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Let h be an integer with h 2. A graph G is called critically h-connected or h-critical if G is
h-connected while, for every vertex v of G, the graph G —v is not h-connected. € denotes the
class of all h-critical graphs and of the class of all graphs of € in which every vertex is adjacent
to a vertex of degree h. € and s are the classes of maximum grzphs in € and o4, respectively.
Entringer’s characterization of € for h=2 shows that €#s! in case h=2. Here & is
determined for each h=2. Then it is shown that € =< for h =3 and it is conjectured that
@ =4 for each h=3.

Terminology

'We use [2] for basic terminology and notations, but speak of vertices and edges
instead of points and lines. Accordingly we denote the edge set of a graph G by
E(G).

If G is a connected graph, then by a cut of G we mean 2 set of vertices of G
whose deletion results in a disconnected graph. If T, and T, are cuts of G, then
T, interferes with T, if at least two components of G— T, contain vertices of T.
An h-cut is a cut of h elements. A vertex v of G is critical if «<(G—~v)<k(G). G
is called critically h-connected, or briefly h-critical, if «((G)=h and every vertex
of G is critical.

If ¢ is a class of graphs, then the eiements of ¢ are called §-graphs. The set of
graphs in' ¢ with n vertices is denoted by 4,. G is a maximum %$-graph if no
%-graph with |V(G)| vertices has more edges than G. The set of maximum
%-graphs is denoted by €. pg(n) is the number of edges of graphs in %.

Let h be a fixed integer with h=2. By € we denote the set of all h-critical
graphs. o is the subset of € consisting of all h-connected graphs in which every
vertex is adjacent to a vertex of degree h. The set B is defined by B = € — . For
a graph G, M(G)={ve V(G)!deggv=h}, K(G)= V(G)-M(G), p(G)=
Y oem@a) deBacyt and B(G) is the set of edges of G with one end in K(G) and
the other in M(G). For the sake of notational simplicity we have chosen not to
express the fact that the above notions depend on h; unless h is specified,
propositions involving the relevant notions will hold for each h=2.

We use [x] to denote the greatest integer less than or equal to x.
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1. Introduction
Entrmger [1] characterized ¢,-graphs for h =2 and n=3. In the proof of his

isby mduct:on onn, he useskan_ upper bound for p(n) [1,
k=2, there an tely ms ,@i-graphswhxchare

not s?-graphs o

Here we first determine o for each’ h=2 (Section 2). Then for h=3 it is
proved, also by-induction on'n, ‘that jig (7)< 1 (n) for all n; so that, i in consequ-
ence, € =54 (Section 3). Finally it is conjectured that € =s for each h:=3
(Section 4).

mmhﬂonofdwh

'l‘hmughout thnssecuon h wﬂlbeaﬁxed integer with h=>2. ,

Noting that no h-connected graph with less than h+1 vertices exists, we first
determine o, for h+1sn€2h Deﬁne for h+lsns2h, the graph H, as
follows:

(a) V(Hs) = {”h 021 coay vn};

(b) N()={vp, v3,...,0ha}s

(¢} N(v2)={v1, Up-nizs Un-ns3s -5 Vn);

d) (v3.04,...,0,) i oomplete
Clearly, H,re.sd :

Lemma L. If h+1<n<2h, then jig(n)=3n*-5n+4h+4) and &, ={H,}.
Proof. Let G be an f,-graph with h+1<n<2h. Then G contains, by definition
of o, two adjacent vertices v, and v, with deg v, =deg v, = h. Herce

lE(G)l 2h-1+IE(G {v1, vz})l

<2h 1+( ;2) Q(n —-5n+4h+4) 1)

Sappose equahty holds in:(1). Thcn G {1u " Ua} is complete, mrthermore, since G
is h-cus..2~ted and every vertex of G is adjacent to a vertex of degree -h, one
easily deduces that N(v,) U N(v,) = V(G). These properties determine G up to
isomorphism: G‘*’H,. o :

We proceed by denvmg (for naZh+1) -an upper bound for the number of

edges of an £, -graph G in case lK(G)i has a prescnbed value. Let the function f,
be defined by - :

fn(X) -J(x —'2nx+(2h 1)") : :

Lemms .. Let G be an 4, -graph with |K(G)l = k Tl.m lE(G)I$ f,(k) Moreover,
if n=2r+1 and k<h~1, then |\E(G)|<f,(h)—-1 unless h =2 and n=35.
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Proof. Let G be an o, -graph with |K(G)|=k. Then
|E(G)| = [ECK(G))| +|ECM(G))| +|B(G)|

<(3)+1p©@+ T (h-degauoro)

veM(G)
=4k(k —1)+h(1-k)~1p(G). )]
Since G € o, p(G)=|M(G)|=n—k. Thus
|E(@)|<s3k(k--1)+h(n—k)—3n-k)=f,(k),

proving the first part of the leinma.
Now let n=2h+1 and assume first that k <k —2. Then

EG)=Y Y degov+ X degcv)

eK(G) veM(G)
s¥k(n-1)+h(n—k)=4(n-1--h)k+hn)
s3(n—1-h)h—2)+hn)=f,(h)-Hn—h—2)
=<f,(h)—1 unless h=2and n=5.
Assume next that k=h—-1 (and n=2h+1). Then, since G is h-connected,
G - K(G) is connected, implying that |E(M(G)))|=|V((M(G)))| -1, or, equival-
- ently, p(G)=2(n—- k). From (2) we deduce that
IE@G)|<i(h—1)(h—-2)+h(n—h+1)—(n—h)
=fu(h)—3(n—h-2)
<f.(h)—1 unlessh=2and n=5. O

In the following lemma an upper bound for the cardinality of |X(G)| in an
o,.-graph G is obtained. Define

[hgln] if ns h mod 2h,
= h—1

h n—1 if n=h mod 2h.

Lemma 3. If G is an 4, -graph, then |K(G)|<k,.

Proof. Let G be an o, -graph. Every vertex of K(G) has a neighbour in M(G),
)

|B(G)|=|K(G)\. (3)

On the other hand, every vertex of M(G) has at most h —1 neighbours in K(G),
since each vertex of M(G) also has at least one neighbour in M(G). Hence

IB(G)|<(h—1) IM(G)| = (h — D)(n—|K(G)]. (4)
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From A3) and (4) it follows that IK(G)|s(h 1}(n IK(G)I), or, eqmvalenﬂy,

To comple te the proof we show that the meqaahty (ﬁ) is stnct 'if n=h mod 2h.
Assume that n=2hi+h and (5) holds Wlth euuahtv Then |M( G\l =2i+1. Since
(4) also holds with equality, the graph (M(G)) is regular of degree 1, nnplymg that
IM(G)| is even, a contradiction. [] .-

E R :- = ®
bound for p(n) in case

Lemmas 2 and 3 enable ug to deter : nine an npnp

n=2h+1. Define ey
a(m)=[f.(k)]

Lemma 4. Let G be an o4,-graph such that n=2h +1 and either h# 2 or n#5.
Then |E(G)|<a(n). Moreover, urless h=3 and n="7, |E(G)|=a(n) only if
IK(G)=k,; if k=3 and n=17, then IE(G)! a(n) only tf iIK(G)le{k,. -1, k,}.

Proof. Let G satisfy the conditions of the lemma. For x> h, f,(x) is an increasing
function of x. Since n=2h+ 1, k, = h. By using Lemmas 2 and 3 it follows that
IEG)I<[f.(k,)] |
and, if k,=h, '
|E(G)|=[f.(k,)] only if |K(G)|=k,
Now assume k, =h+ 1. For every x we have
fa®)—fax-1)=x-k~3,

lmplymg that [f.(k,)]=[f,(k,—1)] if end only if k,=h+1 and f,(k,) is not
integer-valued, i.e., if and only if h =3 and n =7, 2s is easily checked. The result
follows. [

We finally show that u4(n)=a(n) for all h>h +i and characterize <.
Let 1, a2 T be the graphs depicted in Fig. 1 and define a class % of graphs

- Fig. 1.
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by the assertion that a graph G with n vertices belongs to # if and only if the

fnllm:mm fennlrementv. are met:

(@) n= 2h +1;

@ii) |K(G)|=k, and (K(G)) is complete;

(m) ifn-k,is even, then 1’M(G))s§(n k,,)Pz, if n— k, is odd then (M(G))=
PsUs(n—k,— 3Py o G

(iv) every vertex of K(G) ,c:dent \vxth at least one. edge of B(G);

() if v, and v, are the vertices of a oomponent of (M(G)) iscmorphic to P,,
then I(N(v,)UN(vz))nK(G)lzsh
Note that ¥, =0 if h=2 and n=35; if h#z or n#5, then #,#0 for all
n=2h+1. In Flg. 2 an element of ¥y,; is sketched for h=3 and je
{1,2,...,2h}; i is-an arbltmty positive integer. .

For h 2 %,-graphs are dnique’ up to isomorphism unless n=2mod4 and
n#6. For h=3 %, -gtaphs are unique up to isomorphism if and only if n=
Omod 2h or n=(h— 1)mod2h For relevant values of h and n, nonisomorphic
#,.-graphs can be obtained from one another by repeatedly applying the following
operation: find two vertices u;, and u, of degree greater than h such that u, has at
least two nelghbouts of d(egwe h, 01 a.ld v, say; repl:aoe the edge u,v, by the edge
Uz04.

Define

H=%U{H,|h+1=<n=<2h}.

Theorem 5. p (n)=a(n) forn=h+1 and
% ifh#2,3,
A =3 %' U{Cs} ifh=2,
X' U{T,;, T3} ifh=3.
Proof. For h+1=<n=<2h we are through by Lemma 1 and the observation that
falkn)=fu(n—2) =3(n*~Sn-+4h+4). |

Mow let n=2h+1. We dxstmgush three cases. :

Case 1. (h#2 or n#5)and (h# 3 or n# 7). Then %, # @. Since every ¥,-graph
is an of,-graph with a(n) edges and, by Lemma 4, p4(n)<a(n), it follows that
pts(n) = a(n). It remains to be shown that o, < %,.

Let G be an d,.-graph Then (K(G)) is complete, ntherwise an &, -graph with
mwre edges than G would ‘be obtamed by joining : ‘two nonadjacent vertices of
K(G) by an edge. Now mequahty (2) holds with equahty

IE(G)| =2 |K(G)| (K(G)| - 1)+h(n~‘lK(G)|) —30(G). ©

By Lemma 4, IK(G)I-k,.. Substituting |[K(G)| by k, and |E(G)| by a(n), one
dzduces from (6) that p(G)=n—k,=|M(G)| if n—k, is even and p(G)=
n—k, +1=|M(G)|+1 if n—k, is odd. Since §({(M(G)))=1 by definition of &, it
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follows that (M(G))=4(n—k,)P, if n is even and (M(G))=P,Ui(n-k,-3)P, if
n is odd. Using the definition of & once more, we conclude that G € %,.

Case 2. h=2 and n=35. Clearly, Cs is the only d-graph with five vertices.
Hence: puy(5)=5=a(5).

Case 3. h=3 and n=7. By Lemma 4, py(7)<a(7)=13. AD graphs in
¥, 0U{T,, T3} are 4,-graphs with 13 edges. Conversely, suppose G is an &,-graph
with 13 edges. By Lemma 4, |K(G)| =k, =4 or |[K(G)|=k,—1=3. If |K(G)| =4,
then, like in Case 1, Ge¥,. If |[K(G)|=3, then (6) implies that p(G)=4=
|M(G)), so that {M(G))=2P,. Since G € &, it follows that G=T,or G=T;. O

Theorem 5 contains [1, Lemma 2].

3. Characterization of ¢-graphs for h=3

- Assume throughout this section that h = 3. We shall present some evidence for
the following result.

Theorem 6. p(n)=a(n) for n=4 and € =4.

Theorem 6 is equivalent to the assertion that pg(n)<a(n) for n=4. It is,
however, convenient to prove the following slightly stronger statement.

Lemma 7.

( )<{a(n)—1 if n¥0mod 6,
Halit)= a(n)—2 if n=0mod 6.

To get an impression of the proof of Lemma 7, which is by induction on n, let
G be a B-graph. Then G contains a vertex p with N(p) < K(G). Let S be a 3-cut of
G containing p. In the proof several cases with respect to the structure of (S) are
distinguished. In each case two smaller %¢-graphs are constructed from G.
Thereby an upper bound for |E(G)| is obtained via the induction hypothesis. For
the proof in full detail, which is quite long, we refer to [3]. Here we only treat the
case that (S) is complete. More precisely, we shall prove the following lemma.

Lemma 8. Let G be a B,-graph which contains a 3-cut S ={p, q., a2} such that
N(p) = K(G) and (S) is complete. If, for all m <n,

(m)<{a(m)—1 ifm#¥0mod6,
Ha “la(m)-2 if m=0mod6,

then

a{n)—1 if n£0 mod®6,

IE(C)I${a(n)“2 if n=0mod 6.
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Before pmvmg Lemms. 8 we state four additional lemmas, two of which are

l.mlO(VeldmanM]) vaxsavenexofdegree 3ina 3-connected gmth
then N(v) is the only 3-cut of G contained in {u}UN(v)

Lemma 11. If v is a vertex of degree 3 in a €-graph, then (N(v)) is not complete.

raph;, v a vertex of ‘G of degree 3 and U a 3-cut of G
containing v. By Lemma 10, U contains a vertex which is not in {v}U N(v).
Hence N(v) interferes with U. By Lemma 9, U also interferes wnth N(v) In
particular, N{v) contains a pair of nonadjacen: vertices. [0

Lesyms 12. If some vertcx of an sde.-graph G('l ?2) has at least two nexghbows in
M(G), then |E( G)Isa(6k) -2 :

Proof. Let G sat'sfy the conditions of the lemma. From Lemma 3 and its proof it
is apparent that |[K(G)|<4k — 1. Hence

|E(G)|s(|K(G)')+3|M(G)! <@k - 1)@k —2)+3(2k +1)

,—8k2+4—a(6k)—-— k+4$.a(6k) —-2. E]

Alﬂloughtheupperbo\mdmlemma 1215farfmmslhatp nlsaﬂwenecdm
theproof ofLemmaB(and I.emma 7)

Pmoloilms.AssumethatallwndmonsoflzmmaSaresausﬁed Let
{Q1, Q,} be a partition of V(G)— ~8 such ‘that {() is' 2 disjoint union of one or
more components of G—S (i=1,2). Construct from G the graphs G, and G, as
depicted in Fig. 3. It is easily seen that 61 and G are 3-connected. Since (S) is
complete, no 3-cut of G interferes with S, so that; by Lemma 9, S interferes with
no 3-cut of G. Hence if U is o 3-cut of G with UNQ#9, then Uc=Q US,
implying that U is a 3-cut of G, o (z = 1 2) Tlms all vertices of Q, being critical
in G, are also critical in. G; (i=1, 2) The remaxnung vertices of G,, having a
neighbour of degree 3, are criticel too (i =1, 2). Hence G, and G, are ¢-graphs.
From Lemma 1! one easily deduces that |Q|=3, so that [V(G, I<IV(G)|
(i=1,7). If G,esd, then |E(G; i|<a(lV(G)b by Theorem 5; if G,€®, then
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Fig. 3.

|E(G,)|=<a(|V(G)))) by the conditions of Lemma 8. Looking at Fig. 3 we now
deduce that
|E(G)|=<|E(G)I|+|E(G,)|—-13
sa((|01|—2)+7)'*’a(n'(IQll‘z))“13
< max {a(x+7)+a(n—x)—13}

lexsn—8

= 1<x<[(n D213 {a(x+7)+a(n—x)—13}.

Let ¢,(x)=a(x+7)+a(n—x)—13. It is easily checked that, if 1=<6i+j=<
[(n—1)/2]-3, ¢,(6i+]) is a decreasing function of i for each j with 0<<j=<S5.
Hence

|E(G)|= &n(x).

1x <mints {—1/2)-3}
Straightforward checking yields that, for 1<x <min{6, [(n —1)/2]-3},
¢ (x)<a(n)—2 if n=0mod6;
furthermoic. for 1<<x<min{6, [(n—1)/2]—3},
$.(\d=am)-1 if n#0mod6,

except in tiree cases. We show that |[E(G)|<a(n)—1 in each of these cases.

Case 1. n=6k+1, x=1 (k=2): ¢Pgi.1(1)=a(6k+1)+2.

In Fig. 3 there are two analogous possibilities corresponding to x =1: either
|V(Gy)| =8 and |V(G,)| =6k, or |V(G,)| =5k and |V(G,)|=8. Wz proceed with
the first possibility. G, ¢ g, since K(G,) contains a vertex with two neighbours of
degree 3. Since pg(8)=<a(8)—1, it follows that |E(G,)|<a(8)—1. From Lemma
12 and the fact that ug(6k)<a(6k)—2 we deduce that |E(G,)|<a(6k)—2. Thus
instead of |E(G)| =< ¢g.1(1) we reach the stronger conclusion that

IE(G)| < der1(1)—3=a(6k+1)—-1.
Case 2. n=6k+1, x=5 (k=2): dgr.1(5) =a(6k+1)— 12k +26.
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~ dex+1(5)>a(6k+1)—1 only if k =2. Then, however, we are back in Case 1,
since ¢15(5)= de;s(l)

: deraa(l) =a(6k+3)+1. C

' »nd'lV(Gz)l -6k +2, or IV(GI)I I==6k-4—2 and
; / =2mod6 (i=1,7). Since K(G‘) oontains a
vertex thh two ne:ghbours of degree 3,it follom that Gi¢ o (i=1, 2) Thus, in
fact, , A

IE(G)|= ¢6k+3(1)_2 . a(6k +3)-1L

The proof is completed by verifying the following inequalities:
6k +1,V<aGk+1)-1 (k=3),
6k+1,11)sa6k+1)—1 (k=3),
6k+3,N<a(6k+3)-1 (k=3). O

4. Discussion

In Section 3 it appeared that ug(n)<u,(n) for h 3. For large values of h,
,,-graphs have a very high edge density. We expect that, for increasing values of
h, p(n) will grow more rapidly than ug.(n), leading us to the following conjec-

Conjecture 13. For all h=3, pe(n)=a(n) (n=h+1) and €=.
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