### ON MAXIMUM CRITICALLY h-CONNECTED GRAPHS

## H.J. KROL and H.J. VELDMAN

Department of Applied Mathematics, Twente University of Technology, Enschede, The Netherlands

Received 13 February 1984 Revised 30 May 1984

Let h be an integer with  $h \ge 2$ . A graph G is called critically h-connected or h-critical if G is h-connected while, for every vertex v of G, the graph G - v is not h-connected.  $\mathscr C$  denotes the class of all h-critical graphs and  $\mathscr A$  the class of all graphs of  $\mathscr C$  in which every vertex is adjacent to a vertex of degree h.  $\mathscr C$  and  $\mathscr A$  are the classes of maximum graphs in  $\mathscr C$  and  $\mathscr A$ , respectively. Entringer's characterization of  $\mathscr C$  for h=2 shows that  $\mathscr C \neq \mathscr A$  in case h=2. Here  $\mathscr A$  is determined for each  $h \ge 2$ . Then it is shown that  $\mathscr C = \mathscr A$  for e and it is conjectured that  $\mathscr C = \mathscr A$  for each e 3.

## **Terminology**

We use [2] for basic terminology and notations, but speak of vertices and edges instead of points and lines. Accordingly we denote the edge set of a graph G by E(G).

If G is a connected graph, then by a cut of G we mean a set of vertices of G whose deletion results in a disconnected graph. If  $T_1$  and  $T_2$  are cuts of G, then  $T_1$  interferes with  $T_2$  if at least two components of  $G-T_1$  contain vertices of  $T_2$ . An h-cut is a cut of h elements. A vertex v of G is critical if  $\kappa(G-v) < \kappa(G)$ . G is called critically h-connected, or briefly h-critical, if  $\kappa(G) = h$  and every vertex of G is critical.

If  $\mathcal{G}$  is a class of graphs, then the elements of  $\mathcal{G}$  are called  $\mathcal{G}$ -graphs. The set of graphs in  $\mathcal{G}$  with n vertices is denoted by  $\mathcal{G}_n$ . G is a maximum  $\mathcal{G}$ -graph if no  $\mathcal{G}$ -graph with |V(G)| vertices has more edges than G. The set of maximum  $\mathcal{G}$ -graphs is denoted by  $\hat{\mathcal{G}}$ ,  $\mu_{\mathcal{G}}(n)$  is the number of edges of graphs in  $\hat{\mathcal{G}}_n$ .

Let h be a fixed integer with  $h \ge 2$ . By  $\mathscr C$  we denote the set of all h-critical graphs.  $\mathscr A$  is the subset of  $\mathscr C$  consisting of all h-connected graphs in which every vertex is adjacent to a vertex of degree h. The set  $\mathscr B$  is defined by  $\mathscr B = \mathscr C - \mathscr A$ . For a graph G,  $M(G) = \{v \in V(G) \mid \deg_G v = h\}$ , K(G) = V(G) - M(G),  $\rho(G) = \sum_{v \in M(G)} \deg_{(M(G))} v$  and B(G) is the set of edges of G with one end in K(G) and the other in M(G). For the sake of notational simplicity we have chosen not to express the fact that the above notions depend on h; unless h is specified, propositions involving the relevant notions will hold for each  $h \ge 2$ .

We use [x] to denote the greatest integer less than or equal to x.

### 1. Introduction

Entringer [1] characterized  $\hat{\mathcal{C}}_n$ -graphs for h=2 and  $n \ge 3$ . In the proof of his characterization, which is by induction on n, he uses an upper bound for  $\mu_{sd}(n)$  [1, Lemma 2]. It appears that, for h=2, there are infinitely many  $\hat{\mathcal{C}}$ -graphs which are not  $\hat{\mathcal{A}}$ -graphs.

Here we first determine  $\hat{\mathcal{A}}$  for each  $h \ge 2$  (Section 2). Then for h = 3 it is proved, also by induction on n, that  $\mu_{\hat{\mathcal{A}}}(n) < \mu_{\hat{\mathcal{A}}}(n)$  for all n, so that, in consequence,  $\hat{\mathcal{C}} = \hat{\mathcal{A}}$  (Section 3). Finally it is conjectured that  $\hat{\mathcal{C}} = \hat{\mathcal{A}}$  for each  $h \ge 3$  (Section 4).

# 2. Characterization of $\hat{A}$ -graphs

Throughout this section h will be a fixed integer with  $h \ge 2$ .

Noting that no h-connected graph with less than h+1 vertices exists, we first determine  $\hat{\mathcal{A}}_n$  for  $h+1 \le n \le 2h$ . Define, for  $h+1 \le n \le 2h$ , the graph  $H_n$  as follows:

- (a)  $V(H_n) = \{v_1, v_2, \ldots, v_n\};$
- (b)  $N(v_1) = \{v_2, v_3, \ldots, v_{h+1}\};$
- (c)  $N(v_2) = \{v_1, v_{n-h+2}, v_{n-h+3}, \dots, v_n\};$
- (d)  $\langle v_3, v_4, \ldots, v_n \rangle$  is complete.
- clearly, H. ∈ A...

**Lemma 1.** If  $h+1 \le n \le 2h$ , then  $\mu_{sd}(n) = \frac{1}{2}(n^2 - 5n + 4h + 4)$  and  $\hat{\mathcal{A}}_n = \{H_n\}$ .

**Proof.** Let G be an  $\mathcal{A}_n$ -graph with  $h+1 \le n \le 2h$ . Then G contains, by definition of  $\mathcal{A}$ , two adjacent vertices  $v_1$  and  $v_2$  with deg  $v_1 = \deg v_2 = h$ . Hence

$$|E(G)| = 2h - 1 + |E(G - \{v_1, v_2\})|$$

$$\leq 2h - 1 + {n - 2 \choose 2} = \frac{1}{2}(n^2 - 5n + 4h + 4).$$
(1)

Suppose equality holds in (1). Then  $G - \{v_1, v_2\}$  is complete; furthermore, since G is h-complete and every vertex of G is adjacent to a vertex of degree h, one easily deduces that  $N(v_1) \cup N(v_2) = V(G)$ . These properties determine G up to isomorphism:  $G \cong H_n$ .  $\square$ 

We proceed by deriving (for  $n \ge 2h + 1$ ) an upper bound for the number of edges of an  $\mathcal{A}_n$ -graph G in case |K(G)| has a prescribed value. Let the function  $f_n$  be defined by

$$f_n(x) = \frac{1}{2}(x^2 - 2nx + (2h - 1)n).$$

**Lemma** 2. Let G be an  $\mathcal{A}_n$ -graph with |K(G)| = k. Then  $|E(G)| \le f_n(k)$ . Moreover, if  $n \ge 2h + 1$  and  $k \le h - 1$ , then  $|E(G)| \le f_n(h) - 1$  unless h = 2 and n = 5.

**Proof.** Let G be an  $\mathcal{A}_n$ -graph with |K(G)| = k. Then

$$|E(G)| = |E(\langle K(G)\rangle)| + |E(\langle M(G)\rangle)| + |B(G)|$$

$$\leq {k \choose 2} + \frac{1}{2}\rho(G) + \sum_{v \in M(G)} (h - \deg_{(M(G))}v)$$

$$= \frac{1}{2}k(k-1) + h(n-k) - \frac{1}{2}\rho(G). \tag{2}$$

Since  $G \in \mathcal{A}$ ,  $\rho(G) \ge |M(G)| = n - k$ . Thus

$$|E(G)| \leq \frac{1}{2}k(k-1) + h(n-k) - \frac{1}{2}(n-k) = f_n(k),$$

proving the first part of the lemma.

Now let  $n \ge 2h + 1$  and assume first that  $k \le h - 2$ . Then

$$|E(G)| = \frac{1}{2} \left( \sum_{v \in K(G)} \deg_{G} v + \sum_{v \in M(G)} \deg_{G} v \right)$$

$$\leq \frac{1}{2} (k(n-1) + h(n-k)) = \frac{1}{2} ((n-1-h)k + hn)$$

$$\leq \frac{1}{2} ((n-1-h)(h-2) + hn) = f_{n}(h) - \frac{1}{2} (n-h-2)$$

$$\leq f_{n}(h) - 1 \quad \text{unless } h = 2 \text{ and } n = 5.$$

Assume next that k = h - 1 (and  $n \ge 2h + 1$ ). Then, since G is h-connected, G - K(G) is connected, implying that  $|E(\langle M(G)\rangle)| \ge |V(\langle M(G)\rangle)| - 1$ , or, equivalently,  $\rho(G) \ge 2(n - h)$ . From (2) we deduce that

$$|E(G)| \leq \frac{1}{2}(h-1)(h-2) + h(n-h+1) - (n-h)$$

$$= f_n(h) - \frac{1}{2}(n-h-2)$$

$$\leq f_n(h) - 1 \quad \text{unless } h = 2 \text{ and } n = 5. \quad \Box$$

In the following lemma an upper bound for the cardinality of |K(G)| in an  $\mathcal{A}_n$ -graph G is obtained. Define

$$k_n = \begin{cases} \left[\frac{h-1}{h}n\right] & \text{if } n \neq h \bmod 2h, \\ \frac{h-1}{h}n-1 & \text{if } n \equiv h \bmod 2h. \end{cases}$$

**Lemma 3.** If G is an  $\mathcal{A}_n$ -graph, then  $|K(G)| \leq k_n$ .

**Proof.** Let G be an  $\mathcal{A}_n$ -graph. Every vertex of K(G) has a neighbour in M(G), so

$$|B(G)| \geqslant |K(G)|. \tag{3}$$

On the other hand, every vertex of M(G) has at most h-1 neighbours in K(G), since each vertex of M(G) also has at least one neighbour in M(G). Hence

$$|B(G)| \le (h-1)|M(G)| = (h-1)(n-|K(G)|).$$
 (4)

From (3) and (4) it follows that  $|K(G)| \le (h-1)(n-|K(G)|)$ , or, equivalently,

$$|K(G)| \le \frac{h-1}{h} n. \tag{5}$$

To complete the proof we show that the inequality (5) is strict if  $n = h \mod 2h$ . Assume that n = 2hi + h and (5) holds with equality. Then |M(G)| = 2i + 1. Since (4) also holds with equality, the graph  $\langle M(G) \rangle$  is regular of degree 1, implying that |M(G)| is even, a contradiction.  $\square$ 

Lemmas 2 and 3 enable us to determine an upper bound for  $\mu_{st}(n)$  in case  $n \ge 2h + 1$ . Define

$$a(n) = [f_n(k_n)].$$

**Lemma 4.** Let G be an  $\mathcal{A}_n$ -graph such that  $n \ge 2h + 1$  and either  $h \ne 2$  or  $n \ne 5$ . Then  $|E(G)| \le a(n)$ . Moreover, unless h = 3 and n = 7, |E(G)| = a(n) only if  $|K(G)| = k_n$ ; if h = 3 and n = 7, then |E(G)| = a(n) only if  $|K(G)| \in \{k_n - 1, k_n\}$ .

**Proof.** Let G satisfy the conditions of the lemma. For x > h,  $f_n(x)$  is an increasing function of x. Since  $n \ge 2h + 1$ ,  $k_n \ge h$ . By using Lemmas 2 and 3 it follows that

$$|E(G)| \leq [f_{-}(k_{-})]$$

and, if  $k_n = h$ ,

$$|E(G)| = [f_n(k_n)]$$
 only if  $|K(G)| = k_n$ .

Now assume  $k_n \ge h+1$ . For every x we have

$$f_n(x)-f_n(x-1)=x-h-\frac{1}{2}$$

implying that  $[f_n(k_n)] = [f_n(k_n - 1)]$  if and only if  $k_n = h + 1$  and  $f_n(k_n)$  is not integer-valued, i.e., if and only if h = 3 and n = 7, as is easily checked. The result follows.  $\square$ 

We finally show that  $\mu_{\mathcal{A}}(n) = a(n)$  for all  $n \ge h + 1$  and characterize  $\hat{\mathcal{A}}$ . Let  $T_7 = T_7$  be the graphs depicted in Fig. 1 and define a class  $\mathcal{H}$  of graphs





Fig. 1.



by the assertion that a graph G with n vertices belongs to  $\mathcal{H}$  if and only if the following requirements are met:

- (i)  $n \ge 2h + 1$ ;
- (ii)  $|K(G)| = k_n$  and  $\langle K(G) \rangle$  is complete;
- (iii) if  $n-k_n$  is even, then  $\langle M(G)\rangle \cong \frac{1}{2}(n-k_n)P_2$ ; if  $n-k_n$  is odd, then  $\langle M(G)\rangle \cong P_3 \cup \frac{1}{2}(n-k_n-3)P_2$ ;
  - (iv) every vertex of K(G) is incident with at least one edge of B(G);
- (v) if  $v_1$  and  $v_2$  are the vertices of a component of  $\langle M(G) \rangle$  isomorphic to  $P_2$ , then  $|(N(v_1) \cup N(v_2)) \cap K(G)| \ge h$ .

Note that  $\mathcal{H}_n = \emptyset$  if h = 2 and n = 5; if  $h \neq 2$  or  $n \neq 5$ , then  $\mathcal{H}_n \neq \emptyset$  for all  $n \geq 2h+1$ . In Fig. 2 an element of  $\mathcal{H}_{2hi+j}$  is sketched for h = 3 and  $j \in \{1, 2, ..., 2h\}$ ; i is an arbitrary positive integer.

For h=2  $\mathcal{H}_n$ -graphs are unique up to isomorphism unless  $n\equiv 2 \mod 4$  and  $n\neq 6$ . For  $h\geqslant 3$   $\mathcal{H}_n$ -graphs are unique up to isomorphism if and only if  $n\equiv 0 \mod 2h$  or  $n\equiv (h-1) \mod 2h$ . For relevant values of h and n, nonisomorphic  $\mathcal{H}_n$ -graphs can be obtained from one another by repeatedly applying the following operation: find two vertices  $u_1$  and  $u_2$  of degree greater than h such that  $u_1$  has at least two neighbours of degree h,  $v_1$  and  $v_2$  say; replace the edge  $u_1v_1$  by the edge  $u_2v_1$ .

Define

$$\mathcal{H}' = \mathcal{H} \cup \{H_n \mid h+1 \le n \le 2h\}.$$

**Theorem 5.**  $\mu_{sd}(n) = a(n)$  for  $n \ge h+1$  and

$$\hat{\mathcal{A}} = \begin{cases} \mathcal{H}' & \text{if } h \neq 2, 3, \\ \mathcal{H}' \cup \{C_5\} & \text{if } h = 2, \\ \mathcal{H}' \cup \{T_7, T_7'\} & \text{if } h = 3. \end{cases}$$

**Proof.** For  $h+1 \le n \le 2h$  we are through by Lemma 1 and the observation that

$$f_n(k_n) = f_n(n-2) = \frac{1}{2}(n^2 - 5n + 4h + 4).$$

Now let  $n \ge 2h + 1$ . We distinguish three cases.

Case 1.  $(h \neq 2 \text{ or } n \neq 5)$  and  $(h \neq 3 \text{ or } n \neq 7)$ . Then  $\mathcal{H}_n \neq \emptyset$ . Since every  $\mathcal{H}_n$ -graph is an  $\mathcal{A}_n$ -graph with a(n) edges and, by Lemma 4,  $\mu_{sd}(n) \leq a(n)$ , it follows that  $\mu_{sd}(n) = a(n)$ . It remains to be shown that  $\hat{\mathcal{A}}_n \subseteq \mathcal{H}_n$ .

Let G be an  $\mathcal{A}_n$ -graph. Then  $\langle K(G) \rangle$  is complete, otherwise an  $\mathcal{A}_n$ -graph with more edges than G would be obtained by joining two nonadjacent vertices of K(G) by an edge. Now inequality (2) holds with equality:

$$|E(G)| = \frac{1}{2} |K(G)| (|K(G)| - 1) + h(n - |K(G)|) - \frac{1}{2}\rho(G).$$
 (6)

By Lemma 4,  $|K(G)| = k_n$ . Substituting |K(G)| by  $k_n$  and |E(G)| by a(n), one deduces from (6) that  $\rho(G) = n - k_n = |M(G)|$  if  $n - k_n$  is even and  $\rho(G) = n - k_n + 1 = |M(G)| + 1$  if  $n - k_n$  is odd. Since  $\delta(\langle M(G) \rangle) \ge 1$  by definition of  $\mathcal{A}$ , it

follows that  $\langle M(G) \rangle \cong \frac{1}{2}(n-k_n)P_2$  if n is even and  $\langle M(G) \rangle \cong P_3 \cup \frac{1}{2}(n-k_n-3)P_2$  if n is odd. Using the definition of  $\mathscr A$  once more, we conclude that  $G \in \mathscr H_n$ .

Case 2. h=2 and n=5. Clearly,  $C_5$  is the only  $\mathcal{A}$ -graph with five vertices. Hence  $\mu_{st}(5)=5=a(5)$ .

Case 3. h=3 and n=7. By Lemma 4,  $\mu_{\mathcal{A}}(7) \le a(7) = 13$ . All graphs in  $\mathcal{H}_7 \cup \{T_7, T_7'\}$  are  $\mathcal{A}_7$ -graphs with 13 edges. Conversely, suppose G is an  $\mathcal{A}_7$ -graph with 13 edges. By Lemma 4,  $|K(G)| = k_7 = 4$  or  $|K(G)| = k_7 - 1 = 3$ . If |K(G)| = 4, then, like in Case 1,  $G \in \mathcal{H}_7$ . If |K(G)| = 3, then (6) implies that  $\rho(G) = 4 = |M(G)|$ , so that  $\langle M(G) \rangle \cong 2P_2$ . Since  $G \in \mathcal{A}$ , it follows that  $G \cong T_7$  or  $G \cong T_7'$ .  $\square$ 

Theorem 5 contains [1, Lemma 2].

## 3. Characterization of $\hat{\mathcal{C}}$ -graphs for h=3

Assume throughout this section that h = 3. We shall present some evidence for the following result.

**Theorem 6.** 
$$\mu_{\mathscr{C}}(n) = a(n)$$
 for  $n \ge 4$  and  $\hat{\mathscr{C}} = \hat{\mathscr{A}}$ .

Theorem 6 is equivalent to the assertion that  $\mu_{\mathfrak{B}}(n) < a(n)$  for  $n \ge 4$ . It is, however, convenient to prove the following slightly stronger statement.

## Lemma 7.

$$\mu_{\mathfrak{B}}(n) \leq \begin{cases} a(n)-1 & \text{if } n \neq 0 \mod 6, \\ a(n)-2 & \text{if } n \equiv 0 \mod 6. \end{cases}$$

To get an impression of the proof of Lemma 7, which is by induction on n, let G be a  $\mathcal{B}$ -graph. Then G contains a vertex p with  $N(p) \subset K(G)$ . Let S be a 3-cut of G containing p. In the proof several cases with respect to the structure of  $\langle S \rangle$  are distinguished. In each case two smaller  $\mathscr{C}$ -graphs are constructed from G. Thereby an upper bound for |E(G)| is obtained via the induction hypothesis. For the proof in full detail, which is quite long, we refer to [3]. Here we only treat the case that  $\langle S \rangle$  is complete. More precisely, we shall prove the following lemma.

**Lemma 8.** Let G be a  $\mathfrak{B}_n$ -graph which contains a 3-cut  $S = \{p, q_1, q_2\}$  such that  $N(p) \subset K(G)$  and  $\langle S \rangle$  is complete. If, for all m < n,

$$\mu_{\mathfrak{R}}(m) \leq \begin{cases} a(m)-1 & \text{if } m \neq 0 \mod 6, \\ a(m)-2 & \text{if } m \equiv 0 \mod 6, \end{cases}$$

then

$$|E(C)| \leq \begin{cases} a(n)-1 & \text{if } n \neq 0 \mod 6, \\ a(n)-2 & \text{if } n \equiv 0 \mod 6. \end{cases}$$

Before proving Lemma 8 we state four additional lemmas, two of which are adopted from [4].

**Lemma 9** (Veldman [4]). If  $T_1$  and  $T_2$  are distinct minimum cuts of a graph, then  $T_1$  interferes with  $T_2$  if and only if  $T_2$  interferes with  $T_1$ .

The following lemma is a special case of [4, Lemma 1].

**Lemma 10** (Veldman [4]). If v is a vertex of degree 3 in a 3-connected graph G, then N(v) is the only 3-cut of G contained in  $\{v\} \cup N(v)$ .

Lemma 10 is applied in the proof of the next lemma.

**Lemma 11.** If v is a vertex of degree 3 in a  $\mathscr{C}$ -graph, then  $\langle N(v) \rangle$  is not complete.

**Proof.** Let G be a  $\mathscr{C}$ -graph, v a vertex of G of degree 3 and U a 3-cut of G containing v. By Lemma 10, U contains a vertex which is not in  $\{v\} \cup N(v)$ . Hence N(v) interferes with U. By Lemma 9, U also interferes with N(v). In particular, N(v) contains a pair of nonadjacent vertices.  $\square$ 

**Learns 12.** If some vertex of an  $\mathcal{A}_{6k}$ -graph  $G(k \ge 2)$  has at least two neighbours in M(G), then  $|E(G)| \le a(6k) - 2$ .

**Proof.** Let G satisfy the conditions of the lemma. From Lemma 3 and its proof it is apparent that  $|K(G)| \le 4k-1$ . Hence

$$|E(G)| \le {|K(G)| \choose 2} + 3|M(G)| \le \frac{1}{2}(4k - 1)(4k - 2) + 3(2k + 1)$$
$$= 8k^2 + 4 = a(6k) - 3k + 4 \le a(6k) - 2. \quad \Box$$

Although the upper bound in Lemma 12 is far from sharp, it is all we need in the proof of Lemma 8 (and Lemma 7).

**Proof of Lemma 8.** Assume that all conditions of Lemma 8 are satisfied. Let  $\{Q_1, Q_2\}$  be a partition of V(G) - S such that  $\langle C_i \rangle$  is a disjoint union of one or more components of G - S (i = 1, 2). Construct from G the graphs  $G_1$  and  $G_2$  as depicted in Fig. 3. It is easily seen that  $G_1$  and  $G_2$  are 3-connected. Since  $\langle S \rangle$  is complete, no 3-cut of G interferes with S, so that, by Lemma 9, S interferes with no 3-cut of G. Hence if G is a 3-cut of G with G in G in G in G is a 3-cut of G with G in G in G is a 3-cut of G in G



Fig. 3.

 $|E(G_i)| \le a(|V(G_i)|)$  by the conditions of Lemma 8. Looking at Fig. 3 we now deduce that

$$|E(G)| \le |E(G_1)| + |E(G_2)| - 13$$

$$\le a((|Q_1|-2)+7) + a(n-(|Q_1|-2)) - 13$$

$$\le \max_{1 \le x \le (n-8)} \{a(x+7) + a(n-x) - 13\}$$

$$= \max_{1 \le x \le ((n-1)/2) - 3} \{a(x+7) + a(n-x) - 13\}.$$

Let  $\phi_n(x) = a(x+7) + a(n-x) - 13$ . It is easily checked that, if  $1 \le 6i + j \le [(n-1)/2] - 3$ ,  $\phi_n(6i+j)$  is a decreasing function of i for each j with  $0 \le j \le 5$ . Hence

$$|E(G)| \leq \max_{1 \leq x \leq \min\{6, [(n-1)/2]-3\}} \phi_n(x).$$

Straightforward checking yields that, for  $1 \le x \le \min\{6, [(n-1)/2] - 3\}$ ,

$$\phi_n(x) \leq a(n) - 2$$
 if  $n \equiv 0 \mod 6$ ;

furthermore, for  $1 \le x \le \min\{6, \lceil (n-1)/2 \rceil - 3\}$ ,

$$\phi_n(x) \leq a(n) - 1$$
 if  $n \neq 0 \mod 6$ ,

except in three cases. We show that  $|E(G)| \le a(n) - 1$  in each of these cases.

Case 1. 
$$n = 6k + 1$$
,  $x = 1$   $(k \ge 2)$ :  $\phi_{6k+1}(1) = a(6k + 1) + 2$ .

In Fig. 3 there are two analogous possibilities corresponding to x = 1: either  $|V(G_1)| = 8$  and  $|V(G_2)| = 6k$ , or  $|V(G_1)| = 6k$  and  $|V(G_2)| = 8$ . We proceed with the first possibility.  $G_1 \notin \hat{\mathcal{A}}_8$ , since  $K(G_1)$  contains a vertex with two neighbours of degree 3. Since  $\mu_{\mathfrak{B}}(8) \leq a(8) - 1$ , it follows that  $|E(G_1)| \leq a(8) - 1$ . From Lemma 12 and the fact that  $\mu_{\mathfrak{B}}(6k) \leq a(6k) - 2$  we deduce that  $|E(G_2)| \leq a(6k) - 2$ . Thus instead of  $|E(G)| \leq \phi_{6k+1}(1)$  we reach the stronger conclusion that

$$|E(G)| \le \phi_{6k+1}(1) - 3 = a(6k+1) - 1.$$

Case 2. 
$$n = 6k + 1$$
,  $x = 5$   $(k \ge 2)$ :  $\phi_{6k+1}(5) = a(6k+1) - 12k + 26$ .

 $\phi_{6k+1}(5) > a(6k+1)-1$  only if k=2. Then, however, we are back in Case 1, since  $\phi_{13}(5) = \phi_{13}(1)$ .

Case 3. n = 6k+3, x = 1  $(k \ge 1)$ :  $\phi_{6k+3}(1) = a(6k+3)+1$ .

Then in Fig. 3 either  $|V(G_1)| = 8$  and  $|V(G_2)| = 6k + 2$ , or  $|V(G_1)| = 6k + 2$  and  $|V(G_2)| = 8$ . In particular,  $|V(G_i)| = 2 \mod 6$  (i = 1, 2). Since  $K(G_i)$  contains a vertex with two neighbours of degree 3, it follows that  $G_i \notin \hat{\mathcal{A}}$  (i = 1, 2). Thus, in fact,

$$|E(G)| \le \phi_{6k+3}(1) - 2 = a(6k+3) - 1.$$

The proof is completed by verifying the following inequalities:

$$\phi(6k+1,7) \le a(6k+1)-1 \quad (k \ge 3),$$
  
 $\phi(6k+1,11) \le a(6k+1)-1 \quad (k \ge 3),$   
 $\phi(6k+3,7) \le a(6k+3)-1 \quad (k \ge 3).$ 

### 4. Discussion

In Section 3 it appeared that  $\mu_{\mathfrak{A}}(n) < \mu_{\mathfrak{A}}(n)$  for h = 3. For large values of h,  $\hat{\mathcal{A}}_n$ -graphs have a very high edge density. We expect that, for increasing values of h,  $\mu_{\mathfrak{A}}(n)$  will grow more rapidly than  $\mu_{\mathfrak{A}}(n)$ , leading us to the following conjecture.

**Conjecture 13.** For all  $h \ge 3$ ,  $\mu_{\mathscr{C}}(n) = a(n)$   $(n \ge h+1)$  and  $\hat{\mathscr{C}} = \hat{\mathscr{A}}$ .

#### References

- [1] R.C. Entringer, Characterization of maximum critically 2-connected graphs, J. Graph Theory 2 (1978) 319-327.
- [2] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
- 131 H.J. Krol and H.J. Veldman, On maximum critically h-connected graphs, Memorandum No. 455, Lagranger of Applied Mathematics, Twenter University of Technology, Enschede, The Netherlands, 1984.
- [4] H.J. Veldman, Non-κ-critical vertices in graphs, Discrete Math. 44 (1983) 105-110.

Built remarks to the test of the control of