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Abstract: This paper deals with a parallel load-sharing reliability system with cold standby redundancy and 
ample repair facilities. That is, we have n identical parallel units, of which at most k units are operating 
simultaneously. If less than k units are available, the system operates at a proportionally reduced level. 
For this system, an approximate method is given for the calculation of the probability distribution of that 
proportion of the system capacity that cannot be used in a given time period. The method is based on an 
approximation of the k-out-of-n multistate system by a two-state single component. Validation of the 
approximation using Monte-Carlo simulation shows satisfactory performance. Also, sensitivity results are 
given, showing in particular a decreasing sensitivity of the measures of performance to the distributional 
form of the unit lifetimes and repair times as the size of the system increases. Furthermore, it is found that 
the effect of the distributional form of the unit lifetimes dominates that of the unit repair times. 
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1. Introduction 

In this paper, we consider the k-out-of-n multi- 
state reliability model with repair. That is, we have 
a system consisting of n identical units, each 
having a capacity lO0/k%. Hence k units are 
required to be available for running the system at 
full capacity. If more than k units are available, 
the superfluous units are put on cold standby and 
cannot fail. If less than k units (say i) are availa- 
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ble, the system operates at a proportionally re- 
duced level, i.e. at 100i/k%. The model under 
consideration has ample repair facilities, so all 
failed units can be under repair simultaneously. 
We assume perfect switch-over with no start-up 
failures and no switch-over times. The lifetimes as 
well as the repair times of the units are indepen- 
dent, identically distributed random variables, 
both with probability distributions belonging to 
the important class of phase-type distributions 
with two phases. Further, the assumption is made 
that #R << PL, where ~L and #R denote the mean 
unit lifetime and the mean unit repair time respec- 
tively. It is noted that this assumption is no re- 
striction for most practical situations. 
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Here any squared coefficient of variation c2x > 
0.5 can be reached. By )~1 > X2, the parameter p 
satisfies p ~< 1. However, p may be negative, cor- 
responding to the case of 0.5 < c2x < 1. In case 
p >~ 0, the density (3) is the well-known hyperex- 
ponential density of order 2 and has C2x >/1. 

Many theoretical studies on the k-out-of-n 
multistate system have been carried out, for which 
references can be found e.g. in Birolini [1]. In 
particular, the system long-term uneffectiveness, 
defined as the long-run fraction of the system 
capacity which cannot be used due to failure of 
components, has been a point of concern. How- 
ever, the stationary interval uneffectiveness distri- 
bution is a subject to which relatively little atten- 
tion has been paid. This distribution represents 
the probability that the system uneffectiveness will 
not exceed some pre-specified level in a time 
interval of given length, when the system has 
reached statistical equilibrium. This performance 
measure is of great importance in practice, e.g. 
when some pre-specified production level has to 
be attained in a given time period in order for 
sales contracts to be met. 

The main aim of this study is the development 
of a computationally tractable method for obtain- 
ing the stationary interval uneffectiveness distri- 
bution for the system as described above. Because 
both the unit repair times and the unit lifetimes 
have a phase-type distribution, the long-term un- 
effectiveness U~ can easily be calculated using a 
continuous Markov chain. However, an exact 
analysis for the interval uneffectiveness distribu- 
tion seems very complex and will probably not 
lead to computationally tractable methods. There- 
fore we have opted for an approximate approach. 

The essence of this approach is the approxima- 
tion of the k-out-of-n multi-state system by a 
two-state single component (cf. also Brouwers [2]). 
The logic behind this is that, for reliable units 
(/~g << ~tL), the probability that more than (n - k 
+ 1) units are down simultaneously is negligible 
for practical purposes. Hence, nearly all of the 
time, the operational level of the system will 
fluctuate between 100% and 100(k - 1) /k% of the 
system capacity. Thus an approximation by a 
single component with operational levels 100% 
and 100a% (for some 0 ~< a ~< 1 to be specified 
below) seems to be appropriate. Here we take a as 
the average operational level of the system when 
the system is operating below full capacity. This 

implies that the approximating single component 
system has the same long-term uneffectiveness as 
the original k-out-of-n system. The approximate 
interval uneffectiveness distribution can be com- 
puted by a straightforward extension of results in 
Takfics [5] for single items of equipment, once the 
stationary distributions of the sojourn times in the 
two states are obtained. We will approximate these 
sojourn time distributions by computationally 
tractable distributions. For this, we fit gamma 
distributions by matching the first two moments. 
Because in our model the unit lifetimes and repair 
times have phase-type distributions, the moments 
of the sojourn time distributions can easily be 
obtained using the well-known technique of 
Kolmogoroff's backward differential equations 
(see e.g. Tijms [6]). 

Now our approach can be summarized as fol- 
lows: 

(1) Compute (exactly) the long-term system 
uneffectiveness U~ using a continuous-time 
Markov chain analysis. 

(2) Compute the first two moments of ~n and 
%, which are respectively defined as a period of 
time over which the system operates at the capac- 
ity level and a period of time over which the 
system operates below capacity. 

(3) Fit computationally tractable distributions 
to the first two moments of ~'H and %. For this, 
gamma distributions are used. 

(4) Approximate the k-out-of-n multistate sys- 
tem by an (a,  1) single component, that is, a single 
unit which can operate at two levels: 100a% and 
100% of the capacity. Here a is chosen in such a 
way that the long-term uneffectiveness of the ap- 
proximating unit equals U~ as computed in step 1. 

(5) Compute the (stationary) interval unef- 
fectiveness distribution of the (a, 1) single compo- 
nent using the results from Takfics [5]. 

2. Detailed method description 

In this section, the approximation for the sta- 
tionary interval uneffectiveness distribution of a 
k-out-of-n multistate system is elaborated further. 
In the analysis it is crucial that the unit lifetimes 
and repair times have tractable phase-type distri- 
butions. Therefore we first describe the particular 
class of phase-type distributions we shall use. A 
random variable X is said to have a second-order 
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Coxian distribution when it can be represented as 
(cf. Cox [3] and Yao and Buzacott [8]) 

X with probability b, 

X = )(1 + )(2 with probability (1 - b) ,  (1) 

where X 1 and X 2 are independent, exponentially 
distributed random variables with respective 
means 1/A l and 1/X 2. In other words, X passes 
first through an exponential phase X 1 and next, 
with probability ( 1 -  b), through the second ex- 
ponential phase X 2. It holds that c~ >t 0:5, where 
the coefficient of variation c x is defined as the 
ratio of the standard deviation o ( X )  and the 
mean E (X) .  Now two cases can be distinguished: 

(i) XI = X2 = ~. In this case, the density f ( x )  
of X is a mixture of an exponential and an 
Erlang-2 density with the same scale parameters, 
i.e. 

f ( x ) = b X e  - x ~ + ( 1 - b ) h 2 x e  -xx, x> /0 .  (2) 

For this density it holds that 0.5 ~< c2x < 1. 
(ii) 2,1 :~ X2, where it is no restriction to take 

X1 > X2- In this case, the density of X is given by 

f ( x ) = p X  l e  - x ~ + ( 1 - p ) X  2e  -x2x, x> t0 ,  (3) 

where p is related to b by b = p  + (1 - p ) X 2 / A  1. 
The fact that both the unit lifetimes and repair 

times are constructed from two exponentially dis- 
tributed random variables simplifies the analysis 
considerably, because use can be made of continu- 
ous-time Markov chain tools. A detailed descrip- 
tion of the approximate method is now given, via 
the five steps mentioned in the introduction. 

Step 1. Computation of  the long-term uneffective- 
hess U~ 

Let us define the microstate of a system as 
I = (ii ,  i2, Jl, J2' l), where 

i m = number of units in the m-th phase of the 
lifetime, m = 1, 2; 

J m - - n u m b e r  of units in the m-th phase of the 
repair time, m = 1, 2; 

l = number of units put on cold standby. 

In fact, a three-dimensional state space 
(il, J~, J2) suffices for the calculations. If  Jl, J2 
and il are known, then, noting that at most k 
units are operating simultaneously, it is clear that 
i 2 - - m i n [ n - J l - . / ' 2 -  il, k -  il] and further that l 
= n -  i I - - i  2 - - J l - J 2 .  However, we shall use the 

five-dimensional micro-state definition for ease of 
presentation. 

Because the sojourn times in the microstate 1 
are distributed exponentially, we can compute by 
continuous Markov chain analysis the probabili- 
ties: 

7r 1 = the steady-state probability that the system is 
in state I. 

Using the standard reasoning that the rate out of 
the microstate I equals the rate into that state, we 
have 

rjI~rs= ~r 1 ~ rlj,  I ~ I2, (4) 
J ~  J ~  

where rij = infinitesimal transition rate from I to 
J (i.e. r l jA t  gives the probability that the system 
will move from state I to J in the next short time 
interval A t )  and the state space [2 is given by 

I2 = ( I =  (i l ,  i2, J~, J2, 1)1 

O <~ il <~ k ,  O <~ j l  <.< n - i 1, 

0 <~J2 <~ n -  i 1 - J l ;  

i 2 = min[n - j ,  - J z  - il, k - i ,],  

/ = n - i I - i 2 - J l  --/'2 }. 

A specification of the transition rates r w can be 
found in Appendix I. Now the steady-state prob- 
abilities ,rt, including the normalization constraint 
E~r~ = 1, can be computed from the system of 
linear equations (4). To give an idea of the compu- 
tational effort, the size of the system (4) varies 
from 9 for a 1-out-of-2 system via 34 for a 3-out- 
of-4 system to 83 for a 5-out-of-6 system. 

From the steady state probabilities, the long- 
term uneffectiveness U~ can easily be obtained. 
When it is noted that the operation level of the 
system in the state I =  (ia, i2, Jl, J2, l) equals 
100(i I + i 2 ) / k % ,  it is clear that 

U~ = ~ k - i l - i 2  
k 7r,. (5) 

Step 2. Computation of  the moments of  Tri and T L 
Recall that ~'H and '7" L are respectively defined 

as the length of a period in which the system 
operates at capacity level and the length of a 
period in which the system operates below capac- 
ity. For the distributions of ~'H and %, systems of 
linear differential equations can be obtained using 
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the powerful technique of Kolmogoroff's back- 
ward differential equations. By standard argu- 
ments (see e.g. Tijms [6]), 

O'1(t) = ~_, r l j O g ( l ) -  Qt( t )  ~_, rig, 
JE~2 H J ~ 2  

i ~ O  H , 

(6) 

where 

Ql(t) = Pr{ rn > t] the system is in microstate I 
at time 0}; 

Ql(t) = dQ1(t)/dt;  
O n = set of all the microstates in which the 

system operates at capacity level = ( I  
~121il + i 2 = k } .  

The specification of rtg can be found in Table 
A2 in Appendix II. Now note that the i-th mo- 
ment of ~'n conditional on the initial state 1 can 
be written as 

m(,, i )= E['r~ Ithe system is in microstate I 

at the initial epoch] 

= iti-lQ1 t d t = -  t i t dt. 

Then, by multiplication of both sides of (6) by 
it ~-~ and by integration over t, one obtains 

- im~ i-l)= E rlgmSi)-m~ i) E r/g, i ~ O , .  
J ~ O  H J ~  

(7) 

Realizing that m~ °) = 1 (i ~ ~H), it is clear that 
the j - th  moment m~ j) can be obtained by solving 
the system of linear equations (7) successively for 
i = 1 , 2  . . . . .  j. 

However, we need the moments of an arbitrary 
sojourn time at the 100% operational level, inde- 
pendent of the initial situation. Therefore, we take 
a weighted average of the m~/° over all I ~  12 n 
with weights *rH defined as 

*r~ = probability that the system will enter O n in 
state I, given it enters O n. 

Let us define $2 L as the set of all microstates in 
which the system operates below capacity level, so 
that I2 L = ( I ~ 121 i~ + i 2 < k }. Then some reflec- 
tion shows that *r~ equals the average number of 
transitions per unit time from O L to the state 
I E O n divided by the average number of transi- 

tions per unit time from ~2 L t o  ~2 H. Hence 

- 1  

~r~={  ~] 9 ~ *rjrjK 1 ~. rrjrjl, ' ~ 2 H .  
K H J~I2L J~I2L 

is) 

A further elaboration of these weighting factors 
can be found in Appendix III. Now the moments 
of su can be computed from 

E[~'~] = ~] ~r~m~i'. (9) 
lEO H 

By arguments similar to those above, formulae for 
the moments of r L are obtained. The equivalents 
of (7), (8), and (9) are, respectively 

- in~ i-1)= E r, jn~i)-n~ 0 E r,j, ] C O L ,  

J~QL  J ~ 2  

(10) 

where n~ ° = E[~[ I the system is in microstate I at 
the initial epoch]; 

- 1  

KE.Q L JE~2 H J E Q  H 

(11t 

where 

*r E -- probability that the system will enter O L in 
state I, given it e n t e r s  ~2L; 

E [ T ~ ]  = E *r?n(/ i , -  ( 1 2 )  

i~12 L 

A further elaboration of the transition rates 
involved in (10) and (11) can be found in Appen- 
dix II, Table A3, and in Appendix III respectively. 

Step 3. A two-moment approximation for the distri- 
butions of rL and eft 

As will be seen in Step 5 subsequently, the 
formula for the computation of the interval unef- 
fectiveness distribution is rather complex, involv- 
ing many convolutions. That is, we need the distri- 
butions of sums of independent eft periods as well 
as the distributions of sums of independent r E 
periods. Because the sums of independent, identi- 
cally distributed gamma variables are again gamma 
distributed, we approximate the distributions of 
T H and ~'L by gamma distributions. A further 
argument for this is that, in many stochastic sys- 
tems, only the first two moments of the underlying 



70 M. C van der Heijden, A. Schornagel / k-out-of-n multistate reliability system with repair 

probability distributions are relevant for the com- 
putation of performance measures; see for much 
empirical evidence Tijms [6]. So we approximate 
the density fs(X) of 0- n by 

~ ( x )  = (~(sX r - '  e-Xsx)/F(r) (13) 

where X s and r are chosen in such a way that the 
first two moments of fs(x)  and j~(x) coincide. 
After some elementary algebraic manipulations, 
one obtains 

r =  E 2 [ z n ] / {  E[ZH z] -- E2[¢ .1} ,  
(14) 

Xs=E[THI / {E[z~] -  EEtzn]} .  

Similarly, the density gs(x) of ~'L is approximated 
by a gamma density ~s(X). 

Step 4. Computation of the low operational level for 
the approximating (a, 1) single component 

The long-term uneffectiveness of the approxi- 
mating (a, 1) single component is given by 

U 2 = (1 - a)E[¢LI/(E[¢L] + E[¢H] }. (15) 

Once the long-term uneffectiveness of the k-out- 
of-n multistate system is computed (Step 1), the 
low operational level a is easily obtained by 
matching Uoo and U A, yielding 

a = (1 - U~) - Uc~E[¢HI/E[¢L]. (16) 

This operational level is also the average oper- 
ational level of the k-out-of-n multistate system 
whenever the system operates below capacity• It 
turns out that in general a is somewhat smaller 
than (k - 1)/k due to the (short) time periods in 
which more than ( n -  k + 1) units are under re- 
pair simultaneously and the system operational 
level falls below 100(k - 1)/k% of the capacity. 

Step 5. Computation of the interval uneffectiveness 
distribution 

Suppose we have an alternating renewal pro- 
cess, consisting of independent 'on' and 'off' times 
of a single component. Define g'(x; to) as 

ff'(x; to )=  probability that the cumulative 'on' 
time of the single component does 
not exceed x in a given time interval 
of length t o , when the process has 
reached statistical equilibrium. 

Assume that the 'on' and 'off' times have distribu- 
tion functions F(x) and G(x) with means #on and 

/~off respectively. Then, Theorem 1 in Tak~ics [5] 
can easily be extended to: 

~(x; to)= ~oo 
/Xon + ~off 

oo 

× E 
i=O 

.F  aEs , F(i)(x) 

J-I- of f + 
/-ton + ].Lof t 

X £ ( G  R E s * G ( i ) ( t O - X )  

i=0 

x < t 0, 

where 

FgES(x) 

-- G REs * G(i+l)( to  - x ) }  

• F(i+X)(x) 

+ /XoU (I_GRES(to_X)},  
~l'on "1- ~off 

(17) 

= /Zo2f0~(1-F(y)) dy (the sta- 
tionary residual 'on' time distri- 
bution); similarly GRES(x), with 
the appropriate substitutions, 
represents the 'off' time equiv- 
alent; 

F(O(x) = the /-fold convolution of F(x),  
and similarly G(i)(x); 

F REs * Fti)(x)  = the convolution of FRES(x) and 
F(O(x), and similarly GRES* 
G(O(x). 

Note that the convolution A * B(x) of two 
probability distribution functions A(x) and B(x), 
x >~ 0, is given by 

A* B(x)  = foXA(x-y)  d B ( y ) .  

Further, it is clear that ~ ( t  0, to )=  1 and so 
k0(x; to) has a jump of (#on+#on)- l#o. (1  - 
FRES(to)} at x = t o. Now define for the k-out-of-n 
multistate system the random variable 

U(to) = the proportion of system capacity that 
cannot be used in a given interval of 
length t o , assuming that the system has 
reached statistical equilibrium. 

Then, assuming that the low operational level and 
the high operational level periods are independent, 
some reflection shows that the approximation by 
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an (a,  1) single component yields for the interval 
uneffectiveness distribution 

P r (U( to )  < x )  ~ 1 - xP(t o -  toX/(1 - a) ;  to) 

(18) 

where ~to,, ~off~ F(x) and G(x) are replaced by 
E [ r . ] ,  E[rc] ,  Fs(x ) and Gs(x ) respectively. 

Although the sojourn times in the high oper- 
ational level and the low operational level states 
are not independent, the assumption does not 
appear to affect the approximation significantly. 
Further, it is noted that the approximation re- 
quires a slight modification, which is discussed in 
Appendix IV. 

3. Validation and sensitivity analysis 

In the previous section, we have given a method 
for approximating the interval uneffectiveness dis- 
tribution for a k-out-of-n multistate system when 
the lifetimes and repair times have a Coxian distri- 
bution with two phases. However, other probabil- 
ity distributions (e.g. the Weibull distribution for 
the lifetimes and the log-normal distribution for 
the repair times) are encountered in practical ap- 
plications. Nevertheless, we can still apply the 
methodology of the previous section if we fit 
approximate phase-type distributions to these dis- 
tributions by matching the first few moments. 
Suppose we have a general distribution whose i-th 
moment is given by 1"1 and squared coefficient of 
variation of c 2. Here it is assumed that c2> 0.5 
(but see also the end of this section for some 
comments for the case c2< 0.5). We distinguish 
between two cases: 

(i) 0.5 ~ c 2 ~< 1. Use a mixture of an exponen- 
tial and an Erlang-2 distribution with the same 
scale parameter. So we take the density (2) with 
the same mean 1'i and squared coefficient of varia- 
tion c: as the original distribution, yielding (see 
Tijms [6]): 

b={1+c2}-1{2c2-~/2(1-c2) }, 

X = (2 - b ) / p  1 . 
(19) 

(ii) c 2 > 1. Use a hyperexponential distribution 
of order two, i.e. the density (3) with 0 < p  < 1. 
We choose the parameters p, X a and ?~2 in such a 
way that the first three moments of the approxi- 

mating hyperexponential distribution equal vx, 1"2 
and 1"3 respectively. Thus 

= {y  "Jr" 1.5 /~2 d- 31"1/37 ?'1,2 

-1 
"[- ~/ Or" 1.5 /32__ 31,1 fl )2 q- 181,12/83) 

× 61"lfl, (20) 

P = { ?'2 - ?'1 } -lXx(1'a?`2 - 1), 

where/3 = 1"2 - 2v2 and - /= v11'3 - 1.5 1'22, see Whitt 
[7]. This match is only possible if y >~ 0 (as was 
found to be the case for the Weibull, log-normal 
and gamma distributions). In case ~, < 0, it is 
suggested that p, X 1 and X 2 should be chosen 
such that the first two moments of (3) equal 1/1 
and 1'2 and the third moment is as close as possi- 
ble to v3. 

To validate our method, we have compared the 
approximate results to results from Monte-Carlo 
simulation. It is noted that we have used the 
Gauss-Seidel method to solve the system of linear 
equations (4), where we have ordered the states 
(il, Jl, J2) first to the number of units (ix) in the 
first phase of the lifetime, then to the number of 
units (J l)  in the first phase of the repair time and 
finally to the number of units (J2) in the second 
phase of the repair time. The Gauss-Seidel method 
is very well suited to solving the linear equations 
corresponding to a Markov chain (cf. also Tijms 
[6]). In our model, the method worked in all 
examples tested, while other methods failed in 
some instances. 

For the validation, we have chosen three system 
types, namely the 1-out-of-2, the 2-out-of-3 and 
the 5-out-of-6 multistate systems. For the unit 
lifetime and repair time distributions, three com- 
binations are considered: 

(i) the unit lifetimes and repair times are both 
exponentially distributed (in the tables this is de- 
noted by M/M) .  

(ii) a Weibull distribution for the lifetimes with 
squared coefficient of variation c~ = 0.75 and a 
log-normal distribution for the repair times with 
C2R = 2 (denoted by Wo.vs/L2). 

(iii) the lifetimes and repair times are respec- 
tively Weibull-distributed with c 2 = 0.50 and log- 
normal-distributed with c~ = 2 (denoted by 
Wo.5o/L2)- 

Note that a Weibull-distributed lifetime with 
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Table 1 
Simulated and approximate results for a 1-out-of-2 system 

M o d e l  E['rH ] C 2 g [ ' r  L ] c 2 100 Uoo% P 0  P 2  /05 P l O  t o  "r H ,r L 

0.91 0.94 0.96 0.98 1 M / M  sim 10.0 1.16 0.056 1.00 0.55 
0.40 0.93 1.00 1.00 10 
0.91 0.93 0.96 0.98 1 app 10.0 1.18 0.056 1.00 0.55 
0.40 0.94 1.00 1.00 10 

0.93 0.95 0.97 0.99 1 
Wo.75/L 2 sim 13.5 1.14 0.057 1.34 0.42 

0.51 0.95 1.00 1.OO 10 
0.93 0.95 0.97 0.99 1 

app 12.6 1.19 0.056 1.27 0.44 
0.48 0.95 1.00 1.00 10 

0.96 0.97 0,98 0.99 1 
Wo.s/L 2 sim 21.9 1.11 0.059 1.20 0.28 

0.63 0.97 1.00 1.00 10 
0.96 0.98 0.99 0.99 1 

app 27.6 1.16 0.061 1.36 0.22 
0.71 0.98 1.00 1.00 10 

Table 2 
Simulated and approximate results for a 2-out-of-3 system 

Model E[~'H] c2 E[~'L] c2 100Uoo% Po P2 P5 Plo to • v H 'r L 

0.95 0.95 0.96 0.97 0.1 
M / M  sire 2.72 1.26 0.057 1.07 1.07 

0.71 0.83 0.92 0.98 1 
0.95 0.95 0.96 0.97 0.1 

app 2.75 1.30 0.058 1.05 1.06 
0.71 0.83 0.93 0.98 1 

0.95 0.95 0.96 0.97 0.1 
Wo.75/L 2 sire 3.11 1.19 0.058 1.31 0.98 

0.73 0.85 0.94 0.98 1 
0.95 0.96 0.96 0.97 0.1 

ap 3.01 1.26 0.058 1.31 0.97 
0.73 0.85 0.93 0.98 1 

0.95 0.96 0.96 0.97 0.1 
Wo.5/L 2 sire 3.61 1.09 0.057 1.41 0.85 

0.76 0.88 0.95 0.98 1 
0.96 0.96 0.97 0.98 0.1 

app 3.72 1.11 0.057 1.41 0,79 
0.76 0.88 0.95 0.99 1 

Table 3 
Simulated and approximate results for a 5-out-of-6 system 

Model E[~'H] c2 E[~'L] c2 100Uoo% P0 /)2 P5 P10 to 'rH *'L 

0.77 0.81 0.85 0.91 0.1 
M / M  sim 0.56 1.44 0.065 1.18 2.38 

0.21 0.58 0.85 0.97 1 
0.77 0.80 0.84 0.90 0.1 app 0.56 1.46 0.065 1.18 2.38 
0.21 0.55 0.85 0.98 1 

0.77 0.80 0.85 0.91 0.1 
W0.75//L2 sim 0.61 1.32 0.063 1.50 2.25 

0.22 0.63 0.86 0.97 1 
0.77 0.82 0.86 0.90 0.1 app 0.57 1.38 0.064 1.48 2.32 
0.21 0.56 0.85 0.98 1 

0.77 0.80 0.86 0.91 0.1 Wo.5/L 2 sim 0.62 1.16 0.062 1.47 2.23 
0.19 0.62 0.87 0.97 1 
0.78 0.82 0.86 0.91 0.1 app 0.59 1.19 0.064 1.48 2.22 
0.19 0.59 0.86 0.99 1 
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C2L ~ 1 has a nondecreasing failure rate. Further, 
note that for a repair time with c~t > 1, the log- 
normal distribution is often appropriate when the 
actual repair times can vary from small values to 
large values. In all cases we have taken the mean 
unit lifetime as 1 and the mean unit repair time as 
1/9,  resulting in a unit availability /~L/(/~L + /~R) 
of 0.9. The length of the stationary time interval t o 
is varied as 1 and 10 times /~L for the 1-out-of-2 
system while t o = 0.1 or 1 for the other two system 
types. 

In Tables 1-3, a comparison between simula- 
tion and approximation is made for the three 
system types as mentioned. Values for the mean 
and squared coefficients of variation of both ~H 
and *L are presented as well as values for 100U~%, 
and some points of the interval uneffectiveness 
distribution where Px = Pr{U(to) ~< x/100}.  The 
half lengths of the 95% confidence intervals do not 
exceed 3% of the simulated values for E[~-H] and 
E[ % } respectively and 10% of the simulated value 
for U~ and the squared coefficients of variation of 
T H and %. For the simulated probabilities, the 
half length of the 95% confidence interval never 
exceeds 0.01 and is about 0.002 for the probabili- 
ties 9ery close to 1. 

From Tables 1-3 it is concluded that the ap- 
proximation has a satisfactorily accurate perfor- 
mance. The accuracy of the approximation de- 
creases as c{ deviates more from 1, probably in 
consequence of a larger deviation between the 
Weibull distribution and the approximating 
phase-type distribution. Further, it is clear that 

the sensitivity of the interval uneffectiveness dis- 
tribution to the distributional form of the lifetimes 
and repair times decreases as the size of the sys- 
tem increases. 

To study this sensitivity in more detail, we have 
computed the long-term uneffectiveness U~ for 
the three system types as presented in Tables 1-3, 
where we have varied the squared coefficients of 
variation of the (Coxian distributed) unit lifetimes 
and repair times. A graphical representation of 
this is shown in Figures 1-3. To compare the 
sensitivity of Uoo to c~t and c~ for the three 
system types, we have chosen the unit availability 
for each system type such that the long-term unef- 
fectiveness U~ for the case of exponential unit 
lifetimes and repair times (c 2 =  c~ = 1) equals 
0.01. This implies unit availabilities of 0.8676, 
0.9029 and 0.9358 for the 1-out-of-2, the 2-out-of-3 
and the 5-out-of-6 system respectively. From Fig- 
ures 1-3, it is clear that the sensitivity of U~ to c 2 
and c 2 decreases as the size of the system in- 
creases. Further, we see that the influence of c 2 
on U~ is much smaller than that of c 2. If the unit 
lifetimes are exponentially distributed, the long- 
term uneffectiveness is even insensitive to c 2 
(which is a known insensitivity result for stochas- 
tic networks, see e.g. exercise 2.27 in Tijms [6]). So 
it is concluded that large k-out-of-n multistate 
systems (e.g. a 5-out-of-6 system) may be analysed 
assuming an exponential distribution for the unit 
repair times, while for very large systems an ex- 
ponential distribution for the unit lifetimes as well 
may suffice. For smaller systems, more informa- 
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Figure 1. The effect of the distributional form of the unit lifetimes and repair times for a 1-out-of-2 system. Unit availability = 0.8676 
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and repair times for a 2-out-of-3 system. Unit availability = 0.9029 

tion about the unit lifetime and repair time distri- 
butions than just the mean should be used. For 
the 1-out-of-2 system, an approximation for the 
interval uneffectiveness distribution using general 
lifetime and repair time distributions is available 
(cf. van der Heijden [4]). However, for medium-size 
k-out-of-n multistate systems such as the 2-out-of- 
3 system, the shapes of the unit lifetime and repair 
time curves have a significant influence on the 
interval uneffectiveness distribution (and espe- 
cially on the mean U~). For these systems, the 
approximate method as presented in this paper 
can be used whenever c~ >~ 0.5 and C2R >/ 0.5. In 
case c~ < 0.5, we suggest that some extrapolation 
method should be used, because sensitivity analy- 

sis shows that the influence of c2R on the results is 
only slight. Such an extrapolation method will 
solve the model for some values of c [ larger than 
0.5 and also extrapolate the results to the particu- 
lar c 2 < 0.5. When C2L < 0.5, some extrapolation 
method can also be used, although one should 
then be careful because of greater sensitivity of the 
results to c~. In this case, the use of a phase-type 
distribution with more than two phases can be 
considered as an alternative. 

It is remarked that in general a squared coeffi- 
cient of variation 1/i can be reached when a 
phase-type distribution with i exponential phases 
is used (see Cox [3] and Whitt [7]). Although an 
increasing number of phases induces a larger sys- 
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Figure 3. The effect of the distributional form of the unit lifetimes and repair times for a 5-out-of-6 system. Unit availability = 0.9358 
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tem of linear equations for the computation of 
U~, this is not restrictive because the use of more 
phases is only required for medium-size systems. 
For large systems, the unit lifetimes and certainly 
the repair time distributions can be taken as being 
exponential, implying relatively small systems of 
linear equations to be solved. 

Appendix I. The transition rates in the continuous 
Markov chain 

Table A2 
Transition rates for the computation of m~ ') 

J ~ 12 a Condition r H 

( i ~ - l ,  i 2 + l , j ~ , j 2 ,  l ) (i~ > 0) ( 1 -  b)i~X 1 
(il, i2, j~+l ,  j 2 , 1 - 1  ) (i~ > 0) 

(j~ + j2 + 1 4  n - k ) b i ~  
( i~+l ,  i 2 - 1 ,  j~+l ,  j2, (i2 > 0) 

1 - 1 )  ( j ~ + j 2 + l < ~ n - k )  i2~ 2 
( i p  i 2, j~ - 1, ./"2 + 1, 1) (j~ > 0) (1 - q)j~l~ 
(il ,  i2, j~ - 1, J2, l + 1) (Jl  > 0) qjt,ttl 
(i~,i2, J ~ , j 2 - 1 ,  1+1 ) (./'2 > 0 )  J2~2 

For the computation of the steady-state prob- 
abilities ~rt, the transition rates rjl  are required. In 
Table A1 we give, for an arbitrary microstate 
I = (i 1, i 2, Jl, J2, l), all microstates J with FjI > O, 

together with the conditions under which the par- 
ticular states J exist. These conditions are useful 
for implementation in a computer program. Fur- 
ther, note that the transition rate out of a certain 
state I = (i l, i 2, ./'1, J2, l), which is also required 
in (4), simply equals 

E r l j  = il~kl + i 2 X 2  + J l ~ l  +J2 / - t2  ( A 1 )  
j ~ 1 2  

where we use the parameters (b, Xa, ~'2) and 
(q ,  ~ ,  t t z )  for the stochastic two-phase process of 
the unit lifetime and repair time respectively (see 
Section 2 for a definition of the parameters). 

Table A3 
Transition rates for the computation of n~ ° 

J ~ 1"2 L Condi t ion  rj, 

( i l - l ,  i2+l ,  j l ,  j2, l) (il > 0) ( 1 -  b)ixX 1 
(i 1 - 1, i 2, Jl + 1, J2, 1) (i 1 > O) bilX 1 
(il, i 2 - 1 ,  j l + l ,  j2,1)  (i2 > O) i2~k2 
(il ,  i2, Jl - 1, J2 + 1, l) (./'1 > O) (1 - q)jllzl 
( i l + l ,  i2, j l - l ,  j2, l) ( j l  > O) 

( i l + i 2 + l < k )  a.jl~t 1 
( i l + l ,  i2, jl,  j2--1, l) ( j2 > 0) 

( i l + i 2 + l < k )  jfl-t2 

for an arbitrary I =  ( i l ,  i2 ,  Jl, J2, 1 ) ~  ~2 n are 
given, the data presentation being similar to that 
for Table A1. The same is done in Table A3 for 
the transition rates r H, with I, J ~ ~2 L, for the 
computation of n~ °. 

Appendix II. The transition rates for the computa- 
tion of m~ i) and n~ 0 Appendix IlL The weighting factors ~r~ and ~rf 

To compute the moments m~ ;), the transition 
rates r w for each pair of microstates I, J ~ ~2 H 
are required. In Table A2, the transition rates r H 

For the computation of qr~, the transition rates 
l,ji with J E ~'~L are required. The weighting factor 
~r~ for some I = (i t, i 2, Jl, J2, l) is only positive 

Table A1 
Specification of the transition rates in the continuous Markov chain 

Microstate J Conditions r t , 

(i I + 1 ,  i 2 - 1 ,  Jl ,  J2, 1) 
( i 1 + 1 ,  i2, Jl - 1 ,  J2, l) 
( i l ,  i2, J l - 1 ,  J2, l + l )  
(i I, i 2 + 1 ,  J 1 - 1 ,  ./'2, l) 
(i 1 - 1 , i  2 + 1 ,  J l - 1 ,  j 2 , 1 + l )  
(i 1 , i  2, j l + l ,  j 2 - 1 ,  l) 
(i I - l , i  2 , j l  + 1 ,  J2, l) 
( ip  i 2, Jl +1 ,  J2, l - 1 )  
(i 1 - 1 ,  i2, Jl ,  J2 +1 ,  l )  
( q ,  i2, Jl ,  J2 + 1 ,  1 - 1 )  

(i2 > 0) 
(i 1 + i  2 < k ) A ( j  1 > 0 )  
(i 1 + i 2 = k ) A ( j l  > 0) 
01 + i2 < k ) A ( J l  > 0) 
(i I + i 2 = k ) A ( i  1 > O)U(j, > O) 
(J2 > O) 
(n  - Jl - J 2 - 1  < k ) A ( i  I > O) 
(n  - J l -  J2 - 1  >~ k ) A ( l  > 0) 
(n  - J l -  J2 - 1  < k ) A ( i  I > 0) 
(n  - Jl - . / 2 - 1  > / k ) A ( l  > 0) 

( 1 -  b)(i  1 + 1)~ 1 
b(i 1 + 1 ) ~  1 
bil~l 
(i 2 + 1)7% 
(i2 + l ) X 2  
(1 - q)(Jl + 1)~1 
q( Jl + 1),tt 1 
q(Jl + 1)/tl 

( j2  + 1)/t2 
( j2  + l ) P 2  
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if (il > 0) and (Jl +J2 = n - k). In this case, state 
I can be reached from two states J ~ I2 e, namely 
from (i 1 - 1 , i  2, Jl +1 ,  j2, l) with rate q(Jl + 
1)# 1 and from ( i l -  1, i 2, Jl, ./2 + 1, l) with rate 
(J2 + 1)~2. 

Similarly, the weighting factor ~rt L for some 
I = (i 1, i 2, Jl, J2, l) is only possible if (Jl > 0) 
and ( J l + J 2 = n - k + l ) .  Then, state I can be 
reached from two states J ~  ~2H, namely from 
(i 1 + 1, i 2, Jl - 1, J2, l) with rate b(i I + l))k I and 
from (i, i 2 + 1, Ja - 1, J2, l) with rate (i 2 + 1)X 2. 

Appendix IV. Approximating the interval unef- 
fectiveness distribution 

For the approximation of the interval unef- 
fectiveness distribution, formula (17) has to be 
evaluated, where F(x) and G(x)  are rep)aced by 
gamma distribution functions F(x) and G(x) hav- 
ing the same first two moments as F(x) and 
G(x). Since the convolution of gamma distribu- 
tions with the same scale parameters is again a 
gamma distribution, both convolutions F(')(x) 
and G~)(x) are easy to evaluate numerically by 
using widely available codes for computing the 
incomplete gamma function. 

If FRES(x) and GRES(x) denote gamma distri- 
bution functions having the same first two mo- 
ments as FRES(x) and GRES(x) respectively, 
numerical difficulties arise when computing the 
convolutions fiRES , fi(i)(x) and d RES * G(i)(x). 
The reason is that the latter convolutions are not 
convolutions of gamma distributions with the same 
scale parameters and hence are not given by the 
easily computed gamma functions. Thus, for com- 
putational reasons, some further approximation is 
required. 

Step 1 
Fit gamma distributions fiRES(x) and GRES(x) 

to FRES(x) and GRES(x) by matching only the 
first moment and by taking care that fiRES(x) and 
GRES(x) have the same scale parameters as fi(x) 
and G(x)  respectively. Then the convolutions 
f iRES , fi(i)(x) and d RES * a(i)(x)  are easily c o m -  

p u t e d  gamma distribution functions. In this way, 
we obtain a 'first-order' approximation q'(x; to) 
to the interval uneffectiveness distribution. How- 
ever, using only a first moment fit, we create 
inaccuracies that are most significant in the 'first- 

order' approximation G o and U1 to the boundary 
points U 0 = Pr{U(t0) = 0) and U1 --- Pr(U(to) = 1 
- a}. By (17) and (18), these boundary points are 
given by 

U0= /'ton (1 _ FRES(t0)}, 
/*or, +/*ofr (A1) 

{1_ oRES(to)}. 
U~ = #on + /'ton 

It is important to observe that these boundary 
points require no computation of convolutions. 
This observation provides a way to improve the 
'first-order' approximation. 

Step 2 
Fit gamma distribution functions fiRES(x) and 

GRES(x) to FRES(x) and GRES(x) by matching 
the first two moments and use these gamma distri- 
butions to compute improved approximations /)0 
and I)1 from (A1). 

Step 3 
Correct the 'first order' approximation g'(x; to) 

in such a way that the boundary probabilities 
agree with /)0 and /)1. Thus the corrected ap- 
proximation becomes 

,t,(x; to)= ,/,(x; to) 
{ x(1- 0o) (to-X)p,), X + -  

to(1 -- U0) to 

(A2) 

where 

1 if/)1 < 0.001 and U1 < 0.001, 
P ~  ~ ^ 

U1/U 1 else. 

The latter correction is to avoid non-monotonic 
behaviour of ~'. 

Note that the moments of FRES(x) and 
GRES(x), as required in Step 1 and Step 2, can 
easily be obtained from the moments of F(x) and 
G(x). Denoting by v i and v REs the i-th moment 
of F(x) and FRES(x) respectively, some elemen- 
tary algebraic manipulations show that 

pRES Pi + 1 
(i + 1)v1" (A3) 

A similar relation applies between the moments of 
G(x) and GRES(x). 
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