

Physica C 341-348 (2000) 1613-1614

Reentrant superconducting behavior of the Josephson SFS junction. Evidence for the π -phase state

V. V. Ryazanov^a, A. V. Veretennikov^a, V. A. Oboznov^a, A. Yu. Rusanov^a, V. A. Larkin^a A. A. Golubov^b and J. Aarts^c

^aInstitute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, 142432, Russia

^bUniversity of Twente, P.O.Box 217, 7500 AE Enschede, the Netherlands

^cKamerlingh Onnes Laboratory, Leiden University, P.O. Box 9506, 2300 RA Leiden, the Netherlands

Critical supercurrents, I_c , in $Nb - Cu_{1-x}Ni_x - Nb$ Josephson SFS junctions with F-layers prepared from ferromagnetic $Cu_{1-x}Ni_x$ alloys have been studied. For value x=0.52 and particular F-layer thickness we have observed $I_c(T)$ oscillations with I_c vanishing for some values of T. We associate this reentrant superconducting behavior with a crossover of the SFS junction from '0'- to ' π '-state that is related to temperature dependence of spatial oscillation period of induced superconducting order parameter in the weak ferromagnet. We argue this is the first experimental evidence of the π -behavior of a Josephson junction, that is the special feature of superconducting pair flow through a ferromagnet predicted for SFS junctions by Bulaevskii, Buzdin et al [1].

We present evidences of π -state existing superconductor-ferromagnet-superconductor in (SFS) Josephson junctions [1,2]. Decay of the induced superconducting order parameter enhances with the exchange energy E_{ex} increase in the ferromagnet. The use of ferromagnet alloys tenfold decreases the E_{ex} , thus allowing the fabrication of thin-film SFS sandwiches with homogeneous 10-20 nm thick F-interlayers comparable with the decay length, ξ_{1F} , and observation of supercurrents through the F-interlayer [3]. We have shown that in nonmagnetized specimens the averaging of the domain magnetic structure in F-layer ensures a highly homogeneous passage of supercurrent across the ferromagnet.

 $Nb - Cu_{1-x}Ni_x - Nb$ sandwiches were prepared with F-layers sputtered using $Cu_{1-x}Ni_x$ alloy target. Curie temperatures of 10-20 nm thick $Cu_{1-x}Ni_x$ films at x = 0.52 were about 18-20 K [4]. Because of low junction resistances $(R_n \simeq 10^{-5}\Omega)$ transport characteristics of the SFS sandwiches were measured by SQUID picovoltmeter with a sensitivity 10^{-11} V in the temperature range 1.2-9 K.

Figs.1,2 show two sets of curves that demonstrate unusual $I_c(T)$ behavior. Both sets of the $Nb - Cu_{0.48}Ni_{0.52} - Nb$ sandwiches used were fabricated at different time using the same target. However F-layers in sandwiches of Series I (Fig.1) have slightly stronger magnetism (E_{er}) than ones of Series II (Fig.2). As a matter of fact the ferromagnetism of the CuNi alloy is due to the intercluster exchange interactions related to Ni-rich clusters [5]. The cluster formation depends on a number of uncontrolled technological parameters. For both sets of sandwiches the increase in F-layer thickness, d_F , causes the decrease in I_c and change of the monotonic $I_c(T)$ dependencies to ones with saturation at low temperature or even oscillating $I_c(T)$ dependencies. Invariability of $I_c(H)$ patterns positions for different T (inset in Fig.1) proves that the $I_c(T)$ oscillations are not associated with residual magnetic induction changes.

The specific behavior of SFS junction is associated with space oscillations of the induced super-

^{0921-4534/00/\$ –} see front matter C 2000 Elsevier Science B.V. All rights reserved. PII S0921-4534(00)01476-3

Figure 1. $I_c(T)$ dependencies for Series I sandwiches. Curves **b** and **c** present the data for the same sandwich, but the latter is for the sandwich after 'annealing' during leads re-soldering. Inset shows $I_c(H)$ patterns for the curve **b**.

conducting order parameter in the F-layer originated from the exchange field in the ferromagnetic [1,2]. If $E_{ex} \sim k_B T$, the order parameter behavior can be described by the expression

$$\Delta \sim e^{-\frac{x}{\xi_F}} \sim e^{-x\sqrt{\frac{k_BT + iE_{ex}}{D_F}}} \sim e^{-\frac{x}{\xi_{F1}}} e^{-i\frac{x}{\xi_{F2}}}.$$
 (1)

Here D_F is the diffusion coefficient of electrons in ferromagnet, ξ_F is the complex pair coherence length in ferromagnet, ξ_{F1} and ξ_{F2} are the order parameter decay length and the period of its spatial oscillations. It must be emphasized that ξ_{F1} increases whereas ξ_{F2} decreases with temperature decrease, which provides the possibility of the crossover from '0' to ' π ' state of the junction by temperature varying. In order to demonstrate this effect quantitatively we extended the theory [2] for the critical current in SFS junctions, originally developed for large F-layer thicknesses, to the regime of arbitrary F-layer thicknesses. The calculations that will be reported in detail elsewhere confirm the applicability of simple arguments in favour of T-induced '0' to ' π ' crossover.

Figure 2. $I_c(T)$ dependencies of Series II sandwiches. Inset shows detailed experimental data for the sandwiches with $d_F=26$ and 27 nm.

Fig.2 shows calculated curves $I_c(T)$. It is seen that the Josephson coupling energy of an SFS junction indeed can change sign as T decreases, provided that $E_{ex} \sim k_B T$ and $d_F \sim \xi_{F2}$. Thus, the observation of the π -junction behavior of the SFS structure supports fundamental concepts of supercurrent flow through magnetic media. One of the interesting application of the π -junction related to realization of a quantum bit [6].

REFERENCES

- A.I. Buzdin, L.N. Bulaevskii, and S.V. Panjukov, JETP Lett. 35, 178, (1982).
- A.I. Buzdin, B. Vujicic, and M.Yu. Kupriyanov, Sov. Phys. JETP 74, 124 (1992).
- V.V. Ryazanov, Usp. Fiz. Nauk 169 920 (1999) [Phys. Usp. 42 (1999)]
- A.V. Veretennikov, V.V. Ryazanov, V.A. Oboznov, A.Yu. Rusanov, V.A. Larkin, and J. Aarts, in Proc. LT 22., Physica B (2000).
- K. Levin and D.L. Mills, Phys. Rev. B, 9, 2354 (1974).
- G. Blatter, V.B. Geshkenbein, and L. B.Ioffe, Cond-mat/9912163 (1999).