BIOLOGICAL
PSYCHOLOGY

Biological Psychology 45 (1997) 143158

Modulation of early ERP components with
peripheral precues: a trend analysis

Rob H.J. van der Lubbe*, Jaap C. Woestenburg

Cognitive Psychology, Free University, De Boelelaan 1111, 1081 HV, Amsterdam, The Netherlands

Abstract

In the visual domain, involuntary allocation of attentional resources can be induced by
using peripheral cues. An enlargement of the PI ERP-component has been reported in
connection with voluntary allocation of resources induced by symbolic cues, but until
recently, it has not been reported in connection with involuntary allocation of resources.
However, involuntary allocation of resources was only investigated with long cue—target
intervals (SOAs) of about 600 ms. Therefore, an experiment was conducted with SOAs
between 100 and 300 ms. After a 100% valid peripheral cue a bilateral multi-item array was
presented. Trend analyses, which were employed to estimate the ERP elicited by the array
corrected for linear and nonlinear contribution of the cue, showed a contralateral enhance-
ment for the posterior P150 and the N230 component. Hence, involuntary allocation of
resources with short SOAs might invoke the same level as voluntary allocation of resources.
The P150 enhancement may be interpreted as a reflection of allocated resources at a specific
location, whereas the N230 enhancement might reflect elaborated processing at the contralat-
eral hemisphere. © 1997 Elsevier Science B.V.
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1. Introduction

When subjects are instructed to focus their attention on a cued location in visual
space, their reactions with respect to targets presented at the cued location are
faster than to targets presented at uncued locations. In terms of mental resource
models, either a specific or a nonspecific source of energy is allocated to a particular
cognitive operation. Thus, within this perspective, it may be suggested that atten-
tion is a mechanism that allocates extra capacity or resources at a certain level of
information processing (e.g., at the level of feature extraction, memory rehearsal, or
response selection). Two main views have been put forward with respect to the
processing level(s) at which resources can be allocated. The first view presumes that
resources are allocated at an early sensory processing level (Jonides, 1983; Posner,
1980). For instance, Jonides (1983) argued that focussing attention at a specific
location results in an allocation of resources on a particular spatial locus, which
may compensate for the limitations of the visual system. The second view presumes
that resources are allocated at later stages of information processing (e.g., task-spe-
cific decision making, memory rehearsal, or response selection (Duncan, 1980;
Shaw, 1984)). Recently, event-related potentials (ERP) studies provided strong
evidence for the view that resources can be allocated at an early sensory level
(Hawkins et al., 1990; Mangun & Hillyard, 1990, 1991). Resources can be allocated
either voluntarily (controlled) or involuntarily (automatically). If we assume that
resources can be allocated at an early sensory processing level, then the following
question can be raised: do voluntary and involuntary allocation of attentional
resources invoke a similar level of sensory processing as reflected in ERP modula-
tions?.

Voluntary allocation of resources is assumed to be manifest in conditions with
symbolic cues (Jonides, 1981). On the basis of the cue, subjects focus their attention
in a controlled way on a specific location. Usually, a centrally located arrow is used
as cue that has a specific ‘cue validity’. ‘Cue validity’ means that the cue indicates
the correct target location on a specific proportion of the trials, and it indicates an
incorrect location on the remaining proportion of trials. For instance, a cue validity
of 75% means that for 75% of the trials, the cue provides valid information
concerning the location of the target, and for 25% of the trials, the cue provides
invalid information. An attention effect can be estimated by making a comparison
between the results of validly and invalidly cued trials (i.e., cost—benefit analysis).

Jonides (1981) provided evidence for the view that peripheral cues, such as dots
or stripes, automatically attract attention. Thus, involuntary allocation of resources
can be demonstrated in conditions with peripheral cues that appear either near a
relevant (validly cued) or near an irrelevant (invalidly cued) position. Posner &
Cohen (1984) suggested that peripheral cues not only automatically attract atten-
tion, but also induce an inhibitory effect — i.e. inhibition of return (IOR) — with
long cue—target intervals: stimulus onset asynchronies (SOAs). Hence, involuntary
allocation of resources to peripheral onsets may be a short-lived phenomenon.

Miiller & Rabbitt (1989), proposed a two-mechanism model of spatial orienting
with a fast-acting mechanism that is involuntarily triggered by peripheral onsets
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(independent of cue validity) and a slow-acting mechanism that is voluntarily
triggered (dependent on cue validity). At long stimulus onset asynchronies (SOAs:
cue-target onset intervals; > 400 ms) both peripheral and symbolic cues are
assumed to be involved in the same slow-acting mechanism. Hence, for long SOAs
both symbolic and peripheral cues depend on cue validity. Interestingly, no
differences were found between peripheral and symbolic cues for long SOAs. It may
be suggested that the inhibition effect as reported by Posner & Cohen (1984) can be
suppressed by the slow-acting mechanism. Thus, symbolic cues can trigger a
slow-acting mechanism whereas peripheral cues can trigger both a slow- and a
fast-acting mechanism, and the slow-acting mechanism may overrule inhibition of
return induced by peripheral onsets when relatively long SOAs are used.

2. Event related potential (ERP) studies

Mangun & Hillyard (1991) and Heinze et al. (1990) focused on the effect of
voluntary allocation of resources on ERPs. In the study of Mangun & Hillyard
(1991), arrows indicated the side of a subsequently presented target with a cue
validity of 80% and an SOA of 800 ms. In a first task, where identification of the
target was task relevant, an enhanced occipital P1 (90-130 ms) and N1 (150-200)
component were found for validly as compared to invalidly cued targets. The P1
enhancement was first evident over the contralateral hemisphere, and later over the
ipsilateral hemisphere, whereas the N1 enhancement was larger over the ipsilateral
hemisphere. In a second task, in which the target had only to be detected, an
enhanced nonlateralized P1 component but no enhanced N1 component was
observed for validly as compared to invalidly cued targets. Heinze et al. (1990) also
reported differences between the P1 and N1 modulation with bilateral stimulus
arrays. They suggested that enhancement of the P1 component reflects facilitation
of the visual pathways, whereas enhancement of the N1 component reflects ‘further
orienting’ to target positions. In terms of the spotlight metaphor (Posner et al.,
1980), modulation of the N1 component might reflect the process that guides the
spotlight, whereas modulation of the P1 component might reflect an increase in
sensitivity at the attended region. Speaking more generally, modulation of the N1
component might reflect a process that allocates, or reallocates attentional re-
sources to a specific spatial location, whereas modulation of the P1 component
might reflect the consequence of allocated resources on sensory processing.

ERP studies addressing the fast-acting involuntarily triggered mechanism elicited
by peripheral cues, have been reported by Hillyard et al. (1994) and Eimer (1994).
Hillyard et al. performed an ERP study in which they compared the effects of
symbolic (a centrally located arrow) and peripherai cues (four peripherally pre-
sented dots) in an identification task, with identical SOAs (600-800 ms) and a cue
validity of 75%. Both types of cues showed an enhancement of the N1 (150-200
ms) and N2 (250-300 ms) component for validly as compared to invalidly cued
targets at occipital, temporal, parietal and central sites. For symbolic cues, a Pl
enhancement was observed for validly as compared to invalidly cued targets,
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however, no Pl effect was found for peripheral cues. Hillyard et al. suggested that
peripheral and symbolic cues differ in their capacity to invoke the earliest form of
attentional selection.

On the basis of the result of this study it may be suggested that both voluntary
and involuntary allocation of attentional resources modulate processing at an early
sensory level which is reflected in a posterior modulation of the P1 component for
symbolic cues and the N1 component for peripheral cues. However, is it plausible
to believe that attention operates at a later moment in time with peripheral cues, as
was suggested by Hillyard et al.? Inhibition of return (Posner & Cohen, 1984) may
be responsible for not finding a modulation of the Pl component for peripheral
cues because relatively long SOAs were used. However, behavioral measures in the
task of Hillyard et al. showed no indication of IOR. It must be noted that
according to Miiller & Rabbitt (1989) long SOAs for peripheral cues involves the
slow-acting mechanism instead of the fast-acting mechanism. Therefore, the use of
short SOAs might reveal an effect on the early P1 component when attention is
involuntarily oriented by peripheral cues. However, using short SOAs will yield a
methodological problem, as it becomes difficult to separate ERPs elicited by the cue
and the target.

To test this hypothesis, we decided to use a design with various intervals between
the peripheral cue and the target stimulus. The orthogonal polynomial trend
analysis (OPTA; Woestenburg et al., 1983) was employed to separate the contribu-
tion of the ERP elicited by the cue from the ERP elicited by the imperative stimulus
(see Section 3, and for an alternative method see Woldorff (1993)).

The manipulation of cue validity to perform cost-benefit analysis may complicate
the interpretation of ERPs. Van der Heijden (1992) argued that cost-benefit analysis
might favor a probability matching strategy in which subjects only attend to a
precued location on a specific proportion of the trials. In addition, subjects might
prepare less than optimally with 75% valid cues as compared to 100% valid cues.
Therefore, we decided to use 100% valid cues. We also used bilateral multiple-item
arrays with laterally presented targets to enable inspection of hemispherical differ-
ences (contralateral versus ipsilateral activity). Higher activity in the contralateral
hemisphere suggests that the side of the target at that moment in time is processed
more extensively. The comparison of ipsilateral and contralateral activity provides
a way to control for the possibility of a physiologically refractory effect (i.e. a
decrease in sensitivity for the involved neuronal population) resulting from the
presentation of a peripheral cue. If such effects play an important role then one
would expect an amplitude reduction at the contralateral hemisphere due to the cue
being mainly processed by this hemisphere. However, this effect will be temporarily
related to the onset of the cue and not the array. After using the OPTA procedure,
the refractory effect will not be included in the estimation of the ERP elicited by the
array. In conclusion, an important difference between the study of Hillyard et al.
(1994) and this study is that we will focus on differences in hemispheric processing
instead of differences between validly and invalidly cued trials, and we will use
much shorter SOAs.
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3. Experimental methods

3.1. Subjects

Eight right-handed subjects (all normal or corrected to normal vision, four male,
mean age 22 years) participated. They received, depending on the amount of hours
(about 6) they co-operated in this part of a larger experiment, about 90 Dutch
guilders ( ~ US$60).

3.2. Stimuli and task

The stimuli (Fig. 1) consisted of black arrays of six elements {each 0.69° x 0.69°)
presented for 750 ms on a white screen. Five elements were identical distractors and
one was a deviant target. The distractors ( +’s) and targets (distractors missing
either an upper or lower part) covered an equal part of the left and right visual
hemifield. The elements were located at an eccentricity (distance, in degrees, to the
fixated position) of 3.1°, 1.9° and 0.7° to the left and right side of a fixation square
(0.53° x 0.38°) that was continuously present. The targets were only presented at
either 0.7° or 3.1° to the left or right side of the fixation square, yielding four
possible target positions. The arrays were preceded by a black underscore (0.69° x
0.23°), regarded as cue, that validly indicated the precise target position. They were
presented 0.63° below the arrays for a duration of 100 ms. SOA varied between 100
and 300 ms in equal steps of 10 ms resulting in 21 SOA blocks. The inter-trial
interval amounted to 2560 ms.

Subjects had to fix on the fixation square during a block of 80 trials. It was
emphasized that they should minimize eye movements. Furthermore, they were
informed about the directional aspect of the cue. Subjects were instructed to press

+— + 4=t + +

+ + w4+ +

+ 4+ - + +

Fig. 1. Arrays consisting of six elements, five distractors (plus signs), and one of two possible targets
(missing the upper or lower stroke of the plus sign). Targets could appear at one out of four possible
positions, and were preceded by a peripheral cue (black bar) indicating the precise position of the target.
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a left or right key with their left or right hand upon arrival of the target. In one
session, subjects were instructed to press a left key for the target missing the lower
stroke and to press a right key for the target missing the upper stroke. In another
session this target response relation was reversed. Equal emphasis was given to
speed and accuracy.

3.3. Design and procedure

A within-subjects repeated measures design was used with ERP components,
vertical and horizontal electro-oculogram (VEOG and HEOG), reaction times
(RTs), and proportion errors (PEs) as dependent variables. For each subject, the
experiment was conducted on three separate, but not consecutive days. Each S-R
mapping session consisted of 21 SOA blocks (SOA was varied between blocks),
cach containing 80 trials in which targets randomly appeared at one of four
possible positions. The order of SOA blocks was varied pseudorandomly. Three
practice blocks were carried out at the beginning of each day, and again after a
switching of the target response relation. The order of S—R mapping was counter-
balanced between subjects. Eye movements were calibrated to exclude trials in
which EOG exceeded a prespecified criterion.

3.4. Apparatus and recordings

Stimulus presentation and data collection (electro-encephalo-gram (EEG),
VEOG and HEOG, RTs and PEs) were controlled by the InstEP system (Campbell
& Bell, 1992) running on a 386 SX (slave) and a 486 DX2 (master) computer.
Subjects were lying on a bed in a sound-attenuated dimly lit (15 lux) cubicle. On
each side of the bed a response button was positioned at an optimal distance for
each subject. Stimuli were presented on a screen placed at a distance of 75 cm from
the subject. HEOG and VEOG were measured by two tin electrodes placed at the
outer canthus of ecach eye and by two tin electrodes placed infra-orbital and
supra-orbital in line with the pupil. EEG was recorded from nonpolarizable tin
electrodes mounted in an elastic cap (Electro Cap International) and located at
standard left and right hemisphere positions spanning the surface of the scalp
(International 10/20 System names: F3, F4, C3, C4, P3, P4, TS5, T6, O1, 02. Two
extra electrodes were mounted on the cap, OL, between T35 and Ol, and OR,
between T6 and O2 (Mangun & Hillyard, 1990). Linked ear electrodes were used as
reference electrodes. Recording started 150 ms before the onset of the cue and
continued for 2560 ms. The signals were amplified with a lowpass filter of 30 Hz
and a time constant of 5 s, and were digitized at 100 Hz.

3.5. EEG analysis
First, InstEP files were converted to the STPBS format (Woestenburg, 1994) for

further data analysis and data processing. EEGs of all SOA blocks were shifted
until the imperative stimulus appeared at time point ‘0’ which created a prestimulus
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interval of minimally 250 ms. Trials containing horizontal ( > 40 xV) and vertical
eye movements (> 500 pV), 0-400 ms after onset of the array, were removed.
Preaveraging was performed on correct responses for eight categories, two possible
targets appearing at four possible positions, for each SOA block. Per eccentricity,
the preaverages were sorted in separate files for targets appearing at the left and
right. In the left target files polarity of the HEOG was reversed (for an additional
checking procedure), and the order of the EEG channels was adjusted (i.e.. F3 vs.
F4, C3 vs. C4, TS vs. T6, OL vs. OR, and Ol vs. O2 were exchanged). A new
average per SOA block was computed for the reversed left and the non-reversed
right file, resulting in two eccentricity categories (0.7° and 3.1°). This procedure
created an average over both hemispheres for contralateral and ipsilateral activity.
These averages were ordered from a short (100 ms) to a long (300 ms) SOA.
Subsequently, the OPTA (Woestenburg et al., 1983; Woestenburg, 1994) was
performed for each subject.

In many ERP studies, it is assumed that a single trial EEG consists of a fixed
component and a random noise component. However, in our study the ERP
elicited by the target not only consists of a fixed component and a random noise
component, but also of a systematic contribution of the ERP elicited by the cue. As
a consequence, a normal averaging procedure would produce a relatively low
signal/noise ratio, because the ERP elicited by the cue will add to the noise
component. In addition, using a normal averaging procedure cannot estimate to
what extent the cue-ERP contributed to the imperative stimulus ERP. The OPTA
provides a way to estimate the contribution of linear and nonlinear components in
the averaged signal that follow a gradual trend. The method is performed in the
frequency domain and estimates this trend with seven polynomials, describing the
ERP in a mean, and a linear up to seventh order trend to explain the variance that
is included in the signal. Only those components are included that exceed a
prespecified significance level (x < 0.10 (Woestenburg et al., 1983)). One result of
this procedure is that the contribution of noise in the new average will be reduced
to a larger extent. It will be possible to estimate both the ERP elicited by the cue
and the ERP elicited by the target. The trend to be estimated and removed with
OPTA is caused by sorting of the averages of the different conditions per subject,
assuming that the ERP to the cue does not depend on SOA.

Per subject, three different OPTAs were employed on data for both eccentricities.
In the first analysis, the signal was described with a mean factor and the linear
component up to seventh order polynomial. As a consequence the new average
consists of both the linear and nonlinear contribution of the cue, and the mean
contribution of the target. In the second analysis, the mean contribution of the
target was set to zero, which provides an estimate of the ERP elicited by the cue
only. In the third analysis, we estimated only the mean component, which produces
the average of the ERP elicited by the array.

Next, statistical analyses were performed over all subjects by dividing the ERPs
elicited by the array into subsequent time slices (Woestenburg et al., 1992). A
sample period of 20 ms was used for a window extending 0—-800 ms after the onset
of the imperative stimulus. Analyses were performed on lateralization, and effects
of eccentricity on contralateral and ipsilateral electrodes.
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4. Results

In this section we will first show the contribution from the cue to the ERP elicited
by the arrays, and the results of an additional checking procedure for vertical and
horizontal eye movements. Secondly, we will present the results for the behavioral
measures, and the results for a positive ERP component peaking at 150 ms (P150),
and a negative ERP component peaking at 230 ms (N230). Significant effects are
indicated with asterisks, as follows: *P < 0.05, **P < 0.01, and ***P < 0.005.

4.1. Contribution from the cue to the ERP elicited by the arrays

An example of an ERP containing both the contribution of the cue and the array
is presented for the occipitotemporal electrodes in the upper part of Fig. 2 for a
short (i.e. left) and a long SOA (i.e. right). The middle part of Fig. 2 shows the
separate contribution of the cue, and the lower part shows the residual ERP after
removal of the contribution of the cue to the ERP evoked by the array.

4.2, Checking for eye movements

Trials containing relatively large horizontal and vertical eye movements that
occurred within a window from 0-400 ms after presentation of the array, were
excluded from analysis (1.8%). However, it may be possible that small eye move-
ments occurred within this interval. Therefore, an average per subject per eccentric-
ity was computed for both HEOG and VEOG (Fig. 4). A time slice analysis, with
a sample size of 20 ms, was performed on HEOG up to 800 ms after the onset of
the imperative stimulus. We observed horizontal eye movements in the conditions
with targets presented at 3.1°, 540 ms after the onset of the array, F(1,7) = 7.0*. In
the conditions with targets presented at 0.7° we observed horizontal eye movements
540 ms after the onset of the array, F(1,7) = 6.6*. Thus, it may be concluded that
no significant contribution of eye movements was observed within 0—400 ms after
the onset of the target.

4.3. Behavioral measures

Mean reaction times and proportion errors for both eccentricities are presented
in Fig. 3. Univariate analyses were performed to estimate the effect of SOA and
eccentricity. Reactions were faster to targets presented at 0.7° as compared to 3.1°,
F(1,7) = 38.6***, Reactions also showed a linear decrease, F(1,7) = 113.2*** and a
quadratic increase, F(1,7) = 12.1**, when SOA increases. More errors were made
with targets at 3.1° as compared to 0.7°, £(7) = 3.1¥**,

4.4. The P150

Fig. 4 shows a positive ERP component on parietal, temporal, occipitotemporal,
and occipital sites peaking at 150 ms after the onset of the array, which we called
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Fig. 2. Contralateral and ipsilateral ERPs on the occipitotemporal electrodes for targets presented at 3.1°
with an SOA of, respectively, 100 (left panel) and 300 ms (right panel). The upper panel shows the mean
contribution of the array plus the linear and nonlinear contribution of the cue, the middle panel shows
the linear and nonlinear contribution of the cue, and the lower panel shows the estimated mean elicited
by the array corrected for the contribution of the cue.

the P150. The P150 was tested for lateralization and an effect of eccentricity. A time
slice analysis (slices of 20 ms) was performed for the ipsilateral and contralateral
site of the occipital (O1 and O2), occipitotemporal (OL and OR), temporal (T5 and
T6), parietal (P3 and P4), central (C3 and C4), and frontal (F3 and F4) electrodes.
The main results are presented in Table 1.

A significant effect of eccentricity was found for the ipsilateral site on: (a) the
occipitotemporal electrodes, F(1,7) = 16.3**, 1.4 4V, (b) the temporal electrodes,
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F(1,7) =25.5%**_ 1.1 uV; and (c) the parietal electrodes, F(1,7) = 16.6***, 0.9 uV.
The P150 was relatively large with targets presented at 0.7°, and relatively small

with targets presented at 3.1°. No effects were found for the contralateral elec-
trodes.
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Fig. 3. Mean reaction times (RT, the lower panel) and proportion errors (PE, the upper panel) for

targets presented at 3.1° and 0.7° from a fixation point, with a cue-target interval (SOA) that varied
between 100 and 300 ms.
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Fig. 4. VEOG and HEOG for trials with targets presented at 3.1° and 0.7°, and ERPs elicited by the
array corrected for linear and nonlinear contribution from the cue at posterior and anterior sites. For
the ERPs, a comparison is made between activity at the ipsilateral (ipsi) and the contralateral {contra)
hemisphere for targets presented at 3.1° (left panel) and 0.7° (right panel).
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Table 1

A comparison between contralateral and ipsilateral activity for the positive component peaking
at approximately 150 msec, when targets were presented at 3.1° and 0.7°, F(1, 7). A positive difference
(A 1V) indicates that contralateral activity was higher than ipsilateral activity

Electrodes 3.1° 0.7°
Component F-value A upv Component F-value A py

01/02 P150 56.4%** 1.5 P150 26.2%** 0.8
OL/OR P150 37.2%%* 2.6 P150 75.77%** 1.5
TS5/T6 P150 46.6%** 22 P150 57.1%%* 1.3
P3/P4 P150 52.3%*% 1.5 P150 57.1%** 0.7
C3/C4 P200 16.4%** 0.7 P180 18.3%** 0.4
F3/F4 P240 n.s. 0.0 P240 n.s. 0.0
4.5. The N230

Fig. 4 shows a negative component at parietal, temporal, occipitotemporal, and
occipital electrodes peaking at about 230 ms, which we called the N230. Again, a
time slice analysis was used. However, we decided to report the time interval of
significant differences (e.g. 240300 ms) because maximal differences were not
observed at peak amplitudes. We will report the minimal and maximal F-value
within this interval (e.g. 9 < F(1,7) < 12), and the minimal and maximal amplitude
differences (e.g. 0.5-2.1 uV). The main results are presented in Table 2

No differences in the effect of eccentricity were observed for the occipital,
occipitotemporal, temporal, and parietal electrodes. However, for the central
electrodes a greater negativity was found with targets on 3.1° as compared to 0.7°

Table 2

A comparison between contralateral and ipsilateral activity for the negative component peaking at
approximately 230 msec, when targets were presented at 3.1° and 0.7°, F(1, 7). Intervals are reported
in which significant effects were observed. We reported the minimal and maximal F-values. In
addition, the minimal and maximal differences in #V are reported. A positive difference (A uV)
indicates that contralateral activity was higher than ipsilateral activity

Electrodes 3.1° 0.7°
F-value A uy F-value AV
Interval min max Interval min max
01/02 240-300 8.8* 20.2%*%%  13-19 240-300 23.8* 57.9***  (0.7-1.8
OL/OR 260-300 11.8%*% 18.0%** 22-24 240-300 9.4% 34.1%%*%  09-24
TS5/T6 260--300 7.4% 11.5%* 1.3-1.5  260-300  14.1** 31.0*%**  0.6-1.5
P3/P4 260-300  12.1%*  33.8%*¥* 12-14 260-280  19.7%%%  S34%k* | 0-].1

C3/C4 280-340  6.0*  7.8%  0.4-0.6 260-300  6.1*  20.9%** 02-04
F3/F4 — - - : -
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on both the ipsilateral (280-320 ms, 15.5*%*% < F(1,7) < 128.8*%**), and the con-
tralateral electrodes (260-300 ms, 7.2* < F(1,7) < 68.3***)_ Similar results were
found on the frontal electrodes; ipsilateral (280-340 ms, 13.9** < F(1,7) <
49 7***) and contralateral (280-360 ms, 16.6*** < F(1,7) < 60.8%**),

5. Discussion

Several authors have suggested that attentional resources can be allocated at an
early sensory processing level. Therefore, the question was raised whether or not
voluntary and involuntary allocation of attentional resources as induced by respec-
tively symbolic and peripheral cues, invoke the same level of sensory processing.

Hillyard et al. (1994) performed an ERP study in which they observed a P1
enhancement for symbolicly cued targets but not for peripherally cued targets. They
suggested that peripheral and symbolic cues differ in their capacity to invoke the
earliest form of attentional selection. However, several studies showed that the
optimal effect of peripheral cues is observed with much shorter SOAs than the
SOAs used by Hillyard et al. We performed an experiment with 100% valid
peripheral cues that preceded a multi-element array with laterally presented targets
with an SOA between 100 and 300 ms. Target identity determined the appropriate
response. ERPs elicited by the array were corrected for contribution from the cue
by using the OPTA. In addition, trials containing detectable eye movements were
removed. Analysis of HEOG of the accepted trials showed no significant horizontal
eye movements until 540 ms after onset of the array.

Behavioral measures showed an improvement in performance when SOA in-
creased from 100 to 300 ms. These results suggest that IOR (inhibition of return),
as reported by Posner & Cohen (1984), is not involved within this relatively short
interval. In addition, performance improved for targets presented at 0.7° as
compared to targets presented at 3.1°, which can be ascribed to an increase in
visibility.

An estimation of the ERP elicited by the array, corrected for linear and nonlinear
contribution of the cue, showed an enhancement of a P1350 component on the
contralateral as compared to the ipsilateral hemisphere on posterior (i.e., occipital,
occipitotemporal, temporal and parietal) sites. This lateralization was apparent
when targets were presented on both 3.1° and 0.7°. For central electrodes a delay
was observed as compared to the posterior sites. When targets were presented at
3.1° and 0.7° the delay was 50 and 30 ms respectively. For central electrodes, the
delayed component was lateralized for both eccentricities. For frontal electrodes a
further nonlateralized delay was observed, resulting in a peak at about 240 ms. The
amplitude of the P150 seems to be sensitive to spatial information provided by the
cue. This suggests that peripheral cues influence a very early stage in visual
information processing. If we assume that occipital electrodes mainly pick up
activity from prestriate areas, then it may be suggested that peripheral cues
modulate processing at the level of the prestriate cortex. Another finding was an
effect of eccentricity that was maximal at the temporal electrodes. A main differ-
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ence appeared on the ipsilateral hemisphere; an amplitude reduction was manifest
with targets presented on 3.1° as compared to 0.7°. This suggests that activation of
the irrelevant side diminishes when attention is focused at 3.1° than to 0.7°. This
may be attributed to the joint involvement of both hemispheres in processing of a
more centrally presented target. Thus, in contrast to the experiments performed by
Hillyard et al. (1994), we observed an effect on P1 amplitude with peripheral cues.
In our study, the P1 component appeared somewhat later, which may be attributed
to the use of different stimuli.

The use of long SOAs in the peripheral cue condition of Hillyard et al. can lead
to inhibition of return (IOR). This could be the reason why they did not observe an
attention effect on the P1 component. However, their behavioral measures showed
a benefit for attended as compared to unattended locations, which suggests that
IOR was not present in their task. Miiller & Rabbitt (1989) argued that IOR may
be suppressed by voluntary orienting. This suppression might have an effect on the
level at which attentional resources are allocated. Thus, on the basis of modulation
of the Pl component in our experiment, it may be suggested that both voluntary
and involuntary allocation of resources invoke about the same level of sensory
processing.

We observed larger negativity at the contralateral as compared to the ipsilateral
site for the N230, after the posterior contralateral N230 reached its maximal
amplitude. The difference began at about 240 ms and lasted until the offset of the
N230. It must be noted that this difference can be interpreted as both a latency
effect and an amplitude effect. The difference may be interpreted as the prolonga-
tion of an elaboration process that acts upon the selected element. Furthermore, the
peak was delayed for about 80 ms on the anterior site as compared to the posterior
site. A contralateral enhancement was found at the central electrodes, which started
at 280 ms. A nonlateralized enhancement for the N230 appeared on the anterior
site when targets were presented at 3.1° as compared to 0.7°. This enhancement was
present from about 300 to 380 ms, and may be interpreted as the insertion of a
specific process when targets are presented at 3.1°.

Mangun & Hillyard (1991) argued that an enhancement of the N1 component
might reflect reorienting, or reallocation of attentional resources. However, they
observed the N1 component between 150 and 200 ms, whereas in our study it was
observed much later. To avoid complicating interpretations we assume that a
specific process is prolonged at the contralateral posterior site. In addition, the
nonlateralized anterior enlargement for targets presented at 3.1° as compared to
targets presented at 0.7° might reflect a process that is more active if a deviant
array-element 1s presented more eccentricly.

6. Conclusions
We suspected that the reason for not previously finding an early positive

enlargement with peripheral cues might be the use of too long SOAs. Therefore, an
experiment was performed with short SOAs. The OPTA was performed to remove
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the ERP elicited by the cue from the ERP elicited by the array. The adjusted ERP
for the array clearly showed a contralateral enhancement of the P1 component at
posterior electrodes, which confirms the idea that the null findings of Mangun and
Hillyard may be attributed to the use of long SOAs. Hence, the P1 enhancement at
contralateral electrodes might reflect both voluntary and involuntary allocation of
resources to a specific location.
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