate and update its internal membrane potential.

According to the LIF neuron behaviour [3], neurons can generate a spike only on the
occurrence of an input spike. Hence, the stored neuron number in nth clock cycle is used for
transfer of spike and selection of synaptic weight for output layer neurons in (n+1)th clock
cycle within the NCM. The NCM output interface comprises spike outputs (SpikeOuto.5)
from all output layer neurons. Spikes pulses generated by the NCM are further processed
within the MNT to generate output spike packets for synaptic connections outside the MNT.

5.2 Topology Memory Sharing and Spike Packet Output Flow Control
Spike communication between MNTs is achieved by routing spike information within spike

data packets over the network of routers. Within each MNT a lookup table based SNN
topology memory allocation technique is implemented, which enables variable synaptic

@ Springer

Modular Neural Tile Architecture

)
- - N N\ | Topolo
Neural Computing Module Lookup Table Mgmoi?/
BoB1 Be3 5C;
SpikeOuty |2~ [~ g
G]) | e <
il SC15 <
Q
3
SpikeOuty Lo \‘_; =% ~
{ Lofo] - D] :
Row r- m o %
2,
)
+
5
2,
i
=)
- B EEED ©
{SpikeOutlsl 0 I 0 | I 0 | | < ;
Row i [Eos
16X 16 Fixed Interconnect
| J . J | J

(a) The Lookup Table-based Shared Topology Memory Organisation

! ! Neuron !
X_Address 1 YAddress 1 MNT Inplﬁ 1 Sy_nWt_
NoC Tile X Address , NoC Tile Y Address Nenl®'L Input , Synaptic Weight
(4-bit) : (4-bit) : (4-bit) : (5-bit)

(b) Synaptic Connection (SC) Information Entry Stored in the Topology Memory

Fig.9 The MNT spike packet output flow control

connection densities for efficient topology memory resource usage. This section describes
spike packet generation based on the proposed lookup table-based topology memory sharing
scheme, which offers a flexible number of synaptic connections for NCM outputs.

Figure 9 illustrates the lookup table-based shared topology memory organisation. The
synaptic connection information for the NCM outputs is stored in this topology memory.
Fields include destination MNT address (/X, Y] mesh topology NoC tile address), destination
neuron (Neuron,) and synaptic weight (SynWt) (see Fig. 9b). The topology memory is
partitioned into 64 blocks (B to Bg3), where each block is made-up of 16 synaptic connection
information entries (B, SCo to B, SC15), giving a total of 1,024 neuron/synapse destinations.
The lookup table maintains the topology memory block allocation information in designated
rows for each NCM output. Each bit in the 64-bit lookup table row allocates the corresponding
topology memory block to the NCM output. For example, bit number B, of the row number
N[1,0] allocates topology memory block number X to the NCM output N/1,0]. For the row
number N/[1,0], asserting the bit value By, allocates the topology memory block X to NCM
output N[1,0]; deasserting B, disassociates the topology memory block X from the NCM
output N[1,0]. The packet encoder generates spike packets for NCM outputs based on the
allocated topology memory blocks.

The process of mapping the MNN application topology onto the proposed MNT involves
populating the lookup table and MNT topology memory entries, such that the correct synaptic
connections are established between the neural computing modules in the architecture. If the
required number of synaptic connections for a particular NCM cannot be accommodated in
the available topology memory, additional MNTSs can be used as spike repeaters. The NCM
can be configured as spike repeater by configuring synaptic weights and threshold to generate
a spike for each input spike.

@ Springer

S. Pande et al.

<0
s
PacketIn[31:0]
PacketValid
&
2
PacketAck
ac C N {)Z(\)’
r S,
MNT R MN \
Configuration " Topol 1\'1/} R
Memor opology vemory 2
(Synaptic We¥g}:cs, > (Spike Packet sl=4
Threshold Values Information) R cH =
E Look Tabl -
and Lookup Table) »| Memory Size: 4KBytes g ; =
Memory Size: 2816bits = g
§)
T — . | ©
A A4 WriteAddress[11:0] CY = 4 ~ %
T o] < ﬁ
WriteData|7:0] 1=l 2 3
78 W [N
T o |E] =
WriteEmable ER R
T SAERE
1 Configuration Signals <z Q
Slo e
—————————————— 1 S
0
1 o A 4
r) Coniptting !)
Neurony, [3:0] Module .
L > -- <
PaCket Spikeln R SpikeOut[l.S;O PaCket
> >
Decoder | gy nwe[a:0] Encoder
> >
> >
~—
(. J

Fig. 10 Modular neural tile internal architecture

5.3 Modular Neural Tile Hardware Design

The MNT (Fig. 10) comprises a NCM, configuration memory (for storing neuron synaptic
weights and threshold values), topology memory (for storing synaptic connectivity informa-
tion) and packet decoder and encoder. This section describes the interfaces and functionality
of the hardware entities within the proposed MNT.

5.3.1 Modular Neural Tile Internal Architecture

The MNT connects to the NoC router through the router interface, which comprises
32-bit PacketIn/PacketOut, valid (PacketValid) and acknowledgment (PacketAck) handshake
signals. The MNT supports the following packet types (Fig. 11):

e Configuration packet: used for configuration of neurons (synaptic weights and threshold
values), the lookup table and output synaptic connectivity. The configuration packet
consists of destination tile address (XY NoC tile address), configuration memory address
(13-bit) and data (8-bit).

e Spike packet: used for transferring spikes from source MNT to destination MNT. It
consists of the destination tile address 2-D array format (XY NoC tile address), neuron
number (Neuron,) and synaptic weight. Inclusion of synaptic weight in the spike packet
reduces the overall storage requirement of the architecture, and removes the necessity

@ Springer

Modular Neural Tile Architecture

Configuration Packet Format

l Bsi1-Bag I Ba7-Bag l B23-Bai I B2o-Bs B7-Bo I
L 1 I
' Xaddress | YAddre ! . H

1 (47b;§;s ! (47&2)55 1 PacketType (3-bit) ! ConfigAddress (13-bit) ConfigData (8-bit) :
1 : | 001 = Spike Packet; : Configuration and Configuration and .
! NoC Tile | NoC Tile 1 010 = Configuration Packet | Topology Memory Address Topology Memory Data 1
! X Address | Y Address | \ 1
. g . K g gy | g g g

Spike Packet Format

l Bs1-Bag I Ba7-Bay l Ba3-Bay I B2o-Bia I B11-Bs I B7-Bs I B4-Bo I
L 1 1 1

' Xaddress | Yaddress | o H ' Neuronp | 1 SynWt (5-bit) !
! i ! i 1 PacketType (3-bit) RESERVED! i 'rEsErvED! !
H (4-bit) | (4-bit) . 001 Soihe Pachet, 1 (4-bit) | | MNT Input
1 NoC Tile : NoC Tile 1 010 = ConfigurationPacket : (9-bit) 1 MNT Input Layer ! (3-bit) | Layer Neuron :
! X Address | Y Addres ! 1 : Neuron Number | ! synaptic Weight |

L T L L D L e I [

Fig. 11 MNT configuration and spike packet format

Table 1 Modular neural tile synthesis results (clock frequency: 200 Mhz)

RTL entity ASIC synthesis FPGA synthesis
(65 nm low-power CMOS) (Xilinx Virtex-6 FPGA)
Area (in umz) Percentage (%) Slices BRAMs
Modular neural tile 110,806.63 100.0 1,204 0
Neural computing module 20,505.24 18.7 458 0
Digital neuron circuit 608.40 0.5 12 0
Packet decoder 408.71 0.4 7 0
Packet encoder 2,368.60 2.1 66 0
NCM configuration memory 31,444.47 28.4 662 0
NCM topology memory 55,800.00 50.4 0 1

for synaptic weight selection multiplexers for the NCM inputs, resulting in compact
hardware implementation [40].

The packet decoder interfaces with the NCM, configuration and topology memory by
receiving and decoding the input packets. The input packet type (spike or configuration
packet) is decoded from the Packet Type bits (Bx3—Ba1). For a configuration packet, the
configuration memory address and data are retrieved from the packet and written to config-
uration or topology memory. For a spike packet, neuron number (Neuron,) and synaptic
weight (SynWt) are retrieved from the packet and forwarded to the NCM along with an
internally generated spike pulse. The configuration memory supplies synaptic weight and
threshold values to the NCM and lookup table bits to the packet encoder through dedicated
control signals. The topology memory is a dual-ported RAM module as it interfaces with the
packet decoder for memory write operation and with the packet encoder for memory read
operation. The packet encoder generates individual spike packets based on spike inputs from
the NCM, synaptic connectivity information in the topology memory and memory block
allocation information from the lookup table. Refer to Section 5.2 for the detailed output
spike packet flow control.

Table 1 shows the detailed hardware synthesis results for the proposed MNT. ASIC syn-
thesis has been performed using synopsys design compiler 2009-sp5 and TSMC 65 nm low-
power CMOS libraries. FPGA synthesis has been carried out using Xilinx XST 13.2. Since
the configuration memory supplies all the MNT control signals (2,816 bits, synaptic weights,
threshold values and lookup table) to the NCM and packet encoder, the silicon footprint is

@ Springer

S. Pande et al.

250 |- |JSNN Infrastructure: Neurons

EISNN Infrastructure: Config Memory

B SNN Infrastructure: Topology Memory
200 |- |EINoC Infrastructure: Router

EINoC Infrastructure: Interconnect

100

Silicon Area (in mm?)

Number of Neurons/Synapses

Fig. 12 Silicon area estimate (for 32nm CMOS technology) comparison for the EMBRACE monolithic and
the proposed MNT hardware SNN architecture

considerably higher compared to memory size. Due to massive interconnectivity in neural
architectures, the majority of the area is occupied by topology memory (50 % in the proposed
MNT). The topology memory is realized using STMicroelectronics low-power CMOS dual-
ported memory IP in ASIC implementation.

Figure 12 compares the silicon area of various sized SNNs MNT NoC architecture with
that of the reported EMBRACE hardware monolithic SNN architecture. The reduced number
of NoC routers, resulting from the 16:16 fully connected SNN (NCM), decreases the area
occupied by the NoC infrastructure in the proposed MNT NoC architecture by 89 % as
compared to the reported EMBRACE SNN architecture. The fixed interconnection within
the NCM removes the need for storing the output synaptic connectivity information for the
input layer neurons. The regularly structured interconnect requires much less silicon area
than the SRAM-based synaptic connectivity storage and the associated control circuitry.
Consequently, the topology memory for the proposed MNT NoC architecture is reduced by
54.05 %. The size of the entire MNT NoC-based hardware SNN is approximately 33 % of
that of the previously reported EMBRACE chip area estimation.

5.3.2 Hardware Resource Requirements of Practical SNN Topologies

Practical SNN application topologies exhibit a variety of connectivity patterns. Flexible
sharing of the topology memory within the MNT addresses diverse connectivity requirements
of the practical modular SNN application topologies. This section presents and compares
hardware resource requirements for the proposed MNT architecture with shared and non-
shared topology memory schemes for SNN application topologies with irregular and random
connectivity patterns [11]. Additional MNTs are used for relaying spikes, if the synaptic
connectivity requirement of the NCM cannot be accommodated in the topology memory
within the MNT.

A large modular neural network application, made-up of 64 individual NCMs, has been
mapped to the proposed MNT-based NoC architecture. The application implementations

@ Springer

Modular Neural Tile Architecture

600
- === Non-Shared Topology Memory Scheme
£ 500 || —— Shared Topology Memory Scheme "_ =T
g
x 400
w
H
Z 300
2
G
- 200
[
s
g
s 100
Z,
0
0 500 1000 1500 2000 2500 3000 3500 4000
Total Number of Output Synaptic Connections per MNT
(a) Irregular Connections
300
- === Non-Shared Topology Memory Scheme
£ 250 —— Shared Topology Memory Scheme P
3= s
z .’
o} »
~ 200 SOp—"
é 150 -+
o Ry
2 100 ‘ /
5] 1
Q 1
g
5 50
Z
0

0 500 1000 1500 2000 2500 3000 3500 4000
Maximum Random Number of Output Synaptic Connections per MNT
(b) Random Connections

Fig. 13 NoC tile requirements for non-shared and shared topology memory schemes for the a irregularly and
b randomly connected example modular topology

using non-shared and shared topology memory configurations have been compared. The non-
shared topology memory scheme uses a fixed allocation of four topology memory blocks
to each NCM output. The NCMs in the shared topology format are configured such that
eight outputs from each NCM remain inactive (by configuring zero synaptic connections).
The number of required MNTSs and the size of the NoC are calculated for various synaptic
connection densities in the remaining eight active NCM outputs. Figure 13a compares the
number of MNTs required using non-shared and shared topology memory approach, execut-
ing the MNN application topology with irregular synaptic connectivity pattern. The topology
memory in the MNT can hold 1K (i.e. 1,024) synaptic connection entries. When the synap-
tic connectivity requirement of each NCM increases by 1K steps, additional set of MNTs
are used for relaying spike packets. This can be seen in the step wise ascending graph in
Fig. 13a.

The SNN topologies evolved using Genetic Algorithm (GA) based search methods often
exhibit random connectivity patterns [11]. The application topology described above has
been configured for a random number of output synaptic connections from each of the 64
individual NCMs. This MNN application representing a random synaptic connectivity pattern
has been mapped to the proposed MNT NoC architecture and tested under non-shared and
shared topology memory configuration. Figure 13b illustrates the MNT requirement for the

@ Springer

S. Pande et al.

proposed MNT NoC architecture under non-shared and shared topology memory scheme,
executing the application topology with a random synaptic connectivity pattern.

The proposed shared topology memory architecture facilitates the allocation of topology
memory blocks to the NCM outputs based on the synaptic connectivity requirement. The
lookup table based shared topology memory architecture offers a flexible number of synaptic
connections from the NCM outputs resulting in efficient usage of each MNT. Figure 13
illustrates that, the shared topology memory scheme requires a smaller number of MNTs
for MNN application topologies with irregular and random synaptic connectivity patterns
(observed in practical SNN application topologies). This enables implementation of larger
application topologies within the given architectural configuration.

6 Modular Neural Tile Applications

This section presents classification and controller benchmark functions implemented on the
EMBRACE modular neural tile FPGA prototype. The benchmark XOR function (a basic
data classifier) and robotics controller (closed loop non-linear control system) have been
used to test the evolvable capability of the proposed MNT. Accuracy (fitness) of the SNN
configuration and training time results (in terms of GA generation count) are presented
for successfully evolved XOR and robotics controller application on the proposed MNT
prototype. This demonstrates the capability of the proposed MNT to evolve small-sized
subtasks within a larger MNN applications. The intrinsic evolution setup comprising the
proposed MNT prototype on FPGA and GA-based SNN configuration platform running on
host computer [8], highlight the hardware validation aspects of the modular SNN architecture.

6.1 Classification Subtasks

The XOR function is a basic benchmark data classification problem for neural networks
and is a sub-problem of more complicated classifiers [41]. A two-input XOR function is

Table 2 Two-input XOR

. . Number of correct outputs 0 1 2 3 4
function fitness score assignment

Fitness score assignment value 0 1 4 9 16

18
16
14
12

Best Fitness
- == Average Fitness

SNN Configuration Fitness Score

(= S

22

Genetic Algorithm Generation Count

Fig. 14 XOR benchmark SNN application on the proposed MNT

@ Springer

Modular Neural Tile Architecture

implemented on the proposed MNT. The XOR function uses two spike rate encoders feeding
distinct spike rates for logic ‘0" and logic ‘1’ and an output spike rate decoder. The GA-based
SNN evolution and configuration platform configures the SNN configuration comprising
synaptic weights and threshold potential for all the neurons in the SNN, check the accuracy
(fitness) of the configuration and evolves the desired functionality by searching the correct
configuration. The evolved XOR function on the proposed MNT outputs a high spike rate
when the two inputs differ in spike rate, and a low spike rate if the inputs are equal. Table 2
illustrates the fitness score assignment used for the two input binary XOR function. The three
neuron XOR SNN partially uses the MNT. Figure 14 illustrates the average and best fitness
of the evolved SNN XOR function on the proposed MNT.

6.2 Non-Linear Control Subtasks

The robotics controller application is a classical example of a non-linear closed loop control
system. Neural network systems are widely used as controllers for practical robotics appli-
cations. A robotics obstacle avoidance controller, using the player-stage robotics simulator
[42] and the previously reported Genetic Algorithm (GA)-based hardware SNN evolution
and implementation platform (Fig. 15). The simulated robot is equipped with 16 sonar sen-
sors. The average values of front, rear and side sonars are used as inputs to the SNN. The
sonar values are converted to spike rates by the host application and are passed to spike rate
encoders, which continuously generate and feed spikes to the NCM within the MNT. Spikes
from two NCN outputs are monitored by spike rate decoders and are converted to analogue
values as robot acceleration and turning angle inputs to the simulator.

Fitness criteria for the robotic obstacle avoidance controller application is defined as travel-
ling finite distance and avoiding obstacles for >120, and the fitness of the SNN configuration
is calculated as:

F=al +8D+yS 1

where, F fitness of the individual, T robot travel time (in s), D robot travel distance (in cm)
and S robot travel speed (in cm/s).
Given:

Number of crashes = 0

SNN outputs are within the operating range

The fitness evaluation constants «, 8 and y are chosen to prioritise the robot motion
behaviour.

Evaluation of the individual configurations has been accomplished with the robot roaming
within the simulated environment for 300 > ¢ > 120. On timeout, or if the robot has crashed,
the GA-based evolution and configuration platform processes the recorded robot behaviour
and assigns a fitness score to the individual SNN configuration. Fitness scores are then used
by the GA to determine the probability of an individual configuration progressing to later
evolved generations. Figure 16 illustrates the average and best fitness of the evolved robotic
obstacle avoidance controller application on the proposed MNT.

Successful evolution of classification and non-linear control functions with constant and
time varying input patterns on the proposed MNT demonstrates its suitability for a variety
of MNN application designs.

@ Springer

S. Pande et al.

GA-based SNN
Evolution and
Configuration

Platform

SNN Synaptic Weight o1s .
Xilinx Virtex-6 FPGA
and Threshold Configu-

A

Genetic Algorithm

ration

Evolved Population of
SNN Configurations

Spike
A Rate

SNN Fitness
a Encoders

Computation

Spike
Rate —
Decoders

Robot Sonar to
Spike Rate Encoders
and Spike Rate De-

coders to Robot Motor

and

A

Angle Interface

e e e

Player -

Server

JJ

Proxies . .

LA_]DHVHS Stage . .

A 4 ——— - S 3
. . n = - .
Simulation m &

............. m 508 Go0msec [1.0]

Fig. 15 Robotic obstacle avoidance controller setup

5 30 - -
3 Best Fitness
@ 25|-|--- Average Fitness 1
£
= 20f .
5
= 15 1
<
~
% 10} -
3=
=1
Q
O 5F .
Z.
% 0 2\ 1

0 10 20

Genetic Algorithm Generation Count

Fig. 16 Robotic obstacle avoidance controller benchmark SNN application on the proposed MNT (fitness
evaluation constants: « =2, 8 = 1 and y = 0.5)

@ Springer

Modular Neural Tile Architecture

7 Conclusions

Neural architectures are typically characterised by thousands of neurons and millions of
synapses which are essential for a powerful neural computing platform. Storage of the large
synaptic connectivity information in packet switched network on chip (NoC)-based hardware
Spiking neural network (SNN) architectures translates to large distributed on-chip memory
and poses a serious challenge for compact hardware implementations. Discrete synaptic con-
nectivity observed in MNN execution architectures help in reducing the storage requirement
of NoC-based hardware neural architectures.

This paper presented a novel MNT architecture comprising a 16:16 fully connected feed-
forward topology SNN structure as NCM. The topology memory of the architecture is 50 %
of the previously reported NoC-based hardware monolithic SNN implementation. Further-
more, a lookup table-based topology memory sharing scheme is presented that provides a
flexible number of synaptic connections from NCM outputs. The proposed shared topology
memory scheme requires less number of MNTs for practical MNN application topologies
with irregular and random synaptic connectivity patterns. Overall the area requirement of
the architecture is reduced by an average 66 % for practical SNN application topologies.
This facilitates accommodation of larger application topologies in the given architectural
configuration.

The paper presented micro-architecture details of the proposed MNT and the digital neuron
circuit used for system validation. The architectural components are synthesised using 65 nm
low-power CMOS technology and silicon area results are presented. The proposed MNT
architecture has been validated on Xilinx Virtex-6 FPGA and resource utilisation is presented.
The evolvable capability of the proposed MNT, and its suitability for executing application
subtasks, in a modular hardware SNN architecture is demonstrated by successfully evolving
the XOR benchmark SNN function and a robotics obstacle avoidance controller, using the
player-stage robotics simulator and the previously reported Genetic Algorithm (GA)-based
hardware SNN evolution and configuration platform. Successful evolution of classification
and non-linear control functions with constant and time varying input patterns on the proposed
MNT demonstrates its suitability for variety of MNN application designs.

The architectural enhancements proposed and validated in this paper helps to achieve a
compact neural modular hardware implementation and demonstrate the ability of the pro-
posed MNT to successfully evolve benchmark SNN functions. This work contributes to the
development of the EMBRACE NoC-based embedded hardware SNN device [12].

Acknowledgments This research is supported by International Centre for Graduate Education in Micro and
Nano-Engineering (ICGEE), Irish Research Council for Science, Engineering and Technology (IRCSET),
Science Foundation, Ireland (Grant No. 07/SRC/I1169) and Xilinx University Programme.

References

Haykin SS (1999) Neural networks: a comprehensive foundation, vol 13. Prentice Hall, New Jersey

2. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural
Netw 10(9):1659-1671

3. Waulfram G, Werner MK (2002) Spiking neuron models. Cambridge University Press, Cambridge

4. Maguire LP, McGinnity TM, Glackin B, Ghani A, Belatreche A, Harkin J (2007) Challenges for large-
scale implementations of spiking neural networks on FPGAs. Neurocomputing 71(1-3):13-29

5. Jim H, Fearghal M, Liam M, Steve H, Brian M, Seamus C (2009) A reconfigurable and biologically

inspired paradigm for computation using network-on-chip and spiking neural networks. Int J Reconfig

Comput 2009:1-13

@ Springer

S. Pande et al.

20.

21.

22.

23.

24.

25.

26.

27.

Seamus C, Fearghal M, Brian M, Sandeep P, Liam M, Snaider C, Jim H (2011) Hardware spiking neural
network prototyping and application. Genet Program Evolvable Mach 12:257-280

Dmitri V, Ran G (2011) Scalable network-on-chip architecture for configurable neural networks. Micro-
process Microsyst 35(2):152—-166 (special issue on network-on-chip architectures and design methodolo-
gies)

Morgan F, Cawley S, McGinley B, Pande S, McDaid LJ, Glackin B, Maher J, Harkin J (2009) Exploring
the evolution of NoC-based spiking neural networks on FPGAs. In: International conference on field-
programmable technology, 2009. IEEE, Sydney, pp 300-303

Daniel NO, Scott W, Michael S (1993) Modular learning. MIT Press, Cambridge, pp 369-377

Sandeep P, Fearghal M, Seamus C, McGinley B, Jim H, Snaider C, McDaid L (2011) Addressing the hard-
ware resource requirements of network-on-chip based neural architectures. In: International conference
on neural computation theory and applications. NCTA, Paris

. Nate K, Risto M (2008) Evolving neural networks for fractured domains. In: Proceedings of the 10th

annual conference on genetic and evolutionary computation, GECCO ’08. ACM, New York, pp 1405-
1412

Harkin J, Morgan F, Hall S, Dudek P, Dowrick T, McDaid L (2008) Reconfigurable platforms and the
challenges for large-scale implementations of spiking neural networks. In: International conference on
field programmable logic and applications, 2008. IEEE, Heidelberg, pp 483-486

Yajie C, Hall S, McDaid L, Buiu O, Kelly P (2006) A solid state neuron for the realisation of highly
scaleable third generation neural networks. In: 8th International conference on solid-state and integrated
circuit technology, 2006. ICSICT, Beijing, pp 1071-1073

Furber S, Brown A (2009) Biologically-inspired massively-parallel architectures-computing beyond a
million processors. In: Ninth international conference on application of concurrency to system design,
2009. ACSD, Augsburg, pp 3—-12

Andres U, Ca Pea-Reyes, Sanchez E (2005) An FPGA platform for on-line topology exploration of
spiking neural networks. Microprocess Microsyst 29(5):211-223

Pearson MJ, Pipe AG, Mitchinson B, Gurney K, Melhuish C, Gilhespy I, Nibouche M (2007) Implement-
ing spiking neural networks for real-time signal-processing and control applications: a model-validated
FPGA approach. IEEE Trans Neural Netw 18(5):1472-1487

Ros E, Ortigosa EM, Agis R, Carrillo R, Arnold M (2006) Real-time computing platform for spiking
neurons (RT-spike). IEEE Trans Neural Netw 17(4):1050-1063

Vogelstein RJ, Mallik U, Vogelstein JT, Cauwenberghs G (2007) Dynamically reconfigurable silicon
array of spiking neurons with conductance-based synapses. IEEE Trans Neural Netw 18(1):253-265
Ehrlich M, Mayr C, Eisenreich H, Henker S, Srowig A, Grubl A, Schemmel J, Schuffny R (2007)
Wafer-scale VLSI implementations of pulse coupled neural networks. Proceedings of the international
conference on sensors, circuits and instrumentation systems. CEA, Acapulco

Glackin B, McGinnity TM, Maguire LP, Wu QX, Belatreche A (2005) A novel approach for the imple-
mentation of large scale spiking neural networks on FPGA hardware. In: Computational intelligence and
bioinspired systems. CIBS, Barcelona, pp 552-563

Schemmel J, Fieres J, Meier K (2008) Wafer-scale integration of analog neural networks. In: IEEE inter-
national joint conference on neural networks (2008) IEEE world congress on computational intelligence.
IEEE, Hong Kong, pp 431438

Chen Y, Hall S, McDaid L, Buiu O, Kelly P (2006) On the design of a low power compact spiking
neuron cell based on charge-coupled synapses. In: International joint conference on neural networks,
2006. IJCNN, Brisbane, pp 1511-1517

Chen Y, McDaid L, Hall S, Kelly P (2008) A programmable facilitating synapse device. In: IEEE inter-
national joint conference on neural networks (2008) IEEE world congress on computational intelligence.
IJCNN, Barcelona, pp 1615-1620

Furber S, Temple S, Brown A (2006) On-chip and inter-chip networks for modeling large-scale neural
systems. In: Proceedings of 2006 IEEE international symposium on circuits and Systems, 2006. ISCAS,
Kos, p 4

Emery R, Yakovlev A, Chester G (2009) Connection-centric network for spiking neural networks. In:
3rd ACM/IEEE international symposium on networks-on-chip (2009) NoCS 2009. IEEE, San Diego,
pp 144-152

Pande S, Morgan F, Cawley S, McGinley B, Carrillo S, Harkin J, McDaid L (2010) EMBRACE-SysC for
analysis of NoC-based spiking neural network architectures. In: System on chip international symposium
on (SoC), 2010. SoC-2010, Tampere, Finland, pp 139-145

Johannes S, Wieringa BM, Matzke M, Mnte TF (1996) Hierarchical visual stimuli: electrophysiological
evidence for separate left hemispheric global and local processing mechanisms in humans. Neurosci Lett
210(2):111-114

@ Springer

Modular Neural Tile Architecture

28.
29.
30.

31.
32.

33.
34.
35.

36.
37.
38.
39.
. Cawley S, Pande S, McDaid L, McGinley B, Morgan F (2009) Memory efficient storage of reconfig-

41.

42.

Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system:
an integrated systems perspective. Science 255(5043):419-423

Binzegger T, Douglas RJ, Martin KAC (2007) Stereotypical bouton clustering of individual neurons in
cat primary visual cortex. J Neurosci 27(45):12242-12254

Happel BLM, Murre JMJ (1994) Design and evolution of modular neural network architectures. Neural
Netw 7(6-7):985-1004

Auda G, Kamel MS (1999) Modular neural networks a survey. Int J Neural Syst 9(2):129-151

Ronco GP (1995) Modular neural networks: a state of the art. Rapport technique CSC95026, vol 1. Center
of System and Control, University of Glasgow, Lanarkshire, pp 1-22

Sheng-uei G, Shanchun L, Tan SK (2004) Neural network task decomposition based on output partitioning.
J Instit Eng Singap 44:78-89

Bao-Liang L, Ito M (1999) Task decomposition and module combination based on class relations:
a modular neural network for pattern classification. IEEE Trans Neural Netw 10(5):1244—1256
Thangavelautham J, D’Eleuterio GMT (2004) A neuroevolutionary approach to emergent task decompo-
sition. Proceedings of 8th parallel problem solving from nature. Springer, Heidelberg, pp 991-1000
Khare VR, Yao Xin, Sendhoff B, Jin Yaochu, Wersing H, (2005) Co-evolutionary modular neural networks
for automatic problem decomposition. In: The (2005) IEEE congress on evolutionary computation, vol
3. CES, Edinburgh, pp 2691-2698

Santos JM, Alexandre LA, de Sa JM (2006) Modular neural network task decomposition via entropic
clustering. In: Sixth international conference on intelligent systems design and applications (2006) vol 1.
IEEE Computer Society Press, Jinan, pp 62-67

Pizzuti C (2012) A multiobjective genetic algorithm to find communities in complex networks. IEEE
Trans Evolut Comput 16(3):418-430

Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2(1):14-23

urable topology information in network-on-chip based spiking neural networks, internal report. National
University of Ireland, Galway, Bio-Inspired Electronics and Reconfigurable Systems

Mabher J, McGinley B, Rocke P, Morgan F (2006) Intrinsic hardware evolution of neural networks in
reconfigurable analogue and digital devices. In: 14th Annual IEEE symposium on field-programmable
custom computing machines. FCCM, Seattle, pp 321-322

Vaughan R (2008) Massively multi-robot simulation in stage. Swarm Intell 2:189-208

@ Springer

	Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network
	Abstract
	1 Introduction
	2 Hardware SNN Architectures
	3 EMBRACE: Hardware SNN Architecture
	3.1 EMBRACE: NoC-based Embedded Hardware Monolithic SNN Architecture
	3.2 EMBRACE Hardware Resource Analysis

	4 Modular Neural Networks
	4.1 Biological Motivations for the MNN Computing Paradigm
	4.2 Modular Neural Network Computing Paradigm
	4.3 Modular Neural Network Execution Architectures

	5 Modular Neural Tile Architecture
	5.1 Neural Computing Module
	5.1.1 Digital Neuron Model
	5.1.2 Neural Computing Module Architecture

	5.2 Topology Memory Sharing and Spike Packet Output Flow Control
	5.3 Modular Neural Tile Hardware Design
	5.3.1 Modular Neural Tile Internal Architecture
	5.3.2 Hardware Resource Requirements of Practical SNN Topologies

	6 Modular Neural Tile Applications
	6.1 Classification Subtasks
	6.2 Non-Linear Control Subtasks

	7 Conclusions
	Acknowledgments
	References

