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synopsis 
Complete sets of diagonal operators, i.e. operators commuting with the hamiltonian 

of a physical system, are constructed. In terms of these sets all diagonal operators can 
be written as a series, the uniform convergence of which is studied for infinitely large 
systems. This uniform convergence is introduced as a possible criterion for ergodicity. 

I. Introduction. A central problem in the quantum theory of irreversible 
processes is to find the so-called secular part of the self-adjoint operator 
corresponding with a variable of a physical system, the motion of which is 
described by a hamiltonian H. It is easy to show that the set of all secular, 

self-adjoint operators, i.e. operators commuting with H, constitute a vector 
space, being a subspace of the space of all self-adjoint operators. The secular 
part of any hermitean operator is simply the projection on this subspace. 

We restrict ourselves mainly to the case that the eigenvalues of H are 
nondegenerate ; for this case secular operators may be called diagonal. 
Degeneracy may occur as level crossing for a hamiltonian that is a linear 
function of a real parameter. 

For a finite-dimensional Hilbert space it is easy to find a basis for the 

subspace of diagonal operators. This basis is given by the first n powers of 
H, n being the dimension of the Hilbert space. Apart from a general method 
for the construction of an orthogonalized basis, this paper is concerned with 
the convergence or divergence of an expansion of the diagonal part of an 
operator in terms of this basis, in the limit N -+ co, N being the total number 
of particles in the system. Uniform convergence of this expansion for N 2 No, 
No being a fixed integer > 0 is a sufficient condition for the ergodicity of 
the corresponding physical quantity19 2). 

A well-known example of a divergent series expansion is given by systems 
for which the so-called adiabatic and isolated susceptibilities show a differ- 
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ence of the order of the number of particles. In the literature these sus- 
ceptibilities usually refer to the linearized quasistatic response of a magnetic 
system for a slowly varying external magnetic fields-s). 

In section 2 we define a complete set of diagonal, orthogonalized operators 
for a given hamiltonian H and we introduce a positive definite metric, which 
makes it easy to find a series expansion for the diagonal part of any self- 
adjoint operator. We restrict ourselves to finite-dimensional Hilbert spaces. 
The possible convergence of this series expansion for N + co is discussed 
in an introductory way in section 3, together with the relation between this 
mathematical property and the ergodicity of the corresponding physical 
quantity. 

In section 4 we give a discussion of the relation between non-ergodicity 
of a quantity B and level crossing for a large system with a hamiltonian 
H = A + hB that is a linear function of a real parameter bz. Noncrossing 
has been made a fundamental assumption in an attempt to prove the 
identity of the adiabatic and isolated susceptibilities.51 6). In a recent paper 
by one of the authors a relation is discussed between the number of level 
crossings and the degree of possible basis vectors of the space of diagonal 
operators, i.e. the degree in the parameter h 7. Nonergodicity in the literature 
always corresponds with a basis that is not given by the first B powers of H. 

Finally in section 5 ergodicity is discussed as a consequence of the uniform 
convergence of the series introduced in section 2, for N 2 No > 0. 

2. A complete set of diagonal operators. In ref. 7 it was shown that for 
an n-dimensional Hilbert space a complete set of diagonal operators is given 
by I, H, H2, . . . . H*-1, in which I is the identity operator. The condition of 
nondegeneracy is implicit, unless otherwise stated, also in the present work. 
For every diagonal (self-adjoint) operator F the operator equation 

n-1 

F=CakHk 
k=O 

can always be solved for the real numbers ak. This equation corresponds 
with ?& linear equations Fg = CE:i a&, i = 1, 2, . . . n, the index i number- 
ing the n different eigenvalues of H, ~1, ~2, . . . . en. The Fz are the correspond- 
ing (diagonal) elements of F. 

The set of n equations for the ak has a unique solution, the determinant 
of the set being different from zero, because it equals the well-known 
Vandermonde determinant for the n different quantities E$. As a consequence 
of the fact that the sum of two diagonal operators is also diagonal and that 
multiplication of a real diagonal operator by a real number again gives an 
operator of the same set, we may conclude that this set of all real diagonal 
operators constitutes a vector space. 

Our first problem is to construct an orthogonal basis from the original one 
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I, H, . . . . Hn-1. In order to do this we have to define an inner product of 
two vectors in the operator space in the most convenient way. In problems 
of irreversible statistical mechanics or ergodic theory we are most times 
interested in the Boltzmann average of the square of diagonal operators and 
so it is reasonable to include the Boltzmann factor in the definition of the 
inner product l). For hermitean operators this results in a positive definite 
metric and the square of a vector being zero implies that this vector is the 
zero element. So the inner product obeys 

<FG> = 
Tr e-fiH FG Tr e-OH F2 

Tr e+H 
= (GF>, <F2> = 

Tr e-OH 
r 0, 

/3 = l/kT. (1) 
Now an orthogonal basis et, i = 1, 2, . . ., n, is easily constructed and most 
conveniently represented in a determinantal notation 

I H I 
el = I, e2 = , e3 = <I> 

<I> <H> <H) 

e n= 

I H H2 . . . Hn-1 

<I> <H> <Hz> . . . <H”-l> 

<H> <H2> (H3) 1.. <Hn> 

(Hn-2) <Hn-I> <Hn> (Hz”-3> 

H H2 

<H> <Hz> , . . . 

<H2) <H3> 

(2) 

The orthogonality (eiej> = 0, i # j, is easily demonstrated: We may take 
i < j and for this case ei is a linear combination of I, H, . . . Hz-1 with all 
power exponents being smaller than j - 1, the highest one in ej. If we show 
that all these powers H k, 0 I k 2 i - 1, have an inner product with ej that 
equals zero we know that (ezej> = 0. But it is easily seen that the inner 
products <Hkej> result in a determinant with two identical rows and so 
it equals zero indeed. This reasoning completes our proof. 

In order to evaluate the diagonal part of a given operator it is also neces- 
sary to know the square of the different basis vectors eg. We have already 
shown that <Hkef) = 0 for k < j - 1, so it immediately follows that 

<eT> = G3i-l9i, i= 1,2,...rc, 

in which expressions the L3t are given by 

<I> <H> (Hz) . . . <He--l> 

<H> <H2> <H3> . . . <Hi> 

<Hz> <H3> <H4> . . . <H”+l> 

<Ht-1) <tit> <Ht+l> . . . < H2{-2> 

(3) 

, i> 1;90= 1. (4) 
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Now as a consequence of the completeness of the set I, H, . . . Hn-1 the 
diagonal part of an operator B can be written in the form 

n <Bed 
Bdiag = JY 2 86, 

i=l <ei> 

in which formula the inner product <Bet> of a diagonal operator and one 
that is in general nondiagonal, is also defined by formula (1). Also in this 
case we have <Bet> = <eiB>. In the statistical problems we mentioned in the 
introduction, the fluctuation of a quantity Bdi, e.g., the fluctuation of the 
diagonal part of the magnetization of a system, is of great interest and for 
this fluctuation we may write down a series expansion on the basis of (5) 

B - 
n <Bed 

diag <B> = c, 
n <Bed2 

~ er, <(Bd’*g - <B))‘+ = C 
i=2 <ez> i=a <eiz>’ (6) 

In the next section we shall prove that the right-hand side of the second 
formula is a series expansion in l/N, N being the total number of particles 
in the system. This second formula is relevant for the problem of the e- 
quivalence of the isolated and adiabatic susceptibilities: for B = M the 
left-hand side corresponds with KT(xe - ~1~) and the right -hand side with 
RT(xe - xs), apart from terms of lower order then O(N)J. The symbols ~0, 
xrs and xs, respectively, denote the isothermal, isolated and adiabatic suscep- 
tibility. As will be stated in more detail in the next section, for nonergodic 
systems (1 /I?) times the series expansion in the second formula of (6) will 
diverge for N + co; as a consequence of N + co we have n(N) + co. 

3. Cluster expansion for large systems. Now we want to evaluate the 
determinants Qi, given in formula (4), and the inner products 

<B> <BH> . . . <BHi-1) 
<I) 

(Bet> = : 
<H> . . . <Hz> 

. ) i = 1, 2, . . . 92. (7) 

<I&2> <r&-l> <H2i-3) 

We are interested in large systems and in the corresponding asymptotic ex- 
pressions for 9i and <Bei>. For that reason we make a cluster expansion of 
the quantities <HZ> and <BHZ>, and this is possible for large systems that 
show an ideal periodicity (periodic boundary conditions) or for which the 
boundary layers only contain a small fraction of the total number of con- 
stituents. We have restricted ourselves to systems with a finite number of 
states n, corresponding with a finite number per constituent i.e. atoms, 
molecules etc. In the case of magnetic spins S this number equals 2s + 1. 

The total hamiltonian of the system may be written as a sum of terms 

H = Efb, 
i (8) 
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corresponding with the unit cells of the lattice, which may contain a number 
of different constituents. The Hi also contains the corresponding interactions 
in the cell and half of its interactions with the surroundings. Formula (8) 
expresses the translational symmetry apart from small corrections for the 
Ht of the boundary layers. 

For all realistic physical situations we have (Hi) = O( 1) and for the 
greater part of the system this thermal average does not depend on i. So 
it is possible to introduce the symbol Cr for the smallest possible cluster 

<H> = 2 <Hi> = Cl, cr = B(N). (9) 
i 

The average value <Hz> is a double sum and we may distinguish between 
terms corresponding with neighbouring cells and with cells far apart. So 
one may understand that (Hz) - <H)z is also of the order of the number 
of particles and we write 

<Hz> = C; + Cz, cz = O(N). (10) 

A cluster expansion for <Hk> may be determined by evaluating the number 
of ways k factors Hi can be arranged in clusters, corresponding with neigh- 
bouring cells. Doing so one arrives at the following general expression, 
making use of the cumulant expansion methodlo) 

(‘1) 

Analogous expressions can be found for the quantities <BHk>, but now one 
has to introduce the additional symbols D, corresponding with a cluster of 
one factor Bt and m - 1 factors Hf. One has to bear in mind that also 
B = Ct Bt is a sum of terms, one for each cell. The cluster expansion for 
<BHk) takes the form 

k+l D 

<BHk)-k! 2 m 
m=l (m - l)!-,+l_m c ,~~h+,_,,rf nz! jl!)” cz”“J 

j-1 
Dm = O(N), (12) 

or 

<BHk> = i (k) Dm+l<Hk-m>. (13) 
m=O 

On the basis of the formulas (1 l), (12) and (13) we now want to determine 
the order of magnitude of 9t and <Be%>, as given in (4) and (7) respectively. 

We want to prove first two rather simple lemmas, which result in the 
statement that the series expansion in the second formula of (6) does not 
depend on Cr and D1. 
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Lemma I. The vector spaces spanned by the different sets I, H, Hz, . . . 
Hi-l, i = 1, 2, . . . . 1z, do not depend on the value of <H>, i.e. if a constant is 
added to the hamiltonian, this does not effect the different spaces. As a 
consequence 9% and <Bet> are independent of Cl. 

Proof: It is obvious that the sets I, H + C, . . . . (H + C)i-1, i = 1, 2, . . . . 

n, are bases of vector spaces that are independent of C, C being a real constant, 
because (H + C)j is simply a linear combination of all powers Hs, s = 0, 
1 1 ... j. Therefore the orthogonalized powers of H, the basis vectors ei, should 
be independent of a constant added to the hamiltonian and thus independent 
of <H> = Cl. 9i may be expressed in terms of inner products of the ei and 
so these determinants cannot depend on Cl. For the <Bei> it is immediately 
clear that they are independent of Ci. 

Lemma II. The inner products <Be*> are independent of Di for i 2 2. 

Proof : The coefficient of Di in the first row of the determinant in (7) are 
given respectively by <I>, <H>, . . . <Hi-l), as follows from formula (13). 
These coefficients equal the corresponding elements of the second row, so 
one immediately sees that <Bei> is independent of Di. It is clear that one 
has to except the case i = 1 for which <Bei> = <B> = D1. 
Combining both lemmas with formula (6) one may state that <(Bdiag - <B))2) 
is independent of Cl and D 1. In addition to these lemmas we want to derive 
some further properties of <Hk> and <BHk>, properties based on the gener- 
ating function for <Hk> 

(Hk> = <H”(C)> = 

= [(~)XexpW]t=oa 

G(t) = J$: ii, 

<Hk(-c)> = [($>” exp-G(t)]tzo. 

(14 

(15) 

(16) 

In (16) <Hk( -C)> is introduced as a shorthand notation for the series (11) 
in which all Cl are replaced by the corresponding -Cl. For the sake of 
clearness we write <Hk(C)> instead of <Hk) when it figures in a formula 
together with one of the <Hz(-C)). 

On the basis of the formulas (14)) (15) and (16) one easily proves a number 
of relations for the <Hk> and <BHk>, which will be given in the following 
lines. Mathematical details of the demonstration can be found in appendix 1. 

k 

(1) tzo(F) <HY-C)XH~-W) = 0, k2 1, 
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(II) 

k-l 

izO (ki’) <H”(-c)x~yq> = Ck, k> 1, 

WI) 

k-l 

2 (k;l)<Hy-c)><BHk+yC)> = Dk, k> 1, (1 
i=O 

‘1 

m-l j-1 

(IV) fm,r = CI k=O ~~o(?nk~)(ft~)~H~(-C)~<H~(-C)~<H~+I-2-L_1(C)~ 

= ~(jpinbn-l,i-l)), 

(V) f,,j - (j - l)! ci,-1. 

As the most important result of our analysis we now derive the order of 
magnitude of G3i and <Bet), making use of formulas (I) to (V) and of well- 
known properties of determinants 

= le,,g = C (mi1)<Hk(-C)><H’n+i-2-k(C))I 
k=O 

m-1 j-1 

= Ifm,l = C C (m~1)(ij1)<Hk(-C))<H~(-C)><H”++2-k-E(C) 
k=O f=O 

N jltlf*.l 
i-l i-l 

-$y cl, = @i-l) n j! = @(N”i(i-l)), i 2 1. (18) 
j=l 

<Bed = 
al,j = (BHi-l>; 1 I j I i 

am,j = <H “+i-3);2gm(i, 1 <i<i 

bl,j = <BHj-1 ) - (B)(Hj-I>; 1 I j I i 

= m-2 
b m,j =k~o(“r2)<Hk(-W<H m+i-3-k(C)); 25 m g i, 1 I j I i 

j-1 

c~,~ = C (i~l)(H~(-C)>[<BHi-‘-z(C))-(B><Hi-l-z(C)>] 
z=o = 
m-2 f-1 

C - c m,? - c (“i2)(ii1)<Hk( - C))(Hl( -C)) (H”+i-3-k-z(C)> 
k=O l=O 

0 D2 D3 . . . . . . Di 
1 0 0 *.. . . . 0 

0 c2 c3 . . . . . . C1 

0 c3 i-‘----‘-----------------------------------..----------..-.--------------....------------....------------- ....... 

0 c4 i c,,, = fm_l,j = qjpn(m-2,i--1)) 

= 0(~1+1+2+3+...i-2) = q~f’i”-3i+4’), i 2 2. (19) 
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This formula turns out to be correct also for i = 1 

<Bea> = (B> = D1 = B(N). PO) 

The formulas (18), (19) and (20) immediately give us the order of magnitude 
of the terms in the right-hand side of the second formula in (6) 

<Bet>2 <Bei> 
-- = 

<ef> 9i-lCSt 

= 8(Ni”-3i+4-l(i-l)(i-2)-li(i-l)) = qN-i+3)_ 
(21) 

As a consequence of (21) we are induced to replace the right-hand side of the 
second formula of (6), a sum of n terms of increasing order in 1 /N, by its 
first term and then find 

<f&k* - <B>)2> = 
[<BH> - <B><ff>12 

<H2> - <m2 
+ O(l), 

lb-n $ <(B,,,, - 
N-+= 

<B>)s> = lim x0 i ” , 
N-K=0 

(24 

(23) 

making use of formula (6) of Broer l.c. We know, however, that this result 
is incorrect for most modelsl-s), and that the left-hand side of (23) equals 
limN4_ (~0 - &/N in all cases. The only possible conclusion is that the 

other terms in the sum Cyc2 <Bei)z/<t$> together, give a contribution that 
is also of the order O(N) for these models. This is reasonable because of the 
fact that the number of levels n = n(N) is a rapidly increasing function of N, 
in general of the form aN, a being a natural number. In addition to thisone 
cannot be sure of the orders of magnitude given in (18) and (19) for i of the 
order of n because of the very large number of terms contributing to gi and 
<Bet>. On the other hand we known that gm = 0 for the case of one or more 
degeneracies and also en = 0 in this case, and (18) and (19) give the wrong 
order of magnitude also here. 

Those exceptional models for which (23) is correct may be called ergodic; 
they give the thermodynamical result. For these systems one may replace 
the series in (6) by the leading part of its first term. 

We close this section by giving two examples of typical nonergodic 
systems for which it is easy to demonstrate that (22) and (23) are incorrect. 

Example I. Systems composed of a number of uncoupled 
subsystems. We suppose that the different subsystems all have the same 
periodicity and consequently contain a number of particles that is of the 
order of N, the total number. For all the individual subsystems we may 
construct a basis as given in (2). If we call these bases ejk’, k = 1, 2, . . . s 
numbering the different subsystems, a basis for the composed system is 
given by the set of all possible products ej,” e$f) . . . et). 

Now we make the supposition that all subsystems individually are ergodic 
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and then we may write 

s <Beik'>2 
<(Bdiag - <B>)2> - x 

k=l <eik”> ’ 

all terms in the right-hand side of (24) being of the order N. The ep) corre- 
spond with the hamiltonians of the (uncoupled) subsystems H(k), 

H = c H(k), ep’ zz <H(W) - H(k). 
k 

(24) 

In most cases B is a sum of terms for the individual subsystems 

B = x B(k), <Beik)> = (B(k)e(2k)). 
k 

In general one has 

<Be& ( c <Beik)>2 

<e3 k <eikj2> ’ 
e2 = C eik’, 

k 

because of the invariance for an orthogonal transformation of the right- 
hand side of the inequality; e2 is just one single linear combination of the 
e(zk). From (24) and (25) it immediately follows that these composed systems 
are generally nonergodic. A necessary and sufficient condition for ergodicity 
in this case can easily be formulated if we introduce the symbols 

<Betk’> = xk , <eikj2> = ak > 0. (26) 

Now the condition is 

(2 Xk)2/c ak = c $/ak or xkbk = c, (27) 
k k k 

c being independent of k. 

Example II. The X-Ymodel. In examples like the X-Ymodel, or the 
ferromagnet and the antiferromagnet in the spinwave approximation, we 
are able to indicate a set of N diagonal operators corresponding with different 
modes k = 1, 2 . . . . N. 

In the X-Ymodel all modes give a contribution to <(B,iap - B)2> of the 
order 1, for B = MZ, the z component of the total magnetization. We shall 
discuss this model in more detail, on the basis of the analysis made by 
Niemeijer 8) and Mazur 1). 

The N diagonal operators in this example correspond with the N different 
fermion modes, all reflecting the full translational symmetry. All modes 
together give a total contribution of order O(N) as follows from Mazur’s 
analysis in section 4 of his paper 

<t”adiag - <illz>)2> = C <M,e~k’>2/<e&k’2> = O(N), 
k 

ep’ = !f%k - <mk>, k = 1 . . . N. (28) 
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One would expect that all individual modes generate a set analogous to the 
one of formula (2), but taking into account that the operators nk are idem- 
potent i.e. 92: = nk, one sees that the higher powers do not give independent 
diagonal operators. The crossterms (?zzkl - <?zkl>)(nZka - <nk,>), hi # Kz; 

(% - %)) (%a - W,>) (f% - (n,~), klkzk3 f, etc. do not give a contri- 
bution, iWZdiag being a linear combination of the Sk, which are orthogonal 
to all crossproducts. One immediately sees that the operators I, ei’) k = 1, 2, 
. . . N, combined with all crossproducts constitute a basis, their total number 
being xE0 (p) = 2N = n. 

If we had taken a series of orthogonalized powers of H as our basic set 
et, and if we had used formula (21) and restricted ourselves to ez, we would 
have found the wrong value for lim,,, < (lMSdiag-- <M,))2)/N as follows from 
Mazur’s analysis, or in other words Xis # xs. Here an inequality of the type 
(25) plays a role. In appendix 2 we give a necessary and sufficient condition 
for the exact equivalence of xiS and 2s for models like the X-Ymodel, for 
which the total hamiltonian may be written as a sum of mutually in- 
dependent terms, which are functions of a parameter h. 

4. Nonergodicity and Eevel crossing. In most practical examples for which 
the diagonal part of an operator B has to be determined, the hamiltonian of 
the system contains a term corresponding with the coupling of B with an 
external field A : H = A + hB. The traditional example, with a finite number 
of states n, is the system of magnetic spins or dipoles with interaction. In a 
papers) devoted to the discussion of the difference of xs and xis the author 
introduced the noncrossing hypothesis in order to prove the ergodicity, or 
the asymptotic equivalence of x is and xs. Now we have found a more 
refined criterion, being the convergence of an infinite series, but we still 
believe that the noncrossing hypothesis has an intimate connection with the 
convergence or divergence of this series. 

In a recent paper-T) the author showed that crossings gave the possibility 
to transform the basis et = (A + hB)i-1, i = 1, . . ., n, into a basis that also 
consists of polynomials in h, but some being of a degree that is lower than the 
one of the corresponding et. Composite systems having uncoupled parts are 
typical examples for which level crossings can be connected with the ex- 
istence of nontrivial constants of motion, corresponding with the hamil- 
tonians of these parts. The nonergodicity of these systems was discussed 
at length in the preceding section. One should remark that for large systems 
only a large number of crossings may result in such a reduction of the basis 
that there appear additional constants of motion of the type discussed in 
the preceding section. 

For the hamiltonian H = A + hB the expectation value of B for an 
eigenstate corresponds with the slope of the energy eigenvalue as a function 
of h. In the case of ergodic systems this slope is a (quasi) continuous function 
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of the energy, in other words the fluctuations of higher order in the energy 
do not contribute to the fluctuations in the slope, as is reflected in (21). One 
also understands that a large fluctuation of the slope results in a large number 
of crossings. There are systems, however, that have a large number of level 
crossings, e.g. an odd number of spins 3 with interaction for which all 
levels are Kramers-degenerate for h = 0, but the levels may still have a 
quasi-continuous slope, because the Kramers degeneracy is expected to be 
the only possible cause of crossing. As a rough estimate one may expect non- 
ergodic behaviour only for a number of crossings of the order 4. 

Valkerings) recently developed a general algebraic criterion in terms of 
the properties of A and B, for the existence of level crossings. His work is 
based on the analysis in ref. 7. This criterion may be applied to systems of 
such a number of levels that actual numerical calculation of the energy 
eigenvalues for a range of h values does not seem possible. Especially for 
larger systems knowledge of the maximum number of level crossings is 
very interesting from the point of view of ergodic theory. 

5. Uniform convergence and ergodicity. In formula (6) we have found a 
series expansion for the fluctuation of the diagonal part of the operator B 

P? 

in which every term can be written as an asymptotic expression in 1 /N after 
substitution of (18) and ( 19). 

For a given set of systems, e.g. linear chains of N spins with short-range 
interactions, N = 1, 2, 3 . . ., the limit for N + co of every term in the series 
may exist. Then a series expansion for every individual term may be found, 
which gives the correct value for every discrete N with n(N) 2 i 

1 (Bet>2 1 ai, I 

-<ei2>- 

_- 
N Ni-2 

ai,0 + N +s +... 

> 
, n(N)>i22, (30) 

=o , n(N) < i. 

This series expansion defines an analytic function in the open domain 1.~1 < 1 

f&) = z(-~ (at,0 + ar,lz + ai,2 z2 + . ..). 

(31) 

f@) = &2a2,0. 

It may happen that there is degeneracy for a discrete value of h, i.e. a level 
crossing for h = ho. Then there will be one or more eg(ho) = 0. The values 
of <Bet>z/<eI> (h = ho) for these er may be defined by the proper limit h -+ ho. 
Now the property of ergodicity may be derived from the possible uniform 
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convergence of the series XT=*=, f&) on a discrete set 

1 1 1 1 
,r=-=-----, 

N NO No + 1 ’ No + 2 ’ ‘-‘* 

including 1 /N = 0 (N = 00). 
For the case that there is uniform convergence and that the terms are 

analytic we can state that : 

For every positive E we can find a positive integer no, independent of N, 
so that for n > no 

< E. (32) 

Taking the limit N + 00 in (32) or substituting z = l/N = 0 we find 

IF(O) - /z(O)1 < E or kT lim ‘a i xis - lim X0 i ” < E, 
N-too N-KU 

which implies 

lim ” - x’s = 0 
N-W N . 

The uniform convergence results in conditions for the quantities CZ, Di 
introduced in section 3. It can be shown with formula (19) that all <Beg> are 
linear conbinations of the determinantal forms CiD5 - CjDi, with coeffi- 
cients that only depend on the Ck. All specific information about a particular 
system is contained in the value of the Ci and Di. 

APPENDIX 1 

Sum rules for <Hi) and <BHi>. The derivation of the formulas (17) : I to 
V of section 3 is based on the properties of the generating functions 

exp G(t) and exp --G(t), 

introduced in (14)) (1.5) and (16). 

(I) ;; (i”) <H2(-C)><Hk-a(C)> 
i=O 

t=o 
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(II) 

k-l 

2 (ki’) <H”(-C))<Hk-i(C)) 

i=O 

= & Ic G(t) 0 I = Ck, k> 1. 
t=o 

if1 i+1 

(III) <BHi>=i! C 
Dm 

(Hi+l-m) 

m=l (m - l)! (i + 1 -m)! 
= Zl(m!_l) Dm<Hi”-“>, 

k-l 

,Fo (“i’) <Hi(-C)><BHk-l-i(C)> 

k-l k-i 

= c c (k;‘)(k&Lii) Dm<Hi(-C))<Hk-i-m(C)), 
i=O m=l 

k-l k-i k k-m 

c c . . . = c x . . ., 

i=o m=l m=l i=o 

k-l 

(ki’) (kL?T-Ti) = (ki”) g&L;), 

<zO (“;I) <Hi(-C)><BHk-l--i(C)> 

k k-m 

= c x (k;“)(z:;) Dm<Hi(-C)><Hk-i-“(C)) 
m=l i=O 

= i &k(,kI:) Dm = Dk, k> 1. 
m=l 

x exp[-G(h) - G(h) + G(k41tl=t2=t3=o~ 

t1 = x, t2 = y, t3 = x + y + 2; 

frn,,j = (+J’($)- exp[--G(x) --G(y) + G(x + Y + z)I,=~=~=o 

-G(y)+G’(x)y+G”(x) ; +... 
1 z=y=o 

= (i--l (ky-‘exp[ -G(0)+nCl Gck,(z~~ G(k)(o) ykb=g=o 
= u(Nmin(m-Li-1)). 
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+c)“(~)“’ exp Csxy = (j - 1) ! Ci,-l. 

APPENDIX 2 

M zdiag for the X-Ymodel. In the X-Ymodel the hamiltonian in terms of 
fermion variables, apart from a constant, takes the formivs) 

H = ; &nk, (A2.1) 
k=l 

k corresponding with the different modes. Again two basis vectors of the 
space of diagonal operators are given by 

ei = 1, e2 = H - <H> = ; Ak(gk - <nk>), (A2.2) 
k=l 

and we are interested in the contribution of ea to 

Msdiag - <M,> = C Mk(nZk - <fik>), Mk = -a&/ab, h= -b 
k (A2.3) 

b corresponds to the external magnetic fieldips). From (A2.2) and (A2.3) it 
follows that 

G+L%ag - <Mz>)2> = c Mf(<nk> - <nk>2), <n$ = <%k), (A2.4) 
k 

[c MkAk(<mk) - <rtk>2)]2 
<Med2 k 

c &<ak> - <nk>2) . 
k 

For the exact equivalence of xis and 2s we should have 

[c Mknk(<nk) - <nk)2)]2 

2 M;(<nk> - <nkj2) = 
k 

k 2 &(<nk> - <nk>2) ’ 
h! 

(A2.5) 

(A2.6) 

which identity implies &fk = C&, C being a constant independent of k. 
This constant, however, should be a function of b, the magnetic field and 
taking into account the second formula in (A2.3), we find the following 
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expression for the logarithmic derivative of the (fk 

aAk 
Y$- I Ak = --C(b), (A2.7) 

which gives after integration 

Ak = ckF(b), F(b) = exp - j C(b) db. (A2.8) 

The actual integration of the equations of motion for the X-Ymodel does 

not lead to elementary excitations of the type (A2.8), but we already knew 

that this model is not ergodic. For such a model, however, with a hamiltonian 
that can be written in the form (A2.1) the greater part of the elementary 

excitations should asymptotically, be given by (A2.8). As follows from 
the analysis in section 1.4.A of ref. 2 F(b) should have the form 

F(b) = (a + CP)&, 

for this case. 

(A2.9) 
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