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, = j ( Z , ” ) = n ( z , ” ) .  (28) 

We claim that the above system is a left inverse of E. Indeed, let u be an 
input with u(0) E S(u,). Repeated differentiation of the  output with 
respect to time and  the definition of the order yields 

~ ~ ~ ‘ ~ ( r , x , , ~ ) = f ~ ~ i , x ( r , x , , ~ ) = ~ ( x ( r , x ~ , u ) , u ( r ) ) .  (29) 

Now, if  we start i x o ,  u, from x ,  and exercise the control u = y ‘a ) ( t ,  x,,  u ) ,  
the resulting solution is x(r, x,,  u). This follows easily_from uniqueness of 
solutions. Furthermore, the corresponding output of X x o , u o  for all r in a 
proper interval of R containing  the origin is 

w ( r ) = f i ( x ( r , x o , u ) .  n ( x ( r , x , , u ) , u ( r ) ) = u ( r )  

and the proof is complete. 

IV. CONCLUSION 

In this paper necessq and sufficient conditions for invertibility of 
single-input analytic systems have been presented. 
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Comments on “Controlled Invariance for Nonlinear 
Systems” 

S. H. MIKHAIL 

Abstruct -The sufficient conditions given  in Theorem 4.12 of the above 
paper’ for controlled invariance are a specid case of more gened  suffi- 
cient conditions reported earlier. 

In the above paper’ conditions are given that  are sufficient (and  under 
certain restrictions also necessary) for “controllable invariance.” In it, the 
authors refer to earlier work that I have published [I]  on “controlled 
invariance” for systems of the type i = F ( x ,  u )  as a “related,  but differ- 
ent notion” which is misleading. It seems they have failed to detect that 
the sufficient conditions in [ I ,  Theorem 2.11 are more general than those 
in their Theorem.4.12, and were derived to accommodate many situations 
where f*(4:)n.D is tzar constant.  It could be shown that  the conditions 
dim(f*(At)nD)=constant, and rankd, [df ,F(x ,u) ]=/=cons tant  are 
exactly equivalent to  one  another in the respective notations  and settings 
of Theorem 4.12 of the  paper‘  and [ I ,  Theorem 2.11, respectively. Simi- 
larly. the conditionsf,(a;’(D))cD + f * ( A t )  and condition ii) of [ I ,  
Theorem 2.11 (as well as [2, condition (2.4)]) could be shown to be 
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equivalent to one  another, subject to  the former condition being satisfied. 
It is worth pointing out that conditions iii) (a) and iii) (b) of [ 1, Theorem 
2.11 are automatically satisfied once the above two conditions hold. 

The sufficient conditions given in [l .  Theorem 2.11, [3, Theorem 4.21, 
and [4, Theorem 1.21 for “controlled invariance” are the same with minor 
changes in presentation and format. [3. Theorem 4. I ]  and [4, Theorem 1. I ]  
give sufficient conditions that  are exactly equivalent to those in Theorem 
4.12 of the paper,’ and  are shown to be special cases of the more general 
conditions of Theorem 4.2 of the paper’ and [4, Theorem 1.21, respec- 
tively. 

There may be advantages to the setting used in the paper’ when the 
problem global controlled invariance is investigated, but  that remains to 
be seen. 
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Authors’ Reply2 

HENK NLJMEIJER AND ARJAN VAN DER SCHAFT 

S. H. Mikhail incorrectly points out that a result in our paper’ is 
already contained in his work [l]. The basic observation is that the  notion 
of controlled invariane used in [I] is related but completely different 
from the one used in our paper.’ By working in local coordinates we can 
take R “  as the  state space, R“ as the  input space, and the system is 
defined by X =!(x, u).  Then in [I] an involutive distribution D of fixed 
dimension is controlled invariant if there exists a map 9: R ”  -, R m ,  such 
that 

In the paper’ (see also the references in the  paper’), however, an 
involutive distribution D of fxed dimension is called controlled invariant 
if there exists a map 

a: R” x R ”  -, R”’, 

with the property that (*) a( x, .): R + R is a diffeomorphism for each 
x E W “ ,  and such that [j(., ii)! Dl C D for each constant ii E R m ,  where 

j ( x . u ) = f ( x 9 9 ( x , u ) ) .  

The condition ( * )  expresses the fact that D is nondegenerate controlled 
invariant or controlled invariant with full controll see  [2]. If (*) is not 
satisfied, then the distribution D is degenerate controlled invariant. (see 
Section 111, Remark 4 of the paper’); see also [3] for some further 
explanation. In this way the notion of controlled invariance used in [I] is a 
sort of degenerate controlled invariance of the paper.’ 

The condition ii) of [ I ,  Theorem 2.11 is indeed equivalent to the 
condition of Theorem 4.12  of the paper,’ provided that several rank 
conditions hold. The condition in Theorem 4.12 of the paper’ really  gives 
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necessay and sufficient conditions for controlled invariance in the sense 
of the paper,’  but this same condition in [ I ,  Theorem 2.11 only gives a 
sufficient condition for controlled invariance in the sense of [ 11. 

Although the references [3], [4] of W a i l ’ s  comment are not accessible, 
and they appeared after the paper’ had been submitted, it is clear that a 
condition of the type ii) in [ 1, Theorem 2.11 is f a r  from a necessary 
condition for controlled invariance in the sense of [I]. 
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Comments  on  “Stability of Time-Delay  Systems” 

T. SASAGAWA 

Abstract -The aim of this paper is to point out that the proofs of the 
results in the above paper’ are not correct. A counterexample is con- 
structed for the simplest case. 

In the above paper,’ the authors give necessary and sufficient condi- 
tions for the stability of time-delay systems of the form 

; ( t )=A,x ( r>+A,x( r -h ) .  

They insist in the proofs of Lemma and Theorem 1 that x( t )+ 
f l ( r ) *  x(?) = 0 iff x ( r )  = 0, where * denotes the convolution operator. 
Moreover, from this insistence they conclude the positive definiteness of a 
Lyapunov function and the negative d e f ~ t e n e s s  of the time derivative of 
the Lyapunov function on the space of continuous functions x E 
C([- h,OI, R”). 

More concretely, they insist that the functional defined on 
C([- h.01, R”) 

~ ~ ~ , . ~ ~ = ~ ~ ~ ~ ~ + ~ l ~ ~ ~ * ~ ~ ~ ~ l r ~ o ~ ~ ~ ~ ~ + ~ l ~ ~ ~ * ~ ~ ~ ~ l  (1) 

is positive definite, where 

P o [ A I + P I ( ~ ) ] + [ A I + P I ( ~ ) ] ~ P o = - Q ~  ( Q = Q r > O )  (2) 

i . , ( T ) = [ A l f f 1 ( 0 ) ] f l ( T ) ,  ( O < T < h )  (3) 

P l ( h )  = A , .  (4) 

However, this is an elementary error and, hence, the proofs of Lemma 

To make sure, we construct a counterexample. 
Counterexample: Consider the simplest case, i.e., let the system be 

and Theorem 1 are not complete. 

i ( r ) = - x ( r - h )  (Odr<cu,  h z 0 )  (5) 

wi th the in i t i a l func t ion~( t )=e“ ( -h<rdO) .  
Equation (5 )  has the solution x(?) = ear ( t  > - h )  if 

a + e-ah = 0. (6) 
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On the other hand, for (3) and (4) to  be satisfied. we have the relation 
f 1 ( T )  = P,(0)ePI‘o’‘, where 

1 + Pl(0)ePl‘o’h = 0. (7) 

The relation (6) can be transformed to aeah + 1 = 0 and this is the same 

Now, we can calculate with a = P I  (0) 
as (7). From (T), P,(O) must be a negative constant. 

= [ I +  ~ , ( ~ ) h ] e ~ ~ ( ~ ’ ‘ .  

Hence, if we choose h = e- ’  ( > 0). P,(O) = - e ( < 0), the relation (7) is 
valid and V(x,, h )  = 0 for x(?) = e-er  ( =S 0). 0 

As is clear from this example, Lyapunov functions of the type (1) 
(Po > 0) are not generally positive definite. However, Sasagawa [2] proved 
the following lemma for the functional (I)  with an  additional term and 
applied for getting a sufficient condition for asymptotic stability for more 
general systems. 

Lemma: Let a functional V(x,, h )  defined on C([- h,O] ,  R “ )  be given 
as follows. 

where Y > 0; P ,  Q are symmetric positive definite matrices and H (  t )  is a 
matrix-valued function of bounded variation on [ - h ,O]. 

Then there exists a positive constant h such that 

foranyx,~C([-h,O],R“) .  0 
In the above lemma, 1.1 denotes the square root norm of a vector or a 

matrix and 11.11 denotes the sup norm in the space C([ - h,O],  R”). 
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Additional  Comments  on  “Stability of Time-Delay 
Systems” 

M. BUSLOWICZ 

Absrruct --It is proved by a counterexample that the main result of the 
above paper’ is incorrect. 

Recall that in the paper’ for the system 

i ( r ) = A l x ( t ) + A 2 x ( t - h )  (1) 

where x ( r )  E R”.  the following sufficient condition for  the stability is 
given. If for any given positive definite Hermitian matrix Q, there exists a 

Manuscript received April 30, 1982. 
The  author  is with tbe  Institute of Electrical hgineering. Technical University of 

IT. N. Lee and S .  Dianat, IEEE Tram Aufomaf. Confr.. vol. AC-26, pp. 951-953, Aug. 
Bialystok. Bialystok, Poland. 

1981. 

0 0 1  8-9286/83/0900-0934$01 .00 81983 IEEE 


