
Computer Methods and Programs in Biomedicine 26 (1988) 153-158 153
Elsevier

CPB 00876

Section II. Systems and programs

Multi-tasking control system for real-time processing
of biomedical signals

J.A. Wes td i jk 1, J.A. v a n Alst6 1 and A.L. Schoute 2

1 Biomedical Engineering Division, Department of Electrical Engineerin~
and 2 Department of lnformatics, Twente University of Technology, Enschede, The Netherlands

A general multi-tasking control system has been developed for real-time signal processing. This control system, written
in the language PASCAL, enables tasks (expressed as PASCAL procedures) to be performed as separate, concurrent
processes, with adjustable priority levels. Modifications of this system such as the addition of new processes and a
change of the number of priority levels can be realised easily. The system has been used for the implementation of the
real-time algorithms involved in monitoring exercise electrocardiograms. For this application an LSI 11/23 is used with
the support of a slave processor for the calculation of inner products. The control system is also suitable for other
real-time applications when process requirements are not too heavy.

Multi-tasking control system; Electrocardiograms; Biomedical signal processing; Real-time

1. Introduction timing of time-critical actions. The activation or
suspension of other processes according to their

Computer-assisted monitoring of patients based priority is another one.
on physiological signals requires real-time data The system is applied for the scheduling of
acquisition and processing of the signals involved, processes involved in computer-assisted monitor-
Depending upon the complexity and the intensity ing of electrocardiograms, obtained during heavy
of the algorithms used, it may become a difficult exercise (XECG processing) [1]. The CPU require-
task to schedule the computer actions that must ments in X E C G processing are not too heavy
be performed. Actions may not only be performed when a separate processor for inner product calcu-
in sequences specified in advance but also may be lations is available. In this application the control
prompted by the actual findings of the partial system is suitable for real-time processing at signal
signal processing. For instance, detection of alarm sample rates up to 250 Hz.
situations indicates that special activities must be
initiated.

For such applications a general multi-tasking 2. Description of the multi-tasking control system
control system has been developed. It consists of a
kernel of PASCAL routines and enables non-de- 2.1. General
terministic parallel processing on a single processor
system. Real-time activation of processes is one of Real-time XECG processing comprises the han-
its features necessary for data acquisition and dling of various tasks, which differ in complexity,

importance and time of activation. So for every

Correspondence: J.A. van Alst6, Elektrotechniek, Universiteit task a priority level can be defined, corresponding
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. tO its actual urgency. The selection of processes,

0169-2607/88/$03.50 © 1988 Elsevier Science Publishers B.V. (Biomedical Division)

154

performing the tasks, consequently has to be pri- needed for the insertion of processes in queues
ority-dependent, in which high-priority processes and the removal of processes from queues. In Fig.
can interrupt low-priority ones. 1 the process flow between the various queues and

According to the activation time a distinction the corresponding control operations are shown.
can be made between processes activated on a
regular time base (periodical processes) and 2.3. Queue operations
processes who's activation time depends on the
actual signal properties (for example, scheduling In the timer queue, processes are sequenced after
of several tasks after each detection of a heart being scheduled by a WAIT operation. Real-time
beat) or the activity of another process (for exam- scheduling of a process can be relative to a system
ple error messages due to a delay in dispatching a variable representing the current time or relative
process), to the activation time of another process. Each

The scheduling and the selection of these types scheduled process will be activated according to
of processes can be realised by a multi tasking its wake-up time by means of a clock-driven inter-
control system [2]. Parallel processing on a single rupt routine, performing the AWAKE operation.
processor system can only be realised using a In our application the current time is updated by
number of queues in which processes are waiting a clock interrupt every 4 ms. To enable dynamic
to be served by the CPU or are waiting to be process control the heading of the WAIT oper-
activated under some (time) conditions, ation has been extended by a priority field. In this

way adjusting the priority levels of processes dur-
2.2. Queue definition ing real-time processing is possible.

Processes can deactivate themselves (from real-
For the scheduling of real-time processes we in- time control) by putting themselves in a sema-
stalled a ' timer queue', in which processes are phore queue by means of a PASSIVATE oper-
sequenced according to their wake-up time. For ation. An inactive process blocked by a semaphore
the execution of processes with different priorities can be activated by another process, by means of
a corresponding number of 'ready queues' is an ACTIVATE operation. The usage of sema-
maintained. Processes of which the activation time phores for synchronising processes, introduced by
is dependent upon the actual findings of the par- Dijkstra [3], has for this application been extended
tial signal processing can be synchronised by so- with a time-stamp and a priority field. This en-
called semaphores. They will wait, in case of ables scheduling of processes relative to an (arbi-
blocking, in a semaphore queue, trary) activation time at adjustable priority levels.

To control the process flow, operations are

2.4. Activation, preemption and idling

AWAKE ~ ' I WAIT
TIMER QUEUE Activation of a process means placing it at the end

of the ready queue according to its priority. High-
READY QUEUES priority processes can preempt low-priority ones

-[HIGH ~ ' ~ ' f ' ~ served by the CPU, where preempted processes
J are sequenced at the beginning of the ready queue

corresponding to their priority. They are re-
[LOW TY PREEMPTION activated after the serving of processes with higher

priority.
The process with lowest priority is used as an

ACTIVATE I ~ PASS IVATE idling loop, which is selected when no other SEMAPHORE QUEUE
I l processes are available for execution. Instead of

Fig. 1. Process flow. an idling loop some low-priority tasks could be

155

executed. Applied to XECG processing, the lowest PREEMPT) as shown in Appendix 3.
priority process is used for keyboard handling. A creator process (in our case the MAIN pro-

gram) may start a new process by calling SPAWN.
2.5. Timing andheap/stackpointermanaging The SPAWN heading contains a procedure

parameter (TASK) which specifies the procedure
To manage processes within queues, processes may to be performed as parallel process. A noteworthy
be chained by means of a link pointer in their detail in SPAWN is the copying of the stack-frame
process record. In Appendix 1 the control system corresponding to SPAWN to the stack of the
declaration part is shown, created process.

The semaphore declaration contains a counter The selection of the ready processes is handled
(COUNT) to store the number of activations with by another control system operation (PREEMPT,
respect to that semaphore. Time-stamps corre- Appendix 3), in which just two levels are used:
sponding to these activations are stored in a cyclic RUNSTATE, which denotes the priority of the
array (TIME). The size of this array limits the running process, and READYLEVEL, which de-
number of pending activations. There are two notes the highest priority of the ready processes.
indices (PROCESSIN, PROCESSOUT), which By having the READYLEVEL available, the
point to the activation time of the most recent selection of a next process to be served by the
activation and the one which is due to be handled. CPU is simplified. The actual process switch is
In Appendix 2 basic queueing operations of performed by the SWITCH operation. During this
processes are shown, operation the current heap and stack pointers are

To enable proper switching between 'data en- stored in the process record of the blocked process
vironments' of the various processes, each process and updated according to the selected process.
record contains a stack and heap pointer field. During control operations no interrupts are
The heap pointer field is also switched in order to allowed. Therefore the body of each control op-
maintain the proper heap pointer/stack pointer eration is, when necessary, surrounded by inter-
relationship, which is tested by PASCAL runtime rupt disable/enable statements.
routines. Both pointers get their initial value at the
creation of processes.

4. Performance

3. Implementation in OMSI-PASCAL The parallel process kernel for the purpose of
XECG processing has been implemented on an

The multi-tasking procedures are implemented in LSI 11/23 computer in OMSI-PASCAL, on top
OMSI-PASCAL [4] on an LSI 11/23 computer. In of the RT-11 operating system. A memory layout
order to initiate a process a PASCAL procedure is shown in Fig. 2. The time needed for the control
which represents the process must have been de- system operations has been measured by display-
clared. At the creation of a process a correspond- ing the output of a parallel interface (DRV-11) on
ing process record and data stack will be assigned a logic analyser. The bits of the parallel interface
dynamically and the execution of the given proce- were set or cleared at crucial time points in system
dure will start using these data fields. During routines. In Table 1 the maximum durations mea-
execution a process may be blocked, leading to the sured of the control operations necessary for real-
insertion of the process in one of the process time processing are shown.
queues and to a switch of process execution. In In this application eight processes were defined
our application the process bodies contain never- working at four priority levels:
ending loops such that the execution of the tasks [] two processes with priority level 3 to compute
will go on indefinitely. The initiation and switch- the heart rate and provide the classification of
ing of processes is performed by a number of detected beats;
control system operations (SPAWN, SWITCH, [] one process with priority level 2 to update ECG

156

RT 11 code global process record process record heap and [stack of

vectors variables of of stack of] main

main program process I process I program

T T T
HP SP 1 SP HP SP n m a i n m a i n

Fig. 2. Memorylayout.

TABLE 1 easily implemented, existing ones can be changed.

Maximum control operation times easily.
(2) A simple way of changing the number of

Control operation Maximum duration priority levels by adjusting the number of ready

Passivate 0.12 ms queues.
Activate 0.26 ms (3) The possibility of applying the control system
Awake 0.26 ms for other real-time processing problems, due to its
Wait 0.18 ms general purpose design.
Preempt/switch 0.54 ms

The general software approach presented in
this paper is an attractive way of real-time process

beat templates representative for the ECG of the control for cases where CPU requirements are not
patient being analysed; too heavy, such that the real-time scheduling ade-

[] four processes with priority level 1 for i n p u t / quate responses may be obtained.

output control;
[] one process with priority level 0 for keyboard
handling. References

In this arrangement real-time processing of an [1] J .A. v a n Alst~, M . W . la H a y e , J. d e Vries a n d H . B . K .
E C G with two lead signals at sampling rate of 250 Boom, Exercise electrocardiography using rowing ergome-
Hz was possible without problems, try suitable for leg amputees, Int. Rehab. Med., 7 (1985)

1-5.
[2] J.A. van Alstt, A.L. Schoute and H.B.K. Boom, Interactive

control of physiological experiments, Comput. Programs
5. Conclusions Biomed. 18 (1984) 33-40.

[3] E.W. Dijkstra, in: Processing in programming languages,
Parallel processing on a single-processor system e~. F. Genuys (Academic Press, New York, 1968).
turned out to be successfully applied to real-time [4] Oregon Software, Manual OMSI PASCAL Version 1.2 for

RT-11 (January 1981).
processing of electrocardiograms. The advantages [5] A.L. Sehoute and W.A. Vervoort, Realtime concurrent
of the usage of the described control system are: processing with PASCAL, in: Joumees d'Electronique, pp.
(1) Separate description of processes, containing 285-294 (Lausanne Presses Polytechniques Romandes,
the tasks to be performed. New processes are 1985).

157

Appendix 1. C o n t r o l system declaration part PROCEDURE p a s s i v a t e (VAR ph p r i : i n t e g e r) ;
BEGIN
disable;
WITH s DO

CONST maxpri = ... ; (* number of priorities *) BEGIN processout := (proee~sout ÷ I) mod 10;
size = ... ; (* stacksize *) {* index corresponding to the time stamp

of the activation *)
currprocess^.prio :- pri; (* adjust priority

TYPE spawnframe = array[O..6] of integer; level *)
IF count = 0 (* no activations : process blocked *)

stack = RECORD THEN
free : array[O..slze] of integer; BEGIN (* passivate process by placing

it in the semaphore queue *)
topframe : spawnframe; enter(currproces~,5~mchalr):

END; preempt;
END

staekpointer = RECORD ELSE count := count - I (* decrease the number
of activations to be

CASE integer OF END; handled *)
0 : (top : ^spawnframe); e~able;

I : (base: ^stack); END;

END;

process - ^processrecord;

PROCEDURE walt(t, prl : integer)
queue = RECORD BEGIN disable;

head,tail : process; IF t-currtlme > 0 (* wake-up time not yet passed*)

END ; THEN
BEGIN

ins~rt(t,currprocess,tlmerqueue);
semaphore = RECORD (* insert process in timerqueue

count : integer; according to its wake-up time *)
processln, processout : integer; WITH currprocess DO
semehaln : queue; BEGIN timer := t; (* note wake-up time *)

difftime := t - currtime
time : array[O..9] of integer; END;

END; IF timerqueue = currprocess (* process is heading
the tlmerqueue *)

processrecord = RECORD THEN difftlme :- t - currtime;
sp,hp : stackpolnter; (* rest-time before next process

will be awaken *)
llnk : process; END~
timer : integer; enable;
prio : integer; END;

END;

PROCEDURE awake;
VAR eurrprocess, timerqueue : process; VAR proc : process;

currtlme, difftime : integer; BEGIN remove(waltersqueue,proc); (* remove first
readylevel, runstate : integer; process out of the

ready : array[O..maxprl] of queue; waitersqueue *)
enter(proc,ready[proc.prio]);
(* insert process in the ready queue, according

to its priority *)
WITH proc ̂ DO

Appendix 2. Control operations on queues IE p r i o > readylevel
THEN readylevel :- prio; (* update level of highest

priority process *)
IF readylevel > runstate

PROCEDURE activate (VAR s : semaphore); THEN BEGIN (* low priority preemption *)

BEGIN enterfirst(currprocess,ready[runstate]);
disable; preempt;
WITH s DO END;
BEGIN processin :- (processln + I) mod 10;

tlme[processln] :- currtime; (* request time IF tlmerqueue <> NIL (* tlmerqueue not empty *)
storage *) THEN difftlme :- tlmerqueue^.timer ~ currtlme

IF semchain.head <> NIL (* there is a blocked ELSE difftlme :- -I;
THEN process *) END;

BEGIN

enter(proc,ready[prio]); PROCEDURE clockhandler; (* called by the interrupt
(* activate process by placing it in the BEGIN routine *)

ready queue according to its priority *)
currtime :- eurrtlme + I;

IF readylevel > prio difftime := difftime - I;
THEN (* update level of the

WHILE difftlme - 0 DO awake; (* wake-up process *)
highest ready process *)

END;
readylevel := prlo;

IF prio > runstate
THEN
BEGIN
(* low priority preemption *)
enterfirst(currprocess,ready[runstate]);
preempt;

END;
END;

ELSE count :- count * I; (* count number of activa-
tions to be handled *)

END;
enable;

END;

158

PROCEDURE spawn(newprocess : process; procedure task); currprocess^.sp :- eurrsp ; currprocess^.hp :- currhp;
VAR currsp, eurrhp : staekpointer; eurrproceas :- newprocess;

currsp :- currprocess^,sp ; currhp:=currproeess^.hp;
BEGIN newprooess := createproeess;

enter(currprocess,ready[runstate]); 'switch over to the new, now current, process
(* enter creator process in the readyqueue *) by copying the values of the variables currhp and

currsp to heap and stackpointer';
'store actual value of heap and stack value END;
In variables currhp and currsp'

currprocess^.sp :- eurrsp ; currproceas^.hp :- eurrhp; FUNCTION oreateprocess; (* called by SPAWN *)
newprocess^.sp.top ^ :- currsp.top~; TYPE stackptr - RECORD
(* last six words of the main stack are copied to CASE integer OF

the process stack (array TOPFRAME) *) O: (ptr:stackpolnter);
eurrprocess := newprocess; I: (val:integer);
currsp := currproeess^.sp;currhp := currpr~cess~.hp; END;

'switch over to new process by copying the values VAR newproc : process; newsp : staekptr;
of the variables eurrhp and currsp to heap and
stackpointer'; BEGIN new(newproe); (* create new process record *)

WITH newproc^,newsp DO
currprocessA.prlo := runstate; (* initiate the priority BEGIN new(ptr.base); (* create new stack *)

field *) hp :- ptr; (* inltlate heap pointer at
task; (* execution of the task-procedure *) the stack base *)
preempt; (* termination *) val :- val + 2*slze; (* reset stack pointer to

END; to the top frame *)
sp :- ptr; (* initiate stack pointer field *)

END;
PROCEDURE preempt; createprocess :- newproc;
VAR empty:boolean; END;

proc:process; (* example application part *)

PROCEDURE dummy; VAR pl, p2 : process;
BEGIN tl, t2, pril, pri2, delayl : i~teger;
END; semal : semapbore;

BEGIN PROCEDURE processl;
BEGIN runstate :- readylevel; (* update runstate according to the
REPEAT walt(tl,pril); process that will be served *)

remove(ready[readylevel],proc); (* remove ready process to tl :- tl + delayl;
to be executed *)

'tasks to perform';
(* update the readylevel *)

empty :- true; UNTIL false;
WHILE readylevel <> -I DO END;
BEGIN empty :- ready[readylevel].head - NIL;

IF empty PROCEDURE process2;
THEN readylevel :- readylevel ~ I;

BEGIN 'initiate sema1';
END; REPEAT passivate(semal,prl2);

swXtch(proc,dummy); (* execute process with priority WITH semal DO

runstate *) t2 :- tlme[processout]; (* process knows its
END; activation time *)

'tasks to perform';

UNTIL false;
END;

Appendix 3. Example of the application part of the
(* MAIN PROGRAM BODY *);

control
S~Stea||~ ~ ~ BEGIN new(currprocess); (* create process record

fo r MAIN program *)
cu r r t lme :z I ; d i f f t l m e : - - I ;

PROCEDURE swi tch (newproeess : process; procedure task) ; runs ta te :z O; ready leve l := O;
VAR currsp, currhp : ataekpointer; inltiate(clock);

spawn(p],processl);

(* The procedure parameter 'task' has no meaning here. It spawn(p2,proeess2);

must be added only for the sake of compatibility with
REPEAT UNTIL false; (* idle loop wlth lowest priority *) the procedure SPAWN *)

END.
BEGIN 'store actual value of heap and stackpointer

in variables eurrhp and eurrap';

