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Abstract. By sterating iterated substitution not all regular languages can be copied. Hence the
smallest full hyper (1AFL is properly contained in ETOL, the smallest full hyper-AFL. The
number of iteratioas of iterated subsitution gives rise to a proper hierarchy. Consequently the
smallest full hyper (131-AFL is not a full principal AFL.

1. Introduction

The notion of iterated substitution has been the subject of many investigations in
formal language theory. If L is a language over the alphabet V and f is a
substitution over V, then we define f*(L)= U, .f*(L). We call f* an iterated
substitution. If f is nested, i.e. @ € f(a) for all symbols a € V, then f* is called a
nested iterated substitution. If U is a finite set of substitutions over V, then we
define US(L)Y=J{f. - - ff(L)|n =0, f € U}. We call U* an iterated multiple
substitution.

Nested iteraied substituaon was the first notion to be studied, in particular ip
connection with the context-free languages [14, 18, 21, 38] and the regular tree
languages [32, 33]. It was shown that the context-free languages are the smallest full
AFL closed under nested tteraied substitution. This resu® can be “explained” by
the Kleene Theorem for regular tree languages, where nested iterated substitution
plays the role of the star operation (i.¢ terated concatenation) in the case of the
regular languages. A gencral theory of AFLs closed under nested iterated
substitution, called super-AFLs, was developed in {12, 13].

The ivestigation of (nonnested) iterated substitution started by the introduction
of parallel rewriting systems, motivated by biological considerations, in [19, 27],
Fhese so-called Lindenmayer systems consisted essentially of an iterated finite
substitution applied to a singleton. Later the idea of & Lindenmayer system with
“tables” was introduced [23. 24}, in which each table is a finite substitution. Such
sysiems consisted of an iterated multiple finite substitution applied to a singleton,
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Many other variations have since been introduced (cf. [22, 25]) and the theory of

Lindenmayer systems is ncw a well established part of formal language theory [16,
28, 20]. A general theory of AFLs closed under iterated subtitution, called hyper
(1)-AFLs, and AFLs closed under iterated multiplc substitution, called hyper-
AFLs, was developed in [34, 29, 1]. As a formal device in these investigations the
notion of K-iteration grammar (where K is a family of languages) was introduced
[34, 29, 37, 26] consisting of an iterated (multiple) K-substitution applied to a
singleton followed by intersection with >* for some terminal alphabet 3 (a
K -substitution satisfies f(a)€ K for all symbols a). Nested iteration grammars
were used in [35]. For a comparison of results on super- and hyper-AFLs see
[2, 3, 4].

The properties of iierated substitution are rather poor in comparison to iterated
multiple substitution and nested iterated substition. As an example, for a given
family K closed under a few operations, it can be shown that the smallest full
hyper-AFL containing K can already be obtained by applying the operation of
iteraied multiple substitution once to the elements of K (followed by intersection
with Z . i.e. by taking all languages generated by K -iteration grammars [29, 1]. In
particular ETOL (where K is the family of finite languages) is the smallest full
hyper-AFL 5, 6]. An analogous statement holds for the smallest super-AFL
containing K [12]. The statement fails however in the case of iterated substitution.
The family EOL (obtained by iteration grammars with uire {inite substitution) is not
closed under iterated substitution and is not even an AFL, cf. [29]. (We shall show
that even if K is a super-AFL, the statement need not be true for the smallest full
hyper(1)-AFL containing K.) Thus, to obtain the smallest full hyper(1)-AFL, cne
has to iterate the process of applying an iterated substitution [4]. In this paper we
investigate this iteraied iterated substitution. We shall prove that not every full
hyper(1)-AFL is a full hyper-AFL, in particular the smallest full hyper(1)-AFL is
properly contained in ETOL, the smallest fuli hyper-AFL. Roughly speaking the

“idea involved is as follows. Let us say that a language L can be copied in a family K
if {w#w#w !w € L} is in K. With the use of iterated multiple substitution (with
finite substitutions) many languages can be copied in ETOL, in particular all
regular languages (in fact precisely all EDTOL languages, as shown in [31]).
However, if L has toc much strings (of each length) then L cannot be copied by
using iterated cubstitution iteratively. Thus {a,b}* cannot be copied into the
smallest full hyper(?)-AFL. It was already shown in [31, Theorem 2(b)] that {a, b}*
cannot be copied in EQL, i.e. by using one iterated finite substitution (in fact, that
only HDOL languages can be copied in EOL). This paper is essentially a
generalization of the proof of the latter recuit.

This paper is divided into 5 sections. Section 2 contains the necessary terminol-
ogy and some useful facts. In Section 3 we prove a technical result neceded in the
next section. It shows that each K-iteration grammar with one substitution has an
equivalent iteration grammar in which a “final” substitution is applied to the
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sentential forms rather than that they are intersected by some terminal X *. Thi< has
the advantage that every derivation in the grammar yields a terminal word. The
disadvantage is that the resulting grammar is in general only a K.-iteration
grammar where K. is the substitution closure of K. The proof of this resuit uses the
technique of “‘slicing” {cf. [26]) and is a very weak generalization of [7], see also
[36].

Section 4 contains our main general result concerning (iterated) iterated substitu-
tion. Let K be a family of languages. We show that languages with certain
structural properties which are in the smallest full hyper(1)-AFL containing K, are
in fact already in the smallest family that contains K and is closed under iterated
A-free 1omomorphism. Thus the problem of obtaining languages not in the former
fam "y is reduced to the problem of obtaining ianguages not in the latter, provided
they have the mentioned properties (which are possessed by languages of the form
{w#w#w lw € L} and similar ones). Thus the above result expresses that the
nondeterminism of the iterated substitutions is of no help with regard to copying, so
that they may be replaced by iterated homomorphisms. Such results have been
proved in many cther situations [31, &, 9]. The proof consists of a generalization of
the proof in [31] that in EOL only *iDOL. languages can be copizd, together with
the fact that taking the substitution closure K. of a family K is of no help with
respect to copying (nnder certain restrictions on K). The latter fact is needed to
dezl with the K. languages that turn up in the previous section. '

in Section 5 we apply the copying theorem of Section 4 to the case of the smallest
ful! hyper(1)-AFL. A characterization is given of languages in the smallest family
that contains the finite languages and is closed under iterated A -free homomor-
phism. For such a language the number of words of length n is polynomial in n.
Consequently ianguages with the above mentioned properties and such that the
nunber of words is not of polynomial order, are not in the smallest full
hvoer(1)-AFL. An example of such a language is {w #w #w |w € {a,b}*}.

As men.ioned before, the smallest family containing a given family K and closed
under iterated substitution is obtained by iteratively applying the operation of
iterated substitution. The same holds for iterated A-free homomorphism. The
result in Section 4 is proved in such a way that the number of iterations in this
iterative process is preserved. In Section 5 we show (by the same argument
concerning the number of strings) that this number of iterations gives rise to a
proper hierarchy. From this it can be shown that the smallest full hyper(1)-AFL is
not a full principal AFL.

2. Terminology and preliminaries

In this section we introduce the terminology needed in this paper. The reade. i3
assumed to be familiar with the basic terminology and facts of formal language
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theory (cf. {17, 30]), in particular the theory of Lindenmayer systems [16]. We also
=*re a number of useful facts taken from the literature.

For each word v, we identify {w} and w. The length of w is denoted by |w |. The
empty word is denoted by A. A language is A-free if it does not contain A. A
mapping f such that f(x ) is a language for every x in its domain, is said to be A -free
if all f(x) are A-free, and f-free if all f(x) are nonempty. For two arbitrary
mappings f and g their composition is denoted by fg. Thus fg(x) = f(g(x)) for all x.
We denote f - - - f(n times) by f", in particular the identity mapping by f°. A family
of languages is defined as usuzl, except that we shall always assume that it contains
all singleton languages. The families of finite, regular and context-free languages
are denoted by FIN, REG and CF respectively.

Let V be an alphabet. A substitution is (as usual) a mapping f from V into
languages, extended to words over V by f(A)={A} and fa,---a.)=
f(a))" - - f(an), and extended to languages over V by f(L)= U{f(w)|w €L}. It is
said to be a substitution over V if f(a) is a language over V for all a in V; it is said
to be a K -substitution (for a family K of languages) if f(a) € K foreach a € V, and
to be nested if a € f(a) for each a € V.

Let f be a substitution over V. For a language L over V we define f*(L)=
U _of"(L). The mapping f* is called an iteraied substitution [12]. If f is nested,
then f* is called a nested iterated substitution. Let U be a finite set of substitutions
over V. For a language L over V we define U*(L)= U{f, - f-fi(L)|n =0,
f. € U}. We shall call the mapping U * an iterated multiple substitution. It is called
nested if all elements of U are nested. A family K is closed under substitution
(iterated substitution, iterated multiple substititution) if f(L) i3 in K whenever
Le€K and f is a K-substitution (iterated K-substitution, iteratcd multiple
K -substitution respectively). We note that if K is closed under unioa, then K is
closed under nested iterated multiple substitution iff it is closed under nested
iterated substitution (given a nested U, define g such that g(a) = U{f(a)|f € U}
then g* = U?¥), cf. [2].

Let K be a family of languages. A K-iteraiion grammar is a quadruple
G =(V,2,A,U), where V is an alphabet, I is a subset of V (the terminal
alphabet), A € K is a language over V (ihe set of axioms) and U is a finite set of
K -substitutions over V. The set of sentential forms generated by G is defined by
Ls{G)= U*(A), and the language generated by G by L(G)=U*A)NI*. 1If U
has n elements then G will be called a K-(n) iteration grammar. G is said to be
A-free (P-free) if all elements of U arc A-free (B-free respectively). We note that
our definition of K -iteration grammar differs from thc usual one in [29] in that it
has a whole set of axioms rather than just one. It is easy to see that if K contains all
singleton iarguages ‘as is assumed throughout the paper), then the two definitions
are equivalent (with preservation of the number of substitutitons). In the sequel we
will mainly be interested in K-(1) iteration grammars G which will be denoted as
{(V,%, A, g) rather than (V,2, A, {g}). For such a grammar we shall also write
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w,==>"w: if w,€ g*(w,) and we shall talk about derivations in the usual way.
Note that Ls(G)=g*(A) and L‘G)=g*(A)NZX* The family of languages
generated by K -itcation grammars will be denoted by H(K). By H,. (K') we denote
the family of languages generated by K-(n) iteration grammars (n = 1). It can be
shown that (under weak assumptions on K) H»(K)= H(K), see {1]. In this paper
we deal with H,(K). We denote U7, H}(K) by H*(K).

Thie following terminology will be used concerning closure properties. Let K be a
fanaily of languages. K is a pre-quasoic [1] if it is closed under finite substitution
a1 | intersection with regular languages. K is a quasoid [34, 29] if it is a pre-quasoid
containing all regular languages. We note that FIN is the only pre-quasoid which is
rot a quasoid. The next concept is only introduced for the purposes of this paper. K
is an SFL (special family of languages) if it is a pre-quasoid closed under union and
concatenation. Observe that FIN is an SFL. K is substitution-closed if it is closed
under K-substitution. We denote by K. the smallest substitution-closed family
containing K. Note that FIN. = FIN. K is a super-AFL if it is a full AFL closed
under nested iterated substitution [12]. K is a full hyper(1)-AFL if it is a full AFL
closed under iteraied substitution (or, equivalently, a full AFL such that H(K) =
K). Finally, K is a full hyper-AFL if it is a full AFL closed under iterated multiple
substitution (or, equivalently, a full AFL such that H(K) = K ; see [29], where the
adjective full is not used).

Before continuing our terminology we state a number of facts from the literature.
We note first that H(FIN) = ETOL, H{ONE) = EDTOL (where ONE is the family
of all singleton languages) and H,(FIN) = EOL [29]. It was shown in [5, 6] that
ETOL is the smallest full hyper-AFL. This was generalized in [1]: H(K) is a full
hype:-AFL for every pre-quasoid K (and in fact the smallest one containing K).
Thus, for a pre-quasoid K, I{ (H(K)) = H(K), which means that iteration of H has
no effect. EOL is an SFL, but not an AFL [15, 29]. H/(REG) is a full AFL, not
closed under (iterated) substitution [5], so that H, is not idempotent in general. In
the following lemma we state closure properties of K., H\(K) and H T(K) under
suitable restrictions on K (together with a similar statement for the nested case).

Lemma 2.1. Le! K be a family of languages.

(1) If K is a quasoid, then K. is the smaliest substitution-closed full AFL
containing K.

(2) IfKisa ful! AFL, then {f*(L)N R [_f* is a nested iterated substiiution, L € K
and R is a regulur language} is the smallest super-AFL containing K.

(3) If K is a quasoid, then H\(K) is a full AFL.

4) If K is a pre-quasoid, then HF(K) is the smallest full hyper(1)-AFL
containing K.

(5) H%(FIN) == H3(EOL) is the smallest full hyper(1)-AFL.

Proof. [11, 12, 29, 4, 4] respectively. We observe that (4) follows from (3) ar.d (%)
from (4). U
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V:; nmow continue our terminology. An NPDOL scheme is a quadruple § =
(V,f,2,h), where f is a A-free homomorphism over V and h is a A-free
homorphism from V* into X *. If L is a language over V, then we denote by S(L)
the language h(f*(L)). Note that an NPDOL scheme is an NPDOL system [22]
without axiom, thus, for w € V*, S(w) is an NPDOL language. For a family K we
denote by NPDOL(K) the family {S(L) ] S is an NPDOL scheme and L € K}. We
denote U .,NPDOL"(K) by NPDOL*(K). Note that NPDOL*(K) is the smallest
family containing K" and closed under iterated A -free homomorphism. It is left to
the reader to show that NPDOL(K)C H,(K) and even NPDOL(K.)C H,(K).
Consequently, for n =1, NPDOL"(K.)C Hi(K). It should also be clear that
NPDOL*(FIN)C EDTOL.

We end this section by defining two properties, (F) and (S) of a language L
over V.

(F) For all u,u’,x,x',v,v'€ V* if uxv, ux'v, u’xv’ and u'x’v’ are in L, then
x=x"or bothu =u’and v =v".

(S) For every integer t there exists an integer T such thai forall u,x,y,v € V'*, if
uxv €1, luxv|=T, |x|<t and uyv EL, then x =y.

Property (F) was used by Fischer [10]; see also [9] where this property is
discussed (as property (P1)). Property (S) was used implicitly by skyum [31] to show
that EOL languages having this property are in HDOL( = NPDOL(FIN), see [22]
where NPDOL(FIN) is denoted by NPDFOL)). Intuitively it says that one cannot
change small subwords of a word in L without leaving L. It is easy to show that, for
any language M, languages such as for instance {w#w#w |w € M},
{wHwR#w#wE# l w € M} and {f(w)g(w)h(w)|w € M} have both properties
(F) and (S) (where # is a new symbol, w*® is the reverse of w,f,g and h are
length-preserving 1-1 mappings with disjoint target alphabets).

3. Change of filter

The language defined by a K-(1) iteration grammar G = (V, 3, A, g) is obtained
by first ger:erating the set of sentential forms of G and then putting this through the
“filter” that only allc+'s words over 2. In this section we show that (apart from
derivations of some bounded length this filter can be changed into one that applies
an P-free substitution to the sentential forms. We have however. to pay the price of
using K.- rather than K-substitutions. This result is expressed in the following
theorem, in which we simultaneously show that A-freeness can be obtained. The

proof of the theorem is analogous to part of the proof in [7]. It uses the technique of
slicing [26].

Theorem 3.1. Let K be a pre-quasoid. Each language in H,(K) is the union of a
language in K. and a language of the form f(Ls(G)), where f is an §-free A-free
K.-substitution and G is an @-free A-free K.-(1) iteration grammar.
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Proof. Since K.. is either FIN or a full AFL (cf. Lemma 2.1(1)), K is closed under
union with {A}. Therefore it suffices to prove the theorem for A -free languages in
H/(K). In [29] it is shown that, under the given conditions on X, each A -free K-(1)
iteration language <on be generated by a A -free K-(1) iteration grammar. Thus l=t
G.=(V,2,A,g)be aA-free K-(1) iteration grammar. We shall show the theorem
for L {G,). First we introduce several definitions taken from [7]. For a € V the
specirum of a, denoted by Spec(a), is defined as {n =0|g"(a)N 3 * # @}. Thus
n € Spec(a) iff a generates a terminal word in n steps. A symbol a in V is said to
be vital if Spec(a) is infinite. In [37] it is proved that, for each a in V, Spec(a) is an
ult: nately periodic set of integers. For an arbitrary ultimately periodic set I we
“enote by per(l) a period of I and by thres(I) a threshold of I, i.e. an integer such
ti:at {n € I | n = thres(I)} is periodic with period per(I). We now define the uniform
period of G,, denoted by m, to be an integer such that

(i) for all nonvita! @ in V, Spec(a)C{0,1,...,m —1};

(ii) for all vital a in V,m = thres(Spec(a)) and per(Spec(a)) divides m.

We now construct the (l)iteration grammar G =(A4,4,B,h), where A =
a€V ,m € Spec(a)}, B ={w E./.\*iv =>*w for some k <2m andv € A} and,
iora €EA,h(a)={weA* l a =>"~ . Since K. is either FIN or a full AFL, G isa
K.-(1) iteration g~ammar (note that B = U{g*{A)|[0<k <2m}NA*and h(a)=
g™ (a)N4¥). Since G, is A-free, so is G. To see that G is P-free, consider a € A.
Thus m € Spec(a) and therefore, by (ii), 2m € Spec(a). Hence there exist w € V*
and x € X* such that w €g™(a) and x €g™(w). Clearly w €A *.

Next we define the K.-substitution f such that, for a €A, f(a)=
{w EZ*]a ="w ir. G,}. Obviously f is @-free and A-free. Finally, let M =
{weZS* v =>"w in G, for some k <2m and v € A}. Obviously M € K... We
now claim that L{G,)= M U f(Ls(G)), which proves the theorem. Clearly M U
f(L.(G)) is included in L (G,). To show the converse, let x € g°(V)N X * for some
p =2m and some v € A. Let p =qm +r for some q and r such that ¢ =2 and
0<r<m. Let

m-+r m m m m m
VD W T W, T Wy T T Wy = X

be a derivation in G, of x from v. Let the symbol a occur in w.. It produces some
terminal werd in (g — i)m = m steps. Hence a is vital by (i), and sirce (@ —i)m €
Spec(a), m € Sprc(a) by (ii). Consequently all words w, are in A*. Hence
W, => w, => -+ => w,, is a derivation in G {(note that m +r <2m, so that
w: € B) and « € f(w,-,). Thus x € f(Ls(G)). O

4. A copying theorem

Let K be an SFL and L a language with properties (F) and (S). In this section we
want to show that if L € H%(K) then L € NPDOL*(K). More precisely, for every
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n =0,if L € H}(K)then L € NPDOL"(K) (Theorem 4.4). This theorem can easily
be provad by induction from the result that, for every n=0, if
L € NPDOL"(H,(K)) then L € NPDOL"(NPDOL(K))) (Lemma 4.3). The kernel
of the proof of this result is an obvious generalization of the proof of the fact that if
L € H,(FIN) then L € NPDOL(FIN) (see [31]) and uses essentially property (S) of
L. However, since in this proof we start by transforming the initial kl-(1) iteration
grammar according to Theorem 3.1, we need the following lemma to deal with the
K. languages turning up in that transformation (Lemma 4.2): for every n =0, if
L € NPDOL"(K.) then L € NPDOL"(K). This is in fact a spezial case of Lemma
4.3 (recall that NPDOL(K.) C H/\(K)). its proof uses property (F) of L.

Before showing the above mentioned results we prove the following useful
lemma, which roughly speaking provides us with a way of changing a substiiution,
involved in the generation of a language with property (F), into a
homomorphism.

Lemma 4.1. LetS,,..., S, (n =0) be NPDOL schemes, f an @-free sutstitution and
M a language. Let L =S, ---S(f(M)). If L has property (F), then L =
S, Si(h(MYU U{h(u.)f(a)h (v‘,)l a € A}), where h is any homomorphism such
that h(a) € f(a) for all a, A is the set of all symbols accurring in words of M, and u,
and v, are any words such that u,av, € M.

Proof. Denote S, - -+ S,(h(M)U U{h (u.)f(a)h(v.)|a € A}) by N. It should be
obvious that NCL. To show that I. O N, let z€ L. Let, for 1<j<n, §;=
(V,fi, 2i, h;). There exist words x,y and integers k(1),...,k(n) such that x € M,
y Ef(x} and z = g(y), where g denotes the homomorphism h,f} ™ - h,fi®. Let
XxX=a;"-'am Witha, €A and y =w, -+ w, with w; € f(a)).

We now consider three cases.

Case 1. g(w)=gk(a)) for all i 1<is<sm. Thnen gh(x))=
g(h(a)) --gh(an))=g(wi)---g(wa)=2. Hence z €S, --S,(h(M)) and so
zEN.

Case 2. There is exactly one i such that g(w;)# g(h(a)). Letu=a, - ai-
and v=¢., ' ' am. Denote a; by a and w; by w. Thus x =uav and
z=g(h(u))g(w)gh(v)). It follows that g(h(u))g(w)g(h(v)) and
g(h(u)yg(h(a))g(h(v)y are in L, and (starting -rom the word u.av,)
g(h{u.))g(w)g(h(v.)) and g (h(u.))g(h(a))g(h(v.)) «re in L. Consequently, since
L has property (F) and g(w)#g(h{a)), we have that g(h(u.))= g(h(u))
and  g(h(v.))=g(h(v)). Hence z=g(h(u.))g(w)g(h(v.)), and so
z€S8,---Si(h(u.)f(a)hi{v,)), and z EN.

Case 3. there are i and | such that g(w;) # g(h(a.)) and g(w;) # g(h(a;)). It is
left to the reader to show that this case cannot occur due to property (F) of L (in
fact, property (F) implies property (P2) of [9] which forbids L to have two different
possibilities for two nonoverlapping subwords). [0
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We now show that languages with property (F) which can be generated by a
number of NPDOL schemes from a language in K, can in fact be generated from a
language in K.

Lemma 4.2. Let X be an SFL, and let n=0. If L has property {F) and
L € NPDOL"(K.), then L € NPDOL"(K).

Proof. We first note that, by [11], K.= U _,K,, where K,=K and K,.,=
{ffL)l L € K,, and f is a K-substitution}. We also note that NPDOL"(K)) is closed
urrder union (If L, =S, -+ S;(M,) and L,= T, - - - T:(M,) then, after some neces-
s.ry alphabetic changes, L,UL,=R, - Ri(M,;UM,) where R, is obtained by
joining the alphabets and homomorphisms of S; and T: two by two). Thus it suffices
to show that, for m =1, if L has property (F) and L € NPDOL"(K,,), theii L is a
finite union of languages from NPDOL"(K). We show this by induction on m.

For m =1 the statement is trivial. Suppose it is true for m and let L €
NPDOL"(K,,.,) have property (F). Thus L =S, - - - S\(f(M)), where S,,.... S, are
NPDOL schemes, f is a K-substitution and M € K,.. We may assume that f is
@-free (otherwise we intersect M with A *, where A = {a | f(a) = @}; it is easy to see
that K,, is closed under intersection with A*). Thus Lemma 4.1 is applicable,
so that L= +--S,(h(M)US, -+ S;(Ufh(u.)f(a)h(v.)|a € A}). Obviously
U {h(u.)f(a)h(v.)|a S A} is in K and h(M) is in K,.. Consequently L is the
union of an NPDOL"(K) language and an NPDOL"(K..) language. Since every
subset of L also has property (F), it follows by induction that L is a finite union of
languages from NPDOL"(K). [

We now turn to the main stage in the proof of the copying theorem.

Lemina 4.3. Let K be an SFL. Let L be a language with properties (F) ard (S). For
every n =0, if L € NPDOL"(H,(K)) then L € NPDOL""'(K).

Proof. We observe that NPDOL""'(K) is closed under union and that
NPDOL"(K)C NPDOL.""(K).

Let L =S, --8,(M,), where S,,...,S, are NPDOL schemes and M, € H,(K).
By Theorem 3.1, My=M, UM, with M, € K. and M, = f(Ls(G)) for some
K.-substitution f and K.-(1) iteration grammar G (both #-free and A -free). Thus
L=S.---S{M)US, ---S\(f(Ls (G))). Since every subsci of L also has property
(F), it follows from Lemma 4.2 that S, - - - Si(M,) € NPDOL"(K)). By our observa-
tion above it now suffices to show that L,=S, - S\(f(Ls(G))) is in
NPDOL"*'(K). Note that, being a subset of L, L, also has properties (F) and (S).
We now apply Lemma 4.1 to L, (with M =Ls(G)). Thus L,=L.Ur. with
L,=S, - Sih(Ls(G))) and L, =S, - S,(Ufh (u.)f(a)h (v.)| a € A}). where h
is a A -free homomorphism. Since f is a K.-substitution and K. is an AFL (Lemma
2.1(i)), L€ NPDOL"(K.). Hence, by Lemma 4.2, L, € NPDOL"(K).
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It remains to show that L.= S, + - - §,(h (Ls{G))) is in NPDOL"*'(K). Note that
L, still has properties (F) and (S). Let G = (V, V, B, g). We write L (G) rather than
Ls(G}. Let m be an integer such that if x € L{G) and | x | = m, then each symboi
occurring in x occurs in infinitely many other words of L.(G). Define D =
U{g'(B)|0<i <p}, where p is chosen such that {J{g'(B)|0<i <p — 1} contains
all x € L(G) with |x|<m. Clearly D € K.. Construct the NPDOL scihieme
S,=(V, fo, 2o, ho), where f, is any (A -free) homomorphism such that foralla € V
fia)E g(a), and ho=h (Z, being its target alphabet).

We will prove that L.=3S5,---5§ So(D). From that it follows that L,€E
NPDOL"*'(K.) and so, by Lemmaz 4.2, L, € NPDOL""'(K), which completes our
proof. Obviously S, -+ S,5¢(D)C L.. To show the converse, let z € L,. Let, for
Isjsn, S, =(V,f,2.h). There exist a word y€L{(G) and iitegers
k(i),...,k(n) such that z = §(y), where ¢ denotes the A-free homomorphism
hof k™ -~ hyfPh. If |yl<m, then y€D and h(y)ES«D), so thar z €&
S.---S.S«(D). Now let |y | =m. By th.: definition of D and the A-freeness of G
there exists x € L(G) such that x €D, [x|=m and x ="'y for some i =0. Let
X=a Q,y =w; - +w, and a; =>"w, for 1 <j <r. We now show that for each
phisj<sr,¢(w)=y¢(fu(a)). Lett =|¢(fo(a))|, and let T correspond to t as in the
statement of property (S) in Section 2. Since |x | = m, a; occurs in infinitely many
elements of L (G). Consider a word v = u,au, in L (G) with |u | = T. Then both

b (fo(u)) = o o)) (Fola; )b (Fo(u=))  and b (Fo(u)d (W) (Fo(u2))

are in L,. Moreover, since ¢fs is A-free, [¢(fo(u))| =|u | = T. Hence, by property
(S), ¥ (fi(a;)) = ¢{w;), as we wanted to show. This imy'ies that

z=g(y)=dw, - w)=d¢(ua - a))=d{ix)),
and consequently z €S, - - - §,S¢(D), which provcs the lemma. [

We finally state the copying theorem for HY(K).

Theorem 4.4. Let K be an SFL. Let L be a language with properties (F) and (S). For
every n =0, if L € HY(K), then L € NPDOL"(K).

Preof. This follows easily from Lemma 4.3 by induction. To be able to apply this
lemma we have to show that HT(K) is an SFL for every m =0. It is obviously
sufficient 1o show that if K, is an SFL, then so is H,(K,). Now, if K, = FIN, then
H,(K,) = EOL, which is an SFL. If K, # FIN, then it is a quasoid and so H,(K,) is a
full AFL by Lemma 2.1(3). O

Another (weaker) way to express this theorem is to say that if K is an SFL and if
L (with properties (F) and (S)) is in the smallest full hyper(1)-AFL containing K,

then L is in the smallest family that contains K and is closed under iterated A -free
homomorphism (cf. Lemma 2.1(4)).
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5. The smallest full hyper (1)-AFL

In this section we apply the copying theorem of Section 4 to the case that
K =FIN. Using a characterization of NPDOL"(FIN), we then show that the
families H(FIN) form a proper hierarchy, properly contained in ETOL. Thus (cf.
Lemma 2.1(4) ard (5)) the smallest full hyper(1)-AFL H T(FIN) is properly
contained in the smallest full hyper-AFL ETOL. It also follows that H T(FIN) is not
a full principal AFL. At the end of the section we give an inclusion diagram of all
familic s discussed.

Sinc.: FIN is an SFL, the next corollary follows directly from Theorem 4.4.

Corollary 5.1. Let L be a language with properties (F) and (S). For every n =0, if
L € HI(FIN) then L € NPDOL"(FIN). 0O

To show that certain languages are not in NPDCL"(FIN) we now give, for any L
in NPDOL"(FIN), an estimation of the number of words in L of a given length.
Let, for any language L and integer k, nw (L, k) denote the number of words in L
of "ength k.

Theorem 5.2. For every n =1 and every language L, if L € NPDOL"(FIN) then
nwiL,k)=0O(k"™").

Proof. We shall prove the statement by induction on n. For n = | we have to show
that rw(L,k)=0O(1), 1.e. that nw(L,k) is bounded by a constant, for L €
NPDOL(FIN). This result is proved in [22, Lemma 5.10]. Now assume that the
theorem holds for n and consider L € NPDOL""'(FIN)). Thus L = S(M ), where S
is an NPDQJ. scheme and M € NPDOL"(FIN). By induction, nw(M.,k)=0(k"™").
Since the homomorphisms of S are A -free, x EL iff x € S(y) forsomey € M with
ly |=<|x|.If we can show that there is a constant C such that for all words y and all
k, nw(S(y), k)< C, «hen, for all k,

k k
aw(L,k)<C - D nw(M,i)=C -, O@{"™") = Ok"),
i=0 i=0

end the theorem is proved.

To prove this we note that it has been shown in the proofs of Lemma 3.1 and
‘Theorem 4.12 of [22] that for each NPDOL scheme S, = (V,,f, X, h)) there exist
an NPDOL scheme S.=(V,f..2,h,) and an integer N such that (1) the
homomorphism i, is length-preserving (i.e. a symbol to symbol coding), and (2) for
each w € V* there is a finite set W C V% of cardinality N such that §,(w) = S;(W).
It is straightforward to see that nw{S, (W), k)< N -A, where A is a constant
depcnding on S; only (in fact, A is the maximum of the cardinality of V. and the
product of all max{nw (Sx(a),k)|k <0} for all a € V. such that S:(a) is finite).
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Hence nw (Si(w), k)< N - A, where N - A only depends on S, and not on w. This
proves the statement and the theorem.

Corollary 5.1 and Theorem 5.2 together lead to the next corollary.

Corollary 5.3. For n =1, if L has properties (F) and (S) and nw (L, k) is not
Ook"™"), then L € HY(FIN). O

It is now easy to find examples of languages not in any HY(FIN).

Theorem 5.4. H(FIN) is properly included in ETOL. In particular there exist
EDTOL languages not in H T(FIN).

Proof. Consider for instance L = {w#w#w |w €{a,b}*}. L has properties (F)
and (S), and is in EDTOL. Obviously nw(L,3m +2)=2", and so nw(L,k) is not
O(k") for any n =0. Thus, by Corollary 5.3, L is not in HT(FIN). [

This theorem shows that the smallest full hyper(1)-AFL is properly included in
the smallest full hyper-AFL. It expresses the fact that iterated iteration of one
substitution is less powerful than a single iteration of a multiple substitution. The
next result shows that the number of times the process of applying an iterated
substitution is iterated gives rise to a proper hierarchy.

Theorem 5.5. Forn =0, H{(FIN) is a proper subset of H' "'(FIN). In pamcular there
exist NPDOL""!(FIN) ianguages not in H(FIN).

Proof. Let, forn=1, L, = {w#w#w#,w €afas---at}, where ay,...,a, #
are different symbols. We will show that L, € NPDOL"(FIN)— H}'(FIN). First
we prove that L, is in NPDOL"(FIN). Let, for 1 <i <n, S; be the NPDOL scheme
(V.f,2,h), where V, =3, ={#,a,,...,a}, h; is the identity, f(#)=a;# and
fla))=a forl1=j<i Thenclearly L, =S, - -- S\(###). Secondly we prove that
L. & H7 '(FIN). This is clear for n = 1. Now let n = 2. Obviouslv L, has properties
(F) and (S). Moreover it is easy to see that there is a positive constant C such that,
for all sufficiently large m, nw(L,,3m +3)=Cm""'. Hence nw(L,, k) is not
Q" %), 1t now follows from Corollary 5.3 that L, & H} '(FIN). O

By this theorem, no family K containing FiN and contained in H7(FIN) for some
n is closed under iterated A-free homomorrhism (otherwise NPDOL™"'(FIN)
would be included in HY(FIN)). Consider for instance H,(CF). It is contaired in
HI(FIN) and contains FIN. Thus, H,(CF) is not closed under iterated A-free
homormorphism. This example shows that even if K is a super-AFL, H,(K) need
not be a full hyper(1)-AFL (cf. Lemma 2.1).



Iterating iterated substitution 97

Corollary 5.6. There is a super-AFL K such that H,(K) is not c¢issed under iterated
A -free homomorphism. [

Since by Lemma 2.1(3) H{(FIN) is a full AFL (for n =2) and H 7(FIN) is their
union, Theorem 5.5 proves that H¥(FIN) is not a full principal AFL.

Coreilary 5.7. H1.FIN) is not a full principal AFL.

Mote that according to the results of [12], this also implies that there is no
lzt.;uage L such that H{(FIN) is the smallest super-AFL containing L. Thus
A T(FIN) is the union of a proper hierarchy of super-AFLs. In fact, using Lemma
2.1, it can easily be shown that the smallest super-AFLs containing H3"(FIN) form
cuch a hierarchy. We finally put the language families discussed in this section in an
inclusion diagram, the correctness of which follows from Theorem 5.4 and 5.5.

ETOL

H{(FIN) EDTOL

A

H:"(FIN) NPDOL*(FIN)

/N

Hy(FIN) NPDOL"*'(FIN)

SN/

H,(FIN) = EOL NPDOL" {FIN)

~./

NPDOL(FIN) = HDOL

-
=
W
B

p—

For readers of [ 31] we observe that this diagram can be inserted into the diagram
of [31, Fig. «4]. To show the necessary incomparabilities to the other families in the
latter diagrem we note that the language {w #w #w ' w € {a b}*} used in the proof
of Theorem 5.4 is in IP and in ED, that {a, b}* is in REG — NPDOL*(FIN) by
Theorem 5.2, and that the lamguage {a‘aT#biby# cic?lk,m =0} is in
NPDOL’(FIN) — ER (by a result concerning ER in [31]).

As far as H(REG) and H,(CF) are concerned, they can easily be added to the
above diagram, because EOL € H/(REG) & H/(CF)& Hi(FIN). Let us prove this.
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The inclusions are obvious from the fact that FINC REG C CFC EOL. Since
H,(REG) is an AFL whereas EOL is not, EOL & H,(REG). Proper inclusion of
H{(REG) in H,(CF) can be shown in an analogous way as that used in
[5] to show nonclosure of H,(REG) under substitution. In fact let
L={w,#wy#:-#w lk =2" for some m =0, w, €{a"b" }n =0}}. Then
L € H,(CF). By SFL operations one can obtain from L the language {w €
{a,b}*|the number of b’s is a power of 2} which is not in EOL [16]. Thus
L € H,(FIN). Suppose L € H(REG)- H,(FIN). By the pumping lemma for
regular languages and the fact that REG-(1) iteration grammars can be made
A-free, there is a word in L with a nonempty subword u that can be iterated. Since
the number of #’s in words from L is exponential, the number of #’sin U can only
be 0. This implies that a subword of a"b" can be pumped up, which is a
contradiction. This proves that H,(REG) is properly included in H,(CF). To show
that H,(CF) is properly included in H,(EOL) = H}(FIN), consider the language L,
used in the proof of Thevrem 5.5. Thus L,€ H(FIN)—- H,(FIN). Assume that
L.€ H,(CF). Then, by Theorem 4.4, L, € NPDOL(CF). Using exactly the same
technique as in the proof of Theorem 4.4 it can easily be shown that this implies that
L, € NPDOL(FIN), which is a contradiction. (We note that in fact Lemma 4.2 can
be generalized by replacing K. in the statement of the lemma by the smaliest
super-AFL containing K). Hence H,(CF) is properly included in H,(EOL).

6. Conclusion

We have proved that the smallest full hyper(1)-AFL is properly contained in the
smallest full hyper-AFL ETOL. Thus the operation of (iterated) iterated substitu-
tion is weaker than that of iterated multiple substitution. The smallest full
hyper(1)-AFL is not a full principal AFL, i.e. no Chomsky-Schiitzenberger-like
characterization holds for this family (unlike the smallest super-AFL and the
smaliesi full hyper-AFL). It is open whether there exist other full hyper(1)-AFLs
which are not full hyper-AFLs. Is there a whole hierarchy of full hyper(1)-AFLs

included in ETOL? Is the smallest full hyper(1)-AFL containing EDTOL properly
contained in ETOL?
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