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Summary.  This paper describes the evaluat ion  of semant ic  at t r ibutes in a 
bounded  n u m b e r  of passes from left-to-right and /or  from right-to-left over 
the der ivat ion tree of a program. Eva lua t ion  strategies where different 
instances of the same at t r ibute  in any der ivat ion tree are restricted to be 
evaluated in one pass, with for every der ivat ion tree the same pass number ,  
are referred to as simple mult i-pass whereas the unrestr icted pass-oriented 
strategies are referred to as pure multi-pass. 

A graph theoretic character izat ion is given, showing in which cases an 
at t r ibute  g rammar  meets the simple mult i-pass requirements  and  what  are 
the min ima l  pass numbers  of its at t r ibutes for a given sequence of pass 
directions. For  the special cases where only left-to-right passes are made or 
where left-to-right and  right-to-left passes strictly alternate, new algori thms 
are developed that associate min ima l  pass numbers  with at t r ibutes and 
indicate in case of failure the at t r ibutes that  cause the rejection of the 
grammar.  Mixing of a simple mult i-pass strategy with other evaluat ion  
strategies, in case the g rammar  is not  simple multi-pass,  is discussed. 

0001-5903/81/0016/0427/$07.60 
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1. Introduction 

Attribute grammars [10-] are used as a formal tool to describe programming 
languages and their compilers. 

Several methods have been developed to evaluate the semantic attributes 
within the derivation tree of a program [-3, 5, 7-9, 11, 12,]. An overview is 
given in [6]. 

In [-3] Bochmann suggested to evaluate the attributes in a fixed number of 
depth-first left-to-right traversals (called passes) of the tree. In [7, 8] Jazayeri 
and Walter extended this method by making alternately left-to-right and right- 
to-left passes. 

In both papers broadly the same algorithm is presented to determine for a 
given input grammar the number of passes necessary to evaluate all the 
attributes of the nodes within the derivation tree of any program. Both algor- 
ithms presuppose that the evaluation strategy is restricted in such a way that 
with each attribute it is possible to associate a fixed pass number such that the 
evaluation of all instances of that attribute in all derivation trees of the 
grammar can be performed in that pass. 

A grammar meeting this requirement can have a simple evaluation strategy. 
During each pass the evaluator simply consults the pass number of an at- 
tribute to decide whether an instance of that attribute has to be computed. If 
the above requirement is dropped the evaluation strategy has to be more 
complicated. During each pass it is necessary to check for each attribute 
instance whether it is already defined and if not, to check whether the argu- 
ments of the corresponding evaluation rule are already defined, in order to 
decide whether this instance should be evaluated. 

In this paper we will refer to the restricted way of multi-pass evaluation as 
simple multi-pass evaluation and to the unrestricted way of multi-pass evalua- 
tion as pure multi-pass evaluation. 

Since Bochmann and Jazayeri and Walter did not consider pure multi-pass 
evaluation, a comparison of pure and simple multi-pass evaluation could not 
be made. In this paper we make a clear distinction between both strategies, 
consider their formal properties and especially investigate the limitations of 
simple multi-pass evaluation compared to pure multi-pass evaluation. 

This paper is organized as follows: 
Section2 provides an introduction to the basic concepts associated with 

attribute grammars. 
In Sect. 3 we consider the idea of attribute evaluation in passes and define 

the distinction between pure and simple multi-pass evaluation. 
In Sect. 4 we present a first investigation of simple multi-pass evaluation. 

The principle that the same pass number is associated with different instances 
of the same attribute in each context leads to precedence relations among 
attributes. These relations characterize the possible distributions of the at- 
tributes over the passes. 
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We formalize these relations into a graph model where the vertices are 
associated with attributes, arcs denote dependencies and labels of the arcs 
indicate whether the direction of a pass is consistent with the "direction" of 
the dependency. Special attention is paid to the role of cycles in this pre- 
cedence graph. For every cycle in the graph, the same pass number should be 
associated with all its vertices and its labels should all be consistent with one 
of the possible pass directions. 

In Sect. 5 we compare the results of pure and simple multi-pass evaluation 
by discussing some examples. These examples show that the pure multi-pass 
strategies apply to more attribute grammars than the simple ones. 

In Sect. 6 we further investigate the simple multi-pass strategies in the 
context of the precedence graph and show that for each sequence of pass 
directions each attribute has a minimal pass-number which can be expressed in 
terms of the labels of the paths ending in the attribute. Also a graph theoretic 
characterization is given, indicating when an attribute grammar meets the 
simple multi-pass requirements: an attribute grammar is simple multi-pass if 
and only if none of its attributes are involved in a cycle whose labels are not 
consistent with one of the possible pass directions. 

At the end of this section we consider a graph theoretic version of the 
algorithm of Bochmann [3] and Jazayeri and Walter [8] to associate pass 
numbers with attributes. This algorithm computes for each sequence of pass 
directions the minimal pass number for each attribute and thus can be viewed 
as a "path finding" algorithm in the above graph. 

In Sects. 7 and 8 simple multi-pass evaluation with respect to two special 
sequences of pass directions is considered. The case where only left-to-right 
passes are executed is discussed in Sect. 7, whereas in Sect. 8 attention is paid 
to the case where left-to-right and right-to-left passes strictly alternate. 

Both sections end with two algorithms to compute pass numbers. For both 
sequences of pass directions we consider an adapted version of the algorithm 
mentioned above. 

We also present new algorithms which are special cases of a "path finding" 
algorithm of Aho, Hopcroft and Ullman [-1]. If a grammar is simple multi-pass 
with respect to one of these special sequences of pass directions they produce 
the minimal pass numbers for that sequence and in case of failure they indicate 
the attributes that cause the rejection of the grammar, i.e., the attributes that 
are involved in a cycle whose labels are not consistent with one of the possible 
pass directions. The latter algorithms produce sufficient information of the 
paths in the graph to be able to mix the simple multi-pass strategy with other 
evaluation strategies in case the attribute grammar is not completely simple 
multi-pass. 

The importance of the algorithm for strict alternating simple multi-pass 
evaluation follows from the fact that: an attribute grammar is simple multi- 
pass with respect to any sequence of pass directions if and only if it is simple 
multi-pass with respect to the sequence of pass directions where left-to-right 
and right-to-left passes strictly alternate. 

In Sect. 9 we mention subjects for further research. 
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2. Basic Concepts 

An attribute g rammar  is a context-free g rammar  augmented with attributes 
and attribute evaluation rules. 

The underlying context-free grammar  is (as usual) a four-tuple G 
=(V N, Vr,P,S ). The finite sets V u of nonterminal and V r of terminal symbols 
form the vocabulary V= V N w V r. P is the finite set of productions and Se V N is 
the start symbol, which does not appear on the right-hand side of any pro- 
duction. 

Associated with each symbol X~V is a finite set A(X) of attributes. A(X) is 
partitioned into two disjoint subsets I(X) and S(X) of inherited and synthe- 
sized attributes respectively. For X = S and for X e V r we require I(X)= O. 

The set of all attributes will be denoted by A, i.e., A =  U A(X). In this 
XeV 

paper we consider the attributes aEA(X) and aEA(Y) as different if the sym- 
bols X and Y are different. If  necessary we will denote an attribute a of symbol 
X by a(X). 

Let P consist of r productions, numbered from 1 to r and let the p-th 
production be 

Xpo--+ Xpl Xp2 ... Xpn p 

where np~O, Xpo6V N and Xpk~.V for 1 ~k~np.  
Production p is said to have the attribute occurrence (a,p,k) if aeA(Xpk ). 

The set of all attribute occurrences of production p will be denoted by AO(p). 
This set can be partitioned into two disjoint subsets of defined occurrences and 
used occurrences denoted by DO(p) and UO(p) respectively. 

These subsets are defined as follows: 

DO(p) = {(s, p, O)[seS(Xpo)} w 

{(i,p,k)liEI(Xpk) A l <-k <-np}, 

UO(p) = AO(p) - DO(p) 

= {(i,p, O)li6I(Xpo)} w 

{(s,p, k)ls~S(Xpk )/x 1 <k<-np}. 

Associated with each production p are a number of attribute evaluation 
rules which specify for each attribute occurrence in DO(p) how to compute the 
value of such an occurrence as a function of certain other attribute occurrences 
in AO(p). 

For production p an attribute evaluation rule is written as 

(a, p, k): = f ( (a  I , p, k 1), (a 2, p, k2) . . . . .  (am, p, k,,)) 

where (a,p,k)~DO(p),f is a total function and (aj,p,k~)~AO(p) for l<j<m. It 
is easy to transform every attribute evaluation rule (by a sequence of sub- 
stitutions) such that only attribute occurrences in UO(p) appear as arguments 
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of function f (cf. [3]). This means that the extra conditions 

(aj, p, ki)~UO(19) for l < j < m  

are satisfied. Therefore, we will allow only used occurrences as arguments in 
attribute evaluation rules. 

If production p has an associated attribute evaluation rule such that at- 
tribute occurrence (a,19,j) is used as argument for the evaluation of attribute 
occurrence (b, p, k) then we say: (b, 19, k) depends on (a, 19,J). 

For each sentence of G a derivation tree exists. The nodes of the tree are 
labeled with symbols from V. 

For  each interior node there is a production X v o ~ X p x X v 2  Xv,  p, such 
that the node is labeled with Xpo and its np sons are labeled with 
Xvl ,  Xp2 . . . . .  Xv,  ~ respectively. We say that production 19 applies at that node. 

Given a derivation tree, instances of attributes are attached to the nodes in 
the following way: If node r/is labeled with g rammar  symbol X, then for each 
attribute acA(X)  an instance of a is attached to node r/. We say that the 
derivation tree has attribute instance a(q). 

Let t/o be a node, p the production applied at t/0 and ~]1,/.]2, . . . , t l n  v the sons 
of t/o from left-to-right respectively. 

An attribute evaluation instruction 

a(r/k) : =f(al(rlkl), a2 (r/k 2) . . . . .  ara(rlkm)) 

is associated with attribute instance a(?lk ) if the attribute evaluation rule 

(a, p, k)." = f ((a,, p, k 1), (a 2, P, k 2) . . . .  , (am, P, kin)) 

is associated with production p. 
The task of an attribute evaluator is to compute the values of all attribute 

instances attached to the derivation tree, by executing the attribute evaluation 
instructions associated with these attribute instances. In general the order of 
evaluation is free, with the only restriction that an attribute evaluation in- 
struction cannot be executed before the values of its arguments are defined. 
Initially the values of all attribute instances attached to the derivation tree are 
undefined, with the exception of the (synthesized) attribute instances associated 
with terminal symbols. The latter are determined by the parser. 

At each step an attribute instance is chosen, whose value can be computed. 
The evaluation process continues until all attribute instances in the tree are 
defined or until none of the remaining attribute instances can be evaluated. 

An attribute g rammar  is circular if a derivation tree exists for which it is 
not possible to evaluate all attribute instances. 

3. Evaluation in Passes 

In order to choose an attribute evaluation strategy which holds for every 
derivation tree of an attribute grammar,  one could analyse the dependency 
relations between the attribute occurrences in the evaluation rules of the 
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grammar. Such a strategy is flexible [6] in the sense that the way of walking 
along the nodes of the derivation trees is determined by the dependencies of 
the attribute occurrences in the grammar. 

As opposed to such a flexible strategy a rigid strategy can be considered, 
where the visiting order of the nodes is chosen a priori, i.e., independent of the 
attribute dependencies. 

An example of such a rigid strategy is to make a number of passes over the 
derivation tree, where a pass is defined to be a depth-first left-to-right or right- 
to-left traversal of the derivation tree. 

If no further restrictions are made, attribute evaluation in left-to-right 
passes is defined by the following algorithm (which works for every noncircular 
attribute grammar). 

Algori-hm 3.1. Attribute evaluation in left-to-right passes. 

Input: an attributed derivation tree where only the attribute instances of the 
terminal symbols are evaluated. 

Output: an attributed derivation tree where all attribute instances are evaluat- 
ed. 

Algorithm: 
begin 

procedure visit subtree (n: node); 
begin {assume production p is applied at node n} 

for k from ! to np 
do if Xpke V N 

then for each aEI(Xpk ) 
do if instance of a is undefined 

and all argument  instances of the 
evaluation rule for a are defined 

then evaluate instance of a 
fi 

od; 
visit subtree (k-th descendant of n) 

fi 
od; 
for each aES(X po ) 
do if instance of a is undefined 

and all argument  instances of the 
evaluation rule for a are defined 

then evaluate instance of a 
fi 

od 
end {of visit subtree}; 

while not all attribute instances are evaluated 
do visit subtree (root) od 

end [] 

Each call of visit subtree (root) corresponds to a pass. 
Observe that each attribute instance is evaluated at the earliest possible 

pass and that it may happen that different instances of the same attribute are 
evaluated at different passes. 
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3.1. Pure Muhi-Pass Evaluation 

When the number  of passes cannot exceed a finite upper bound, we refer to 
the evaluation strategy described in Algorithm 3.1 as pure multi-pass evaluation. 
By "pure"  we mean that besides the restriction on the number of passes no 
other restrictions are imposed on the grammar.  

Remark. The only reason why Algorithm 3.1 is displayed in this paper is to 
explain evaluation in passes (and not in order to be used in practice). 

Definition3.1. For  m >  1, an attribute g rammar  is pure LR m-pass if for each 
derivation tree of the grammar  evaluation is possible in at most m left-to-right 
passes. 

An attribute g rammar  is pure LR multi-pass if it is pure LR m-pass for some 
m. []  

If an attribute g rammar  is pure LR m-pass the while statement of Algor- 
ithm 3.1 can be replaced by 

for i from 1 to m 
do visit subtree (root) od 

In Algorithm 3.1 only left-to-right (for k from 1 to n~) passes were made. In 
the following we also discuss evaluation algorithms where alternately left-to- 
right and right-to-left (for k from np downto 1) passes are executed. In the case 
of multi-pass evaluation where passes in Both Directions (left-to-right and 
right-to-left) are allowed we indicate the directions of the successive passes by 
a sequence (d 1 . . . .  ,d,,) where d i ( l < i < m )  denotes the direction of the i-th 
pass, which is either L (left-to-right) or R (right-to-left). 

Definition3.2. For m >  1, an attribute g rammar  is pure BD m-pass if for some 
sequence (d 1 .. . .  ,din) of pass directions, for each derivation tree of the gram- 
mar  evaluation is possible in at most m passes (where pass i has direction d i for 
1 <_i<m). 

An attribute g rammar  is pure BD multi-pass if it is pure BD m-pass for some 
m. [] 

3.2. Simple Multi-Pass Evaluation 

The pure multi-pass evaluation strategy is inefficient in the sense that during 
each pass for each attribute instance it is necessary to check whether the 
instance is already defined and if it is not defined to check whether the 
arguments of the corresponding evaluation instruction are already defined to 
be able to decide that this instance can or cannot be evaluated. 

In order to achieve more efficiency with respect to the evaluation algorithm 
we impose a further restriction on the g rammar  and require that all different 
instances of the same attribute in any derivation tree have to be evaluated in 
the same pass, with for each derivation tree the same pass number. With this 
restriction in mind we try, for a given attribute g rammar  to partition the set A 
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of attributes into a sequence (A1, . . . ,Am) of mutually disjoint subsets of A, 
such that the instances of the attributes in set A i ( l < i < m )  can be evaluated 
during the i-th pass. If such a partition exists, a simple evaluation strategy can 
be used. During pass i simply the set A i is consulted in order to decide that an 
instance of an attribute has to be computed. 

We will refer to this evaluation strategy as simple multi-pass evaluation. 
Since we will also consider attribute grammars for which only a subset of 

the set A of attributes can be evaluated in passes by a simple multi-pass 
evaluator, we need also "partial partitions" which do not exhaust the whole of 
A. 

Definition3.3. A partial partition of the set A of attributes is a sequence 

(A 1 . . . .  ,Am) of mutually disjoint subsets of A. It is complete if 0 Ai=A. [] 
i=1 

Simple multi-pass evaluation by making left-to-right passes only is defined 
by the following algorithm, where (A~ ... . .  Am) is a given partial partition of A. 

Algori-hm 3.2. Simple left-to-right multi-pass evaluation. 

Input: an attributed derivation tree where only the attribute instances of the 
terminal symbols are defined. m 

Output: an attributed derivation tree where all attribute instances of U A~ are 
defined, i= 1 

Algorithm: 
begin 

procedure visit subtree (n: node; i: pass number);  
begin {assume production p is applied at node n} 

for k from 1 to np 
do if X pk ~ VN 

then for each a~l(Xpk ) 
do if aEA~ 

then evaluate instance of a 
fi 

od; 
visit subtree (k-th descendant of n, i) 

fl 
od; 
for each aeS(Xpo) 
do if a~A i 

then evaluate instance of a 
fi 

od 
end {of visit subtrec}; 

for i from 1 to m 
do visit subtree (root, i) od 

end [ ]  

We define a partial partition of the set A of attributes of an attribute 
grammar to be correct when Algorithm3.2 always works, i.e., when 'evaluate 
instance of a' never gives the error message that one of the argument instances 
of the evaluation instruction for a is undefined. 



A Characterization of Attribute Evaluation in Passes 435 

Definition 3.4. A partial partition (A 1 . . . .  ,Am) of the set A of attributes of an 
attribute g rammar  is LR-correct if the instances of all attributes in set A i 
(1 __< i__< m) can be evaluated during the i-th pass of Algorithm 3.2. [] 

Definition3.5. An attribute g rammar  is simple LR m-pass if an LR-correct 
complete partition (A1, . . . ,Am) of the set A of attributes exists. An attribute 
g rammar  is simple LR multi-pass if it is simple LR m-pass for some m. [] 

In the following we also discuss simple multi-pass evaluation where left-to- 
right as well as right-to-left passes are allowed. 

Simple BD multi-pass evaluation where (A 1 .. . .  ,Am) is a given partial 
partition of the set A of attributes and (dl . . . . .  d,,) is a given sequence of pass 
directions, is defined by an algorithm which is almost the same as Algorithm 
3.2: the first for statement of procedure visit subtree has to be changed into 

if d i = L 
then for k from 1 to np do... od 
else for k from np downto 1 do. . .  od. 

We refer to the algorithm for simple BD multi-pass evaluation as 
Algorithm 3.2-BD. 

Definition3.6. A partial partition (A 1 . . . . .  Am) of the set A of attributes of an 
attribute g rammar  is BD-correct with respect to a given sequence (dl .... ,d,,) of 
pass directions if the instances of all attributes in set Ai ( l < i < m )  can be 
evaluated during the i-th pass of Algorithm 3.2-BD. [] 

Definition3.7. An attribute g rammar  is simple BD m-pass if with respect to 
some sequence (d l ,  ...,din) of pass directions a BD-correct complete partition 
of the set A of attributes exists. 

An attribute g rammar  is simple BD multi-pass if it is simple BD m-pass for 
some m. [] 

Given a partition of the set of attributes of an attribute g rammar  a pass 
function can be defined indicating for each attribute the number of the pass 
during which its instances should be evaluated. 

Definition 3.8. For  each partial partition (A~ .. . .  ,Am) of the set A of attributes 
of an attribute g rammar  a pass function pass (a), where a is an attribute of A, is 
defined as follows: 

pass(a) = i if aEA i 

pass(a) = ~ if a e A -  0 Ai" 
i = 1  

The pass function is complete if the partition is complete. 
The pass function is LR-correct if the partition is LR-correct. 
The pass function is BD-correct with respect to some sequence of pass direc- 
tions if the partition is BD-correct with respect to that sequence. []  
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It should be clear that there is a one-to-one correspondence between partial 
partitions and pass functions. Notice that for a complete partition pass(a) is 
finite for all aeA. 

We end this section with three observations concerning the relationship of 
simple multi-pass evaluation and other attribute evaluation strategies. 

1. The simple multi-pass evaluation strategies are not flexible inasmuch for 
the development of a flexible strategy the starting point has to be an analysis 
of the dependencies of the grammar. See for example [-9]. For the simple 
multi-pass strategy the starting point is to make a bounded number of passes 
with given directions over the possible derivation trees. In the second place 
dependency relations of the grammar are analysed in order to find the number 
of passes necessary, and to distribute the attributes over the passes. The 
problem how to find for a given grammar the sequence of pass directions such 
that the number of passes is minimized, will not be discussed in this paper. See 
[12]. 

2. Given an LR/BD correct partition {A1, ...,Am) of the set A of attributes 
of an attribute grammar, it is easy to see that after the i-th pass of the pure 
LR/BD multi-pass evaluator all instances of attributes in A i have been evaluat- 
ed. From this we conclude: if an attribute grammar is simple LR/BD m-pass 
then for each derivation tree the number of passes required for pure multi-pass 
evaluation is <m. 

3. Figurel  shows the relationship between pass-oriented evaluation stra- 
tegies. By simple LR, pure LR, simple BD and pure BD we denote respectively 
the classes of attribute grammars that are simple LR, pure LR, simple BD and 
pure BD multi-pass. From observation 2 we immediately conclude: simple 
LR ~_ pure LR and simple BD c_ pure BD. Given an LR-correct partition 
(A 1 . . . . .  Am) of the set A of attributes of an attribute grammar, this partition is 
clearly a BD-correct partition with respect to the sequence (d l , . . . , dm)  of pass 
directions where di=L for 1 <i<m. Hence, simple LR c simpleBD. In the 
same way, pure LR ~_ pure BD. In Sect. 5 we will show by discussing some 
examples that the inclusions are proper and that the unconnected classes (pure 
LR and simple BD) are incomparable. 

 pure,   
simple BD pure LR 

~ s i m p l e  LR ~ 

Fig. 1. Relationship between pass-oriented evaluation strategies 

4. A First Investigation of Simple Multi-Pass Evaluation: Some Relations 

Let AG be an attribute grammar and A the set of attributes of AG. To be able 
to construct a correct partition of A (and to define the associated pass func- 
tion) we have to consider: 

1: the dependency relations between attribute occurrences in the evaluation 
rules, 
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2. the order in which attribute occurrences are considered during a left-to- 
right or a right-to-left pass. 

Starting from the dependency relations between attribute occurrences and 
for the present ignoring the effects of the directions of the passes, we define a 
precedence relation 'p rec '  among attributes. 

Definition 4.1. The relation a prec b between attributes a and b holds if a 
production X p o ~ X ~ l  Xp2 ... Xp,p exists with attribute occurrences (a,p,j) and 
(b,p, k) such that (b,p, k) depends on (a,p,j). [] 

Example4.1. Consider attribute g rammar  AGO with S = Z ,  VN={Z,A,B} ,  
V r = {t}, and 
attributes: I(Z) = 0 I(A) = {in(A)} I(B) = {in(B)} 

S(Z) = {result(Z)} S(A) = {out(A)} S(B) = {out(B)} 

productions evaluation rules 
1 : Z--* AB result(Z) = = out(A) 

in(A) ,=out (B)  
in(B) , = constant 

2: A--*t out(A) ,=in(A) 
3: B--*t out(B) ,=in(B) 

For  attribute g rammar  AGO the only possible sentence is tt. 
Figure2 shows the attributed derivation tree of t t with attribute instances 

and their dependencies. 
From the dependencies in the evaluation rules of the grammar  we find the 

precedence relations: 

prod. 1: out(A) prec result(Z) prod. 2: in(A) prec out(A) 
out(B) prec in(A) prod. 3: in(B) prec out(B). [] 

j / ~ , ~  constant 

I [ 
I I 
I I 

t t 

Fig. 2. Attributed derivation tree of grammar AGO 

Let a and b be attributes of attribute g rammar  AG and let pass be a correct 
pass function. 

Notice that if a prec b then pass(a)<pass(b)  because the instances of b 
cannot be computed in an earlier pass than the instances of a; moreover for 
pass(a) and pass(b) finite, pass(a)=pass(b)  can only hold if during the concern- 
ing pass for each instance of attribute b that depends on a certain instance of 
attribute a, that instance of a is found before the instance of b. Hence we have 
to introduce stronger precedence relations between attributes a and b that 
indicate, given the direction of the concerning pass, whether for each pair of 
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instances of a and b such that the instance of b depends on the instance of a, 
the instance of a is found before the instance of b. 

Before considering such relations between attributes, we discuss the corre- 
sponding relations between attribute occurrences. 

The direction of a pass imposes an ordering relation among the instances 
of the attributes in the derivation trees and hence also of the occurrences in 
each production. 

Consider a production p: X p o ~ X p l X p 2 . . . X p , p .  For a left-to-right pass 
the visiting order of the attribute occurrences is as follows: occurrences of 
inherited attributes of Xpo, occurrences of inherited attributes of Xpl,  occur- 
rences of synthesized attributes of Xpx .. . .  , occurrences of inherited attributes 
of Xp,p, occurrences of synthesized attributes of Xp,p, occurrences of synthe- 
sized attributes of Xpo. For  a right-to-left pass the only difference is that the 
symbols of the right-part of production p are visited in the order 
Xp,p, .... Xp2, Xpl. 

In accordance with this we define, for Left-to-Right and Right-to-Left 
passes respectively, precedence relations between used attribute occurrences 
and defined attribute occurrences which indicate the order in which the occur- 
rences are found during such a pass. 

Definition4.2. In production p: Xpo--.* Xpl Xp2 ...Xpn p with (b,p,k)~DO(p) and 
(a,p,j)eUO(p) the relation (a,p,j) LR-occurs-before (b,p,k) holds if and only if 
the following condition is satisfied: if 1 < k <np then j < k. [] 

Definition4.3. In production p: Xpo--,Xpl Xp2 .., Xpn p with (b,p,k)~DO(p) and 
(a,p,j)sUO(p) the relation (a,p,j)RL-occurs-before (b,p,k) holds if and only if 
the following condition is satisfied: if 1 < k <_ np then j = 0 or j > k. []  

Now taking into account the direction of the passes we define the following 
precedence relations between attributes. 

Definition4.4. The relation a Lb  between attributes a and b holds if a prec b 
and for each production X p o - - ~ X p l X p 2 . . . X p n  p with attribute occurrences 
(a, p,j) and (b, p, k) such that (b, p, k) depends on (a, p,j), (a, p,j) LR-occurs-before 
(b,p,k). [] 

Note that if a prec b then at least one production p exists such that (b, p, k) 
depends on (a, p,j) for some j, k. 

Definition4.5. The relation a Lb  between attributes a and b holds if a prec b 
but n o t a L b .  [] 

a Lb  indicates that a production exists where a defined occurrence of b 
depends on a used occurrence of a, but where the used occurrence of a is not 
found before the defined occurrence of b. 

Now we define analogous relations concerning right-to-left passes. 

Definition 4.6. The relation a R  b between attributes a and b holds if a prec b 
and for each production X p o ~ X p l X p 2 . . . X p ,  ~ with attribute occurrences 
(a, p,j) and (b, p, k) such that (b,p, k) depends on (a, p,j), (a,p,j) RL-occurs-before 
(b,p,k). [] 
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Definition4.7. The relation al~b between attributes a and b holds if a prec b 
but n o t a R b .  []  

Example4.2. From the dependencies in the evaluation rules of grammar AGO 
(see Example 4.1) we find the precedence relations: 

out(A) L result(Z) out(A) R result(Z) 
out(B) L in(A) out(B) R in(A) 
in(A) L out(A) in(A) R out(A) 
in(B) L out(B) in(B) R out(B). 

To understand the consequences of Definitions 4.4 up to and including 4.7 we 
give the following theorems, which characterize the correct partitions in terms 
of the introduced precedence relations. 

Theorem4.1. A partial partition (A 1 . . . . .  A,,) of the set A of attributes of an 
attribute grammar AG is BD-correct with respect to a given sequence 
(d l ,  . . . ,d, ,)  of pass directions if and only if for the corresponding pass function 
'pass' and for all attributes a and b: 

(i) if a prec b then pass(a)<pass(b). 
(ii) if aLb  and pass(a) or pass(b) is finite and a left-to-right pass then 

pass (a) < pass (b). 
(iii) if al~b and pass(a) or pass(b) is finite and a right-to-left pass then 

pass(a) < pass(b). 

Proof (~) 

(i) From a prec b it follows that the instances of b cannot be computed in 
an earlier pass than the instances of a. 

(ii) If pass(b)=oo then pass(a)<pass(b). Now assume that pass(b) is finite. 
If a Lb then a prec b and not (aLb). From a prec b follows that 
pass(a)<pass(b); from not (aLb) follows that the instances of a and b cannot 
be computed during the same left-to-right pass. Hence pass(a)<pass(b). 

(iii) Proceeds along the same lines as (ii). 
(~ )  we prove this part of the theorem by induction on the size, i.e., the 

number of subsets of the partition. 
I. Al={a]pass(a)=l }. From attribute grammar AG a grammar A G  1 is 

constructed in the following way. 
(1) A 1 is the set of attributes of grammar AG 1. 
(2) Each evaluation rule (a,p,k)==f(...), where a is in A1, is an evaluation 

rule of grammar AG 1. 

Clearly, since by (i) there is no attribute beA~ such that one of its occur- 
rences depends on an occurrence of an attribute a~A1,AG 1 is a proper 
attribute grammar. 

Now we distinguish two cases: 
1.: d 1 =L,  i.e., A 1 is associated with a left-to-right pass. 
2.: d 1 =R, i.e., A~ is associated with a right-to-left pass. 

Case1. By (ii), for attributes a and b~A~, if a prec b then not (aLb) and hence 
a L b. Hence, all dependencies between attribute occurrences satisfy the LR-occurs- 
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before condition. Consequently (cf. [3]), grammar AG 1 is simple LR one-pass. 
Hence (A~) is an LR-correct and, with respect to the sequence ( L )  of pass 
directions, also a BD-correct (partial) partition of the set A of attributes. 

Case2. From (iii) it follows (analogously to the case d~=L) that all de- 
pendencies between attribute occurrences of grammar AG~ satisfy the RL- 
occurs-before condition. Hence (A1) is, with respect to the sequence ( R )  of 
pass directions, a BD-correct (partial) partition of the set A of attributes. 

II. Induction step. 
Induction hypothesis: with respect to the sequence (d 1 .. . .  ,dl) of pass 

directions, (A 1 . . . . .  Ai) is a BD-correct partial partition. We have to prove that 
(A1 ..... AI, A~+ 17 is a BD-correct partial partition with respect to the sequence 

(dl  .... ,di, di+ 1). 
Ai+ 1 = {alpass(a) = i+  1}. From attribute grammar AG a grammar AG~+ 1 is 

constructed in the following way. 
(1) Ai+ 1 is the set of attributes of grammar AG~+ 1. 
(2) Each evaluation rule (a,p,k):=f(...), where a is in Ai+l, is an evalua- 

tion rule of grammar AGi+I; in these evaluation rules the occurrences of 
i 

attributes in U A~ are replaced by constants. 
)=1 

Clearly, since by (i) there is no attribute b~A~+~ such that one of its 
occurrences depends on an occurrence of an attribute aCA~+l, AG~+~ is a 
proper attribute grammar. 

Now assume that di+ ~=L (for di+l=R the proof is similar). 
From (ii) it follows that for attributes a and beAi+~, if a prec b then not 

(aLb) and so a Lb. Hence, all dependencies between attribute occurrences 
satisfy the LR-occurs-before condition. Hence, as before, grammar AG~+~ is 
simple LR one pass, i.e., all attributes in A~+ 1 can be evaluated in the (i+ 1)th 
pass. This implies that, with respect to the sequence (d 1 ..... d~,d~+l) of pass 
directions, (A1, . . . ,A i ,Ai+I)  is a correct partial partition of the set A of 
attributes. 

Thus we have proved that (A m ... .  ,Am) is a BD-correct (partial) partition 
with respect to the sequence (d 1 . . . .  ,din) of pass directions. [] 

Clearly, for left-to-right passes only, the following theorem holds. 

Theorem4.2. A partial partition (A 1 . . . . .  Am) of the set A of attributes of an 
attribute grammar AG is LR-correct if and only if for the corresponding pass 
function 'pass' and for all attributes a and b: 

(i) if a prec b then pass (a) < pass (b). 
(ii) i f a L b  and pass(a) or pass(b) is finite, then pass(a)<pass(b). []  

Theorems 4.1 and 4.2 show that knowledge of the relations L, L, R and /~  
between the attributes of an attribute grammar AG suffices to determine 
whether AG is simple LR- and/or BD multi-pass. 

To make the discussion of these relations easier, we introduce a graph 
model determined by these relations. For each attribute grammar AG a direct- 
ed graph is set up as follows. 
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Each vertex of the graph is associated with an attribute of AG. Arc (a, b) is 
contained in the graph if the relation a prec b holds between attributes a and 
b. To each arc two labels are assigned in the following way: if the relation 
aLb holds, then arc (a,b) has label L, otherwise L; if the relation aRb holds, 
then arc (a, b) has label R, otherwise R. 

This labeled directed graph associated with attribute grammar AG will be 
denoted by PBD(AG) and will be called the BD-precedence graph of attribute 
grammar AG. For LR multi-pass evaluation we only need the labels L and L. 
The graph where the labels R and K are omitted will be denoted by PLR(AG) 
and will be called the LR-precedence graph of attribute grammar AG. 

Notice that the vertices of the precedence graphs are attributes and not 
attribute instances. The requirement that different instances of the same attribute 
have to be evaluated during the same pass makes that different dependency 
properties of different instances of the same attribute cannot be distinguished. 

Example4.3. The BD-precedence graph of grammar AGO (see Example4.1) is 
given in Figure 3. 

. / ~ , - 0  result (Z) 

o@ (A)C, / 

i 

in (A)O 
L,R 

F i g . 3 .  PBo(AGO) [] 

0 in (B) 

I L,R 
0 out {B) 

In the context of precedence graphs we need the notions of path and cycle. 
For  paths we will use the following notation, p[a~,a 2 . . . . .  a,] for n____l stands 
for a (possibly empty) path of length n - l ,  composed of the arcs (at,a2) , 
(a2,as) . . . . .  (a,_t ,a,) .  p[a] stands for an empty path with attribute a involved. 
A cycle is a path p[al,a 2 . . . . .  a,] with n__>2 and a,=a 1. 

In the following we will prove that the labeling of the cycles plays an 
essential role in the acceptance or rejection of an attribute grammar in the 
context of the simple multi-pass strategies. For that reason we define the 
notions of L-, R- and L-K-cyc le .  

Definition4.8. With respect to the precedence graphs PLR(AG) and PBD(AG) of 
an attribute grammar AG, 
an L-cycle is a cycle where at least one of the arcs has label L; 
an R-cycle is a cycle where at least one of the arcs has label K; 
an L-R-cycle is a cycle where at least one of the arcs has label L and at least 
one of the arcs has label R. []  

Now we collect some easy conclusions of Theorems 4.1 and 4.2 in a 
corollary. 
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Corollary 4.1. Let p [a l ,  a2,...  , a,] be a cycle in the graphs PLR(AG) and ~D(AG) 
of attribute grammar AG. 

If attributes al, a2, , a, have a finite pass number during simple multi-pass 
evaluation, the following holds: 

(i) all instances of all attributes of the cycle have to be evaluated during 
the same pass, i.e., pass(aO=pass(a2) . . . . .  pass(a,); 

(ii) if the cycle is an L-cycle (respectively an R-cycle), then it is impossible 
to evaluate the instances of the attributes of the cycle during a left-to-right 
pass (respectively a right-to-left pass); 

(iii) if the cycle is an L-/~-cycle,  then it is impossible to evaluate the 
instances of the attributes of the cycle during any pass. 

Proof. (i) From Theorem4.1(i) it follows that pass(al)<pass(ai+l) for l < i <  
n - 1 .  Hence, pass(a0<pass(a2)< <pass(a , )=pass(a0 .  Hence, all pass num- 
bers are equal. 

(ii) Assuming that the pass direction is L, from aiLai+ 1 for some i 
(1 < i N n -  1) follows (Theorem4.1(ii)): pass(ai)<pass(ai+l). This contradicts 
the equality of the pass numbers of the attributes of the cycle. For the pass 
direction R the proof is analogous. 

(iii) Follows immediately from (ii). []  

In Sects. 6 and 7 we will prove that an attribute grammzlr is simple BD 
multi-pass if and only if its BD-precedence graph has no L /~-cycles and that 
an attribute grammar is simple LR multi-pass if and only if its LR-precedence 
graph has no L-cycles. 

5. Comparison of Pure and Simple Multi-Pass Evaluation: Some Examples 

To give an impression of the limitations of simple multi-pass evaluation in 
comparison with pure multi-pass evaluation, we consider some examples. 
Firstly we consider three attribute grammars where the simple LR or even the 
simple BD multi-pass strategy fails, but where the pure strategies succeed. 
Secondly we discuss a grammar which belongs to the classes pure BD and 
simple BD but not to the classes pure LR and simple LR. 

In all examples the initial nonterminal Z will have one synthesized at- 
tribute result(Z), whereas all other nonterminals X will have one inherited 
attribute in(X) and one synthesized attribute out(X). Multiple occurrences of 
an X in the same derivation tree or in different derivation trees are distin- 
guished by subscripts in order to be able to distinguish different instances of 
the same attribute of X in the possible derivation trees of the grammar. In the 
description of the grammars the evaluation rules are omitted. The dependen- 
cies between the attribute occurrences can be found in the possible derivation 
trees. 

At the end of this section - after having discussed the properties of the 
example grammars - we will come back to the classification of pass-oriented 
attribute evaluation strategies. 
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ExampleS.1. Consider attribute grammar AG1 with VN={Z,E }, Vr={e }, and 
P={Z-- ,  EE, E ~e}.  

The only possible sentence is ee. Figure4 shows the attributed derivation 
tree of ee with attribute instances and their dependencies. The associated BD- 
precedence graph is given in Fig. 5. 

/ / / ' ~ ~  constant 

I I 
e e 

Fig.4. Attributed derivation tree of grammar AG1 

result (Z) 
o 

E,R 

in (E) o o out (E) 

L,R 

Fig. 5. PBD(AGI) 

The grammar is pure LR 2-pass. During the first pass the attribute in- 
stances in(E2) and out(E2) are evaluated, during the second pass the instances 
in(E1), out(E1) and result(Z). 

Considering the associated LR-precedence graph we find that the grammar 
is not simple LR multi-pass. The graph includes the L-cycle p[in(E), out(E), 
in(E)]. Hence, the instances of attributes in(E) and out(E) cannot be evaluated 
during a left-to-right pass (Corollary 4.1(ii)). 

Observe however that all attribute instances can be evaluated during one 
right-to-left pass. Hence, the grammar is simple BD one-pass. 

Notice that in the derivation tree of the grammar there is no nonempty 
dependency path from instance in(E1) to itself or from instance in(E2) to itself, 
although in the associated BD-precedence graph there is a nonempty path 
from attribute in(E) to itself. Hence, the graph PsD(AG1) suggests a dependency 
that does not exist in the only possible derivation tree of grammar AGI. The 
reason for this suggested dependency is that in the precedence graph it is 
impossible to distinguish different instances of attribute in(E). The same holds 
for attribute out(E). 

Other examples of such suggested dependencies can be found in the as- 
sociated precedence graphs of the following grammar examples. [] 
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Example 5.2. Consider attribute grammar AG2 with V N = {Z, C, D, E}, V T = {d, e}, 
and P={Z--* EC, C--* ED, E ~e ,  D--.d}. 

The only possible sentence is eed. Figure6 shows the attributed derivation 
tree of eed with attribute instances and their dependencies. The associated BD- 
precedence graph is given in Fig. 7. 

constant j J / / / Z ~ " ~  

I 

e 

1 1 
I I 

e d 

Fig. 6. Attributed derivation tree of grammar AG2 

o result (Z) 

OUto~~ ~ (C) 

in (E) ~ L~'# i "~iRi~n (~ (C) ~R 

out (D] o= ) L,R 
Fig. 7. PBD(AG2) 

The grammar is pure BD 2-pass with respect to the sequences <L,L), 
<L, R> and <R, R> of pass directions. With respect to the sequences <L, L> and 
<L,R> the same order of evaluation holds: during the first pass the instances 
in(E0, out(E1), in(C), in(D) and out(D); during the second pass the instances 
in(E2) , out(E2) , out(C) and result(Z). Observe that for the sequence <R,R> the 
evaluation of the instances in(C), in(D) and out(D) has to be deferred to the 
second pass. 

Clearly, since the grammar is pure BD 2-pass with respect to the sequence 
<L, L>, the grammar is also pure LR 2-pass. 

All simple multi-pass evaluation strategies fail! The graph PBD(AG2) in- 
cludes the L-/~-cycle p[in(E), out(E), in(C), in(D), out(D), in(E)]. Hence, the 
instances of the attributes which form part of this cycle cannot be evaluated 
during any pass (Corollary 4. l(iii)). 
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Example 5.3. Consider attribute grammar AG3 with V N = {Z, D, E}, VT= {a, b, d, e}, 
and P= {Z-,aED, Z ~b  ED, D--*d, E ~e}. 

The possible sentences are aed and bed. Figure8 shows the attributed 
derivation trees for these sentences. The associated BD-precedence graph is 
given in Fig. 9. 

Jd ',, ~ / / / /  \ 

cons tan t / / / /  

,, I 
e d (a) 

/ /  / /  \\ 
/ // ' /  constant 

/~/i/z / iii X\\ 

I I I I 
e d (b) 

Fig. 8. Attributed derivation trees of grammar AG3 

in(E) 
0 

out(D) , ~ - ~, , ~ ~ R  L , ~ _  ~ (E) 

L,R L,R 

in (D) 

Fig. 9. PBo(AG3) 

Pure multi-pass evaluation is possible for any sequence (dl,d2) of pass 
directions. 

From the existence of the L-/~-cycle p[in(E), out(E), in(D), out(D), in(E)] 
in graph PBo(AG3) follows that simple BD multi-pass evaluation is not possible. 

Observe that, in order to construct a path from in(E) to itself in graph 
PBD(AG3), we have to combine two different paths from the two possible derivation 
trees in Fig. 8. [] 

Example 5.4. Consider attribute grammar AG4 with V N = {Z, A, B}, V r = {a, b}, 
and P = { Z ~ A ,  A--* AB, A~a ,  B~b}.  

The possible sentences are ab" (n>0). For sentence abb the derivation tree 
is given in Fig. 10. Figure 11 shows the associated BD-precedence graph. 
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Fig. 10. Attributed derivation tree for sentence abb of grammar AG4 

Notice that the number of pure left-to-right passes necessary to evaluate all 
the attribute instances depends on the depth of the recursion. So there is no 
fixed upper bound to the number of left-to-right passes and hence the grammar 
is not pure LR multi-pass. 

Of course the simple LR multi-pass strategy also fails. (Notice the existence 
of the L-cycle p[in(A), in(B), out(B), in(A)] in PsD(AG4)). Observe that evalua- 
tion is possible in one right-to-left pass. Hence, the grammar is simple BD one- 
pass. []  

in(A) L,R 
o 

out(B) o " / / / /  L,R 

o result(Z) 

(A) 

' ~  I_,R 

X o  in (B) 

Fig. 11. PsD(AG4) 

Now we come back to the classification of pass-oriented evaluation meth- 
ods as given at the end of Sect. 3 (see Fig. 1). 

Grammar  AG4 is simple BD but not pure LR. Grammars AG2 and AG3 
are pure LR but not simple BD. Hence the classes simple BD and pure LR are 
incomparable. From this follows that the inclusions depicted in Fig. 1 are 
proper. 

6. Simple Left-to-right and/or Right-to-left Multi-Pass Evaluation 

As shown in Theorem4.1 knowledge of the relations L , L , R  and/~ between the 
attributes of attribute grammar AG suffices to determine whether a given 
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partial partition of the set of attributes of AG is BD-correct with respect to a 
given finite sequence of pass directions. 

In this section we consider the case where a partitition is not given in 
advance but where we have to find a correct partition with respect to a given 
sequence of pass directions. Since in general also the number of passes to be 
made is unknown in advance, we need sequences of pass directions where the 
number of passes is unbounded. For such an infinite sequence we use the 
notation ( d l ,  d2 , . ,  . ) .  

We define a partition (A1 . . . . .  Am) of the set of attributes of attribute gram- 
mar AG to be BD-correct with respect to the infinite sequence (dl  . . . .  ,d . . . . .  ) 
if and only if it is BD-correct with respect to the finite sequence (d 1 . . . . .  d,,) 
(and similarly for pass functions). 

We will show that the precedence relations between attributes yield suf- 
ficient information to be able to decide whether an attribute grammar is simple 
multi-pass and if so, to compute the BD-correct complete partition with mini- 
mal pass numbers and, if not, to compute the BD-correct partial partition with 
minimal pass numbers, with respect to a given infinite sequence of pass 
directions. 

In this section we consider simple multi-pass evaluation in general, where 
passes are allowed in both directions and in any order. In Sect. 7 we will 
consider the special case where only left-to-right passes are made and in Sect. 8 
the case where left-to-right and right-to-left passes strictly alternate. 

In order to find a correct partition of the attributes of an attribute gram- 
mar with respect to a given infinite sequence of pass directions we consider 
the labeling of the paths in the associated BD-precedence graph. Since it is our 
intention to evaluate the instances of each attribute at the earliest possible 
pass, we have to evaluate during a left-to-right pass as many attribute in- 
stances as possible. For  a further explanation of that point we define a longest 
possible L-subpath of a path as follows. 

Definition6.1. Given a path P [ a l , a  2 . . . . .  a,] where n >  1. A subpath 
p [a,, at+ 1 . . . .  , as] for 1 -< r_< s < n is the longest possible L-subpath starting from 
ar if all arcs (a i, ai+ 1) for r<i < s - 1  are labeled L and 
either s = n 
or s<n and arc(a~, as+ l) is l a b e l e d k  []  

The longest possible R-subpath starting from a, is defined in a similar 
manner (replace L by R everywhere in Definition 6.1). 

Example6.1. Consider in the BD-precedence graph of grammar AGO in Fig. 3 
path p[in(B), out(B), in(A), out(A), result(Z)]. The subpath p[in(B), out(B)] is 
the longest possible L-subpath starting from in(B). The subpath p[in(A), 
out(A), result(Z)] is the longest possible R-subpath starting from in(A). []  

We now decompose any given path in a unique way into longest possible 
subpaths. 

Definition6.2. With respect to a given infinite sequence ( d l , d 2 , . . . )  of pass 
directions, the decomposition of a path p[al,a 2 . . . . .  a,] is the sequence of m 
longest possible L- and R-subpaths such that the i-th subpath is a longest 
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possible di-subpath (1 <i<=m), the first subpath starts with al ,  the last subpath 
ends with a, and if p[ao . . . . .  ar] is the i-th subpath and p[a . . . . . .  at] is the 
( i+ 1)th subpath then s = r + l .  

The arc between two successive longest possible subpaths of a decom- 
position will be called a barrier. [] 

Notice that the barrier after a longest possible di-subpath of a decom- 
position is labeled d i and that the number of barriers of a decomposition is 
equal to the number of longest possible subpaths of the decomposition minus 1. 

Example6.2. Consider again in Fig. 3 the path p[in(B), out(B), in(A), out(A), 
result(Z)]. The sequence p[in(B), out(B)], p[in(A), out(A), result(Z)] is the 
decomposition with respect to the sequence (L ,R  . . . .  ) of pass directions. The 
arc (out(B), in(A)) with label L is the barrier between the two subpaths of the 
decomposition. [] 

Lemma 6.1. Let 'pass' be a BD-correct pass function with respect to a sequence 
(d 1 .... ,dt,dg+ 1 . . . .  ) of pass directions for an attribute grammar AG. If a path 
exists in PBD(AG) from attribute a to attribute b, pass(a)=/, and k is the 
number of barriers of the decomposition of the path with respect to the 
sequence (d t, d I + 1,-.. ), then pass(b) > pass(a) + k. 

Proof We prove the lemma by induction on the length, i.e., the number of arcs 
of the path. 

I. The lemma is correct for a path of length 0. The path of length 0 from a 
to b is p[a], where a=b .  The decomposition consists of p[a] only and hence 
its number of barriers is 0. Clearly, pass(a)=pass(b). 

II. The induction hypothesis is: the lemma holds for all paths of length < n. 
We have to prove that it holds for all paths of length __< n + 1. 

Consider an arbitrary path p [ao, al . . . .  , a,, a, + 1], where a o = a and a, + 1 = b. 
Let the decomposition of p[ao,al, . . . ,a,] with respect to the sequence 
(dl,d~+l,...) of pass directions be p[ao, . . .  ] . . . .  ,p[... ,a,] and let k be the 
number of barriers of the decomposition. 

We have to consider the cases d~+k=L and dt+k=R. We only discuss the 
case d~+k=L (for d~+k=R the proof is similar). Note that dl+k=L means that 
p [ . . . ,  a,] is a longest possible L-subpath. Now we distinguish 2 cases: 

1. arc(a, ,a ,+ 0 has label L. 
2. arc(a, ,a ,+ 0 has label L. 

Casel. The decomposition of p[a o .... , a , ,a ,+1]  with respect to (d~,d~+~ . . . .  ) is 
p[a o .... ], . . . ,p[ .... a,,a,+l] with k barriers. 

From the induction hypothesis follows that pass(a,)>pass(ao)+k. From 
Theorem 4.1 (i) follows that pass(a,+ 1) > pass(a,). Hence pass (a,+ 1) > pass(a0) + k. 

Case2. The decomposition of p[a o .... ,a,,a,+~] with respect to (dz,dl+ 1 . . . .  ) is 
p[ao . . . .  ] . . . . .  p [ . . . ,  a,], p [ a ,+ l ]  with k+  1 barriers. 

From the induction hypothesis follows that pass(a.) > pass(ao) + k = l+  k. If 
pass (a,) = l + k (a left-to-right pass), then pass (a, + l) > pass (a,) by 
Theorem 4.1 (ii), and hence pass(a,+ 1) > pass(ao) + k + 1. 
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If  pass(a,) > l +  k, then pass(a,) > pass(ao) + k; hence pass(a,+ 1) > 
pass (a,) > pass (ao) + k by Theorem 4.1 (i), and so pass(a, + 1) > 
pass(ao) + k + 1. Hence, pass(a,+ 1) > pass(ao) + k + 1. 

Thus we have proved the lemma. []  

In the following we will use the result of Lemma 6.1 to compute, for a given 
infinite sequence of pass directions, the correct pass function with the smallest 
possible values. 

We start from the BD-precedence graph of an attribute g rammar  AG and 
an infinite sequence (d I . . . . .  dr,dr+ 1 . . . .  ) of pass directions. Consider a path 
from vertex a to vertex b such that the decomposition associated with the 
sequence (dt ,d~+l, . . . )  has k barriers. Assume that all attributes associated 
with vertices not on the path have pass numbers smaller than l. From the 
starting point that during pass 1 at least the instances of attribute a are 
evaluated, we try successively to evaluate all instances of attributes associated 
with the vertices on the path. From Lemma6.1 we know that, with respect to 
(d~,d~+ 1 . . . .  ), the number  of passes " to  follow" the path is at least k. So it is 
meaningful to define cost-functions of a path in the following way. 

Definition6.3. With respect to a sequence (d 1 . . . .  , dr, dr+l, . . . )  of pass directions 
the l-start cost of a path in PBD(AG) is the number  of barriers of the decom- 
position associated with (d l,d l+ 1 . . . .  ). []  

Now we consider all possible paths from a to b. As above we leave out of 
consideration all attributes not on any path from a to b. From the starting 
point that during pass l at least the instances of attribute a are computed, we 
try successively to evaluate all the instances of the attributes associated with all 
vertices on all paths from a to b. The number  of passes needed " to  follow" all 
these paths (starting with pass l) is at least the maximal /-start cost over all 
paths from a to b. Therefore we define cost-functions for each ordered pair of 
attributes. 

Definition6.4. Let the BD-precedence graph of an attribute g rammar  and an 
infinite sequence of pass directions be given. For  each pair of attributes a and 
b, 

f the  maximal / - s t a r t  cost over all paths from a to b: 
cosh(a, b)=  ~ if a path from a to b exists. 

t - G o :  if no path from a to b exists. []  

Notice that cosh(a, b ) e { -  oo,0, 1,2 . . . . .  + oo}. 
To get more insight in the properties of the cost-functions we consider the 

cases cost~(a,b)= + ~ for all possible infinite sequences of pass directions with 
an infinite number  of passes in both directions. 

Lemma6.2.  Let a and b be attributes of an attribute g rammar  AG. For  every 
number  l and for all possible infinite sequences of pass directions where both 
the number  of L's and the number  of R's is infinite, the following holds: 
cost ,(a,b)= +oo  if and only if a path from a to b exists that includes and 
L - R-cycle. 
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Proof. (~ )  Given cosh(a, b)= + Go for some l and for some sequence <d t, ...> of 
pass directions with an infinite number of both L's and R's. This implies that, 
with respect to (d~,.. .),  for each finite k, there is a path from a to b such that 
the /-start cost is greater than k. Let n be the number of attributes of the 
grammar. 

Since k is unbounded, there is a path from a to b such that it is possible to 
select from the decomposition of the path 2m times (re>n+ 1) alternately a 
longest possible L-subpath and a longest possible R-subpath in the following 
way. The selected subpaths are respectively p [aql  , . . . .  a r l ] ,  

p[asl, . . . .  at1 ] . . . .  , p [ a q i  , . . . .  at,I, p[as,, .... a~,] . . . . .  p[aqm, .... a,,,], P[asm, . . . .  a tm] ,  
where m > n + l ,  and where ri>qi, ti>s i and si>r ~ for l<_i<m, and qi+l>t~ 
for 1-<i<m-1 .  The paths p[ao,, .... %]  for l<_i<rn are longest possible 
L-subpaths and the paths p[as,, .... at]  for 1 __%i_<m are longest possible R-sub- 
paths. The arcs ( % , % + 0  for 1-<i<m are labeled L and the arcs (at~,at,+~) 
for 1_<iNto are labeled R. Since the number n of different attributes is less 
than m, at least two of the attributes aq t ,  aq2 , . . . .  aq~ must be equal. Hence, 
the subpath from aq, to aq~ includes an L- /~-cycle  and hence there is a path 
from a to b that includes an L -  R-cycle. 

(~ )  Given a path from a to b that includes an L-/~-cycle.  There is no finite 
upper bound to the number of repetitions of the L- /~-cyc le  over all paths 
from a to b that include the L-/~-cycle.  Hence, with respect to each sequence 
(dr . . . .  ) of pass directions there is no finite upper bound to the number of 
barriers over the decompositions of all paths from a to b that include the 
L-/~-cycle.  Hence costt(a,b)= + ~ for each l and for each sequence of pass 
directions. []  

Corollary6.1. Let a be an attribute of attribute grammar AG. For every 
number 1 and for all possible infinite sequences of pass directions where both 
the number of L's and the number of R's is infinite, the following holds: 
cost~(a,a)= + oe if and only if attribute a is involved in an L-/~-cycle.  

Proof Follows immediately from Lemma 6.2. [] 

In order to know the number of passes needed at least before the instances 
of an attribute can be computed, we have to "follow" all possible paths to the 
node associated with that attribute. Hence we define a cost-function for each 
attribute that considers all possible paths to a, starting the evaluation process 
with the first pass. 

Definition6.5. Given the BD-precedence graph of an attribute grammar. With 
respect to a given infinite sequence of pass directions, for each attribute a, 
COST(a) is the maximal 1-start cost over all paths leading to a. Hence, 
COST(a)=maxcosta(b,a) for b an attribute. []  

b 

From Lemma6.1 and Definitions 6.3, 6.4 and 6.5 we immediately conclude 
the following lemma. 

Lemma6.3. Let pass be a BD-correct pass function with respect to an infinite 
sequence of pass directions for an attribute grammar AG. Then for each a, 
such that pass(a) is finite, pass(a)>COST(a)+ 1. []  
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Now, with respect to any infinite sequence of pass directions, we consider 
the function pass (a)=COST(a)+  1, and we prove that this function is a correct 
pass function. 

Theorem6.1. Let 'COST'  be the COST-function associated with an infinite 
sequence ( d l , d  2 . . . .  ) of pass directions for an attribute grammar AG. Let 
( A 1 , A  2 ....  ,Am) be the partial partition of the set A of attributes of AG, such 

that A i = { a ] C O S T ( a ) = i - 1  } for l < i < m  and a~ 0 Ai for each attribute a for 
i= l  

which COST(a) is finite. 
(a) This partition is BD-correct with respect to (d 1,d 2 . . . . .  d . . . . .  ). 
(b) The pass function associated with this partition is, with respect to 

(d l , d2 , . . . , d  . . . . .  ), the BD-correct pass function with the smallest possible 
values. 

Proof (a) From the definition of the COST-function it easily follows that the 
pass function associated with the partition has the property that, with respect 
to the given sequence of pass directions, for attributes a and b: 

(i) if a prec b then pass(a)<pass(b) 
(ii) if a L b  and pass(a) or pass(b) is finite and a left-to-right pass then 

pass (a) < pass (b). 
(iii) if a R b  and pass(a) or pass(b) is finite and a right-to-left pass then 

pass (a) < pass (b). 
From Theorem4.1 it follows that partition ( A 1 , A z , . . . , A m )  is BD-correct 

with respect to ( d l , d  2 ....  ,din). This implies that partition (A1 ,A  2 . . . . .  Am) is 
also BD-correct with respect to all infinite sequences of pass directions where 
the first m pass directions are d~, d 2 . . . . .  dm. 

(b) From Lemma6.3 follows that the function pas s (a )=COST(a )+ l  is, 
with respect to the given sequence of pass directions, the correct pass function 
with the smallest possible values. [] 

Given an attribute grammar, its BD-precedence graph and the COST- 
function 'COST'  with respect to an infinite sequence of pass directions, we 
consider two cases: 

1. COST(a) is finite for each attribute a. From Theorem 6.1 it follows that, 
with respect to the sequence of pass directions, at least one correct complete 
partition exists and hence, at least one correct complete pass function exists. 

2. COST(a)= +oe  for at least one attribute a. Lemma6.3 states: if, with 
respect to the given sequence of pass directions, a correct partition exists with 
a corresponding pass function 'pass', then pas s (a )>COST(a )+ l  for each at- 
tribute a such that pass(a) is finite. Hence, if an attribute a exists such that 
COST(a) = + oe then, with respect to the given sequence of pass directions, no 
complete correct pass function exists. 

From these two observations we immediately conclude the following theo- 
rem. 

Theorem6.2. With respect to a given infinite sequence of pass directions of an 
attribute grammar, a correct complete partition of the set A of attributes exists 
if and only if for each attribute a COST(a) is finite. []  
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Corollary4.1 already indicated that an attribute grammar with an L - / ~ -  
cycle in its BD-precedence graph cannot be simple BD multi-pass. Now we can 
easily prove the ' if and only if' of the following theorem. 

Theorem6.3. An attribute grammar is simple BD-multi-pass if and only if its 
BD-precedence graph has no L-/~-cycles.  

Proof By Definition 3.7 an attribute grammar AG is simple BD multi-pass if 
and only if with respect to some finite sequence (dl, ...,d,,) of pass directions 
a BD-correct complete partition (A1, . . . ,Am) of the set A of attributes exists. 
An equivalent definition is that AG is simple BD multi-pass if and only if with 
respect to some infinite sequence (d 1 .. . .  ,d . . . . .  ) of pass directions, with an 
infinite number of L's and R's, a BD-correct complete partition (A 1 . . . .  , Am) of 
A exists. 

Theorem 6.2 states that, with respect to such an infinite sequence, a correct 
partition exists if and only if COST(a) is finite for each attribute a. From 
Definition6.5 it follows that, with respect to such a sequence, COST(a)= + oe 
if and only if an attribute b exists such that cost l(b,a)= +oo. Finally, Lem- 
ma6.2 states that, given such a sequence of pass directions, cost l(b,a)= + oe 
if and only if a path from b to a exists that includes an L-/~-cycle.  [] 

Example6.3. Consider the BD-precedence graph Pso(AG1) in Fig. 5. With 
respect to sequence (R,R, . . . )  of pass directions the values of the cost 1- 
function are: 

cost I 

in(e) 
out(E) 
result(Z) 

in(E) out(E) result(Z) 

0 0 0 
0 0 0 
- o o  - ~  0 

For each attribute the value of the COST-function is 0. Hence, simple multi- 
pass evaluation is possible in one right-to-left pass. []  

To conclude this section we discuss an algorithm to calculate, for a 
given infinite sequence of pass directions, pass numbers according to the 
function pass (a )=COST(a )+ l  for all attributes of an attribute grammar. In 
Sects. 7 and 8 where we discuss special sequences of pass directions, we will 
come back to this algorithm and also discuss algorithms that provide more 
information. All these algorithms can be viewed as "path finding" algorithms 
in the BD- or LR-precedence graph of the grammar. 

Algorithm 6.1 is essentially the algorithm given by Bochmann in [3] and 
Jazayeri and Walter in [8]. In this paper it is presented in terms of the BD- 
precedence graph of the grammar. 

The method to calculate the values of the COST-function with respect to a 
given infinite sequence (dl,d2, ...) of pass directions is as follows. We define 

Si={alCOST(a)=i} for finite i. 

Soo = {al COST(a) = oe}. 
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For finite m subset S m will be computed after the sets So, . . . ,S m_ 1 have been 
determined completely. Notice that for finite m 

Sm={a[for each path p[al, ...,ak], 
m - - I  

where ak=a and ajr U Si for l <j<=k, 
i = 1  

all arcs have label din+l}. 
r a - - 1  

The computation of S m proceeds as follows. All attributes in 0 Si are consid- 
i=o 

ered to be marked. Initially it is assumed that all unmarked attributes belong 
to S,~. Non-members of S m, i.e., attributes a such that COST(a)>m, will be 
successively deleted. To that end all attributes a are deleted for which an 
unmarked attribute b exists such that arc (b,a) is labeled din+ 1 (i.e., if din+ 1 =L 
then L else /~); moreover all those attributes are deleted that depend (in- 
directly) on such attributes a. The deletion process continues until no more 
deletions are possible. In this manner all subsets S i for finite i are computed. 

The process terminates successfully when all attributes are distributed over 
some set S~ for finite i. In this case, with respect to the given sequence of pass 
directions, a correct complete partition of the set A of attributes is found. 

The process terminates unsuccessfully when it becomes clear that all future 
passes (according to the given sequence of pass directions) will deliver empty 
subsets, while the set of unmarked attributes is still not empty. This is the case 
when for some m > 1, Sm =0  and S m_ 1=0 while the associated pass directions 
dm+l and d~ are different or when for some m>0,  Sm=O and the associated 
pass direction d,,+l is equal to all the following pass directions. The set of 
remaining attributes will be denoted by S~. In this case, with respect to the 
given sequence of pass directions, only a partial BD-correct partition of the set 
A of attributes is found. 

Algorithm6.1 {see [3] and [8]}. Computation of the smallest pass function for 
simple BD-multi-pass evaluation with respect to a given infinite sequence of 
pass directions. 

Input: attribute grammar AG; sequence ( d l , d  2 . . . .  ) of pass directions. 
Output: with respect to (dl ,d  2,...) the BD-correct pass function (complete if 

possible) with the smallest possible function-values. 

Algorithm: 
begin 

construct the graph P~o(AG). 
set COST(a) to undefined for all vertices a; 
m:=  - 1 ;  
repeat 

m : = m + l ;  
set COST(a) to m for all vertices for which COST(a) is undefined; 
repeat 

for a vertex a such that COST(a)=m 
set COST(a) to undefined 
if there exists a vertex b and an arc (b,a) such that 

(COST(b) = m and arc(b, a) has label d,~+l 
Of 

COST(b) is undefined) 
until no vertex a can be found such that COST(a) can be set to undefined 
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until {termination condition} 
either for all a COST(a) is defined 
or ((din. 1 4= dm and 

no vertices b and c exist such that COST(b)=m and C O S T ( c ) = m - 1 )  
o r  

(din+ 1 =d,.+ z =dm+ 3 . . . .  and 
no vertex b exists such that COST(b)=m) 

); 
for all aEA 
do if COST(a) is defined then pass(a): = C O S T ( a ) +  1 

else pass(a): = + oo 
fi 

od 
end [] 

Let n be the number of attributes of a grammar. If we count the number of 
times the label of an arc is examined, then Algorithm6.1 takes time O(mfn2), 
where mf is the number of times the outer repeat statement is executed. 

Remark 1. Obviously a direct computation of the values of the pass function is 
possible without computing the values of the COST-function beforehand. In 
that case for m the initial value 0 should be used and d i should be replaced by 
di_ a for i>m. 

Remark 2. For a finite sequence (d I . . . . .  d~,r) of pass directions the termination 
condition of Algorithm 6.1 has to be changed into 

either for all a COST(a) is defined 

or m + l = m , .  

Note that this version of Algorithm 6.1 takes time O(m r n2). 
In Sect. 7 and 8 we will discuss other algorithms for the cases where only 

left-to-right passes are made or where left-to-right and right-to-left passes 
strictly alternate. 

7. Simple Left-to-right Multi-Pass Evaluation 

As a special case of simple multi-pass evaluation we discuss the strategy where 
only left-to-right passes are executed. Since for this problem we only need the 
labels L and L of the precedence graph, the LR-graph PLR(AG) will be used. 

We start our investigation with two observations concerning the cost- 
functions. 

1. The number of barriers of the decomposition of a path with respect to 
(L ,L ,  . . . )  is equal to the number of arcs labeled L on the path. 

2. The /-start cost of a path, i.e., the number of arcs labeled L on the path, 
is independent of I. So for each path one cost-function suffices. These obser- 
vations lead to the following particular cases of Definitions 6.3, 6.4 and 6.5. 

Definition 7.1. The cost of a path is the number of arcs labeled L on the 
path. [] 
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Definition 7.2. For  each pair of attributes a and b, 

the maximal cost over all paths from a to b: 

cos t (a ,b)=~ if a p a t h  from a to b exists. 

( - ~ :  if no path from a to b exists. []  

Definition7.3. For each attribute a, COST(a)=maxcost(b,a) for b an at- 
tribute. [] b 

Observe that Theorems 6.l and 6.2 hold for any infinite sequence of pass 
directions and hence in particular for the sequence (L, L . . . .  ). 

Now, as for BD-multi-pass evaluation, also for LR multi-pass evaluation we 
consider the cases where cost(a, b) = + ~ and COST(a )=  + ~ .  

Notice that since Lemma6.2  is restricted to sequences of pass directions 
with an infinite number of both L's and R's the next lemma cannot be 
considered as a special case of Lemma6.2  for the sequence ( L , L , . . . ) .  Also 
instead of Theorem 6.3 a new theorem has to be formulated for the LR-case. 

Lemma 7.1. For each pair of attributes a and b, cost(a, b) = + oo if and only if a 
path from a to b exists that includes an L-cycle. [] 

The proof  of this lemma proceeds along the same lines as the proof  of 
Lemma6.2  and is omitted. From Lemma7.1 immediately follows the next 
corollary. 

Corollary7.1. For each attribute a, cos t (a ,a )=  + ~  if and only if attribute a is 
involved in an L-cycle. []  

Now, we find parallel to Theorem 6.3. 

Theorem7.1. An attribute g rammar  is simple LR multi-pass if and only if its 
LR-precedence graph has no L-cycles. 

Proof As the proof  of Theorem6.3. []  

At the end of this section we present a new algorithm to calculate pass 
numbers, where we use the following lemma on circular paths. 

Lemma 7.2. For  each attribute a 
(a) cost(a,a) is either 0 or + 
(b) cos t (a , a )=0  iff all arcs of all paths from a to a are labeled L. 
(c) cost(a, a) = + ~ iff at least one arc of a path from a to a is labeled L. 

Proof Follows immediately from Definition 7.2 and Corollary7.1. []  

Example7.1. Consider g rammar  AG1 (see Example5.1). PLR(AGI) is given in 
Fig. 5. The values of the cost-function are: 

cost in(E) out(E) result(Z) 

in(E) + ~ + ~ + ov 
out(E) + ~ + ~ + 
result(Z) - o o  - o o  0 
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For  each attribute the value of the COST-function is + oe. The grammar is not 
simple L R  multi-pass. From the values of the cost-function it follows (Corol- 
lary7.1) that all attributes, except result(Z) are involved in an L-cycle. 

Notice that COST(result(Z))= + 0% but cost(result(Z), result(Z))=0. Hence 
(Lemma6.3) it is impossible to assign a finite pass-number to result(Z), but 
(Corollary 7.1) result(Z) is not involved in an L-cycle. []  

We end this section with two algorithms to calculate, for the simple L R  
strategy, pass numbers according to the function pass(a)=COST(a)+ 1 for all 
attributes of an attribute grammar. Both algorithms can be viewed as "path 
finding" algorithms in the LR-precedence graph of the grammar. 

Firstly we adapt Algorithm6.1 for this particular case. The criterion for 
unsuccessful termination is concluded from the observation that all pass direc- 
tions are equal. Hence, when the deletion process delivers an empty subset S m 
while the set of undefined attributes is still not empty, all succeeding subsets 
will also be empty. 

So, the termination condition of the adapted version of Algorithm 6.1 is: 

either for all a COST(a) is defined 

or no vertex b exists such that COST(b)=m. 

Since m f  (the number of times the outer repeat statement of Algorithm6.1 is 
executed) is at most n (the number of attributes of the grammar), the adapted 
version of the algorithm takes time O(n 3) in the worst case. If the grammar is 
1-pass then it takes O(n 2) steps. 

Notice that this adapted version of Algorithm6.1 is essentially the algo- 
rithm given by Bochmann in [3]. 

Now we present Algorithm7.1, a new algorithm to calculate pass numbers. 
It first computes cost(a,b) for each pair of attributes a and b and then, using 
Definition 7.3, it calculates the values of the COST-function and from this the 
pass numbers. If the grammar is not simple L R  multi-pass the values of the 
cost-function can be used to indicate the attributes that are involved in an L- 
cycle. 

Algorithm7.1 is a particular case of Algorithm5.5 in [1, pp. 195-199]. The 
method is as follows. 

Consider the directed graph PLR(AG) associated with attribute grammar A G  
and let the vertices, associated with attributes, be a l , a  2 . . . .  ,a , .  We define Ci k 
(1 < i,j, k < n )  to be the maximum cost over all paths from ai to aj such that all 
the vertices on the path except possibly the endpoints are in the set 

n _ { a l , a  2 . . . .  ,ak}. c i k = - - O e  if no such path exists. Thus C i j - c o s t ( a l , a j ) .  To 
compute Ckj, by induction on k, we split up the paths from a i to aj with no 
intermediate vertices higher than k into two groups: 

1) paths with no intermediate vertex higher than k - 1 ;  the maximum cost 
of those paths is Ci k-1.  

2) paths composed of a sequence of subpaths: a subpath from a~ to ak, then 
a sequence of zero or more subpaths from a k to a k and finally a subpath from 
a k to a j, where each subpath has no intermediate vertex higher than k - 1 .  Such 
paths exist iff Cikk - 1 ~ _ Oe and c k i  1 + - -  00. 
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If such paths exist, then the maximum cost over all those paths (abbre- 
viated by k C~jvlak ) is: Ckc ~ +seq ck~ ~ + c k f  ~, where seq Ckk 1 is the maximum 
cost over any (possibly empty) sequence of subpaths from a k to a k, where each 
subpath has no intermediate vertex higher than k - 1 .  Hence (Lemma7.2), 
clearly 

0: if C~/-1=0 
seq C~k- 1 = + 00' if C~k- 1 > 1 

Thus Cir. can be computed as follows: 

Ckij:=ifCi  k-1 _>-0 a nd  C~j -1 >0  t h e n  m a x ( C k j  - 1 ,  Cijviak)k e l se  cijk-1 fi. 

To initialize the induction, note that for i4:j 

and 

{o C O =  

ifarc(a~, a j) does not exist�9 

ifarc(a~, aj) exists and has label L. 
ifarc(a~, ai) exists and has label L. 

0 : ifarc(ai,ai) does not exist or 
C ~ = exists and has label L 

1 : ifarc(ai, ai) exists and has label L. 

Algorithm 7.1. Computation of the smallest pass function for simple LR multi- 
pass evaluation�9 
Input: attribute grammar AG. 
Output: cost(a, b) for each pair of attributes a and b of AG and the LR-correct 

pass function (complete if possible) with the smallest possible function- 
values�9 

Algorithm: 
begin 

var C ~ C"eW: array [ l . . .n ,  1...n] of ( - oo , 0 ,  1,2, ..., +oo); 
{n is the number  of attributes of nonterminals of AG} 
Construct the graph PL~(AG); 
for l <=i,j<=n 
do 

C~d: = i f  arc(al, aj) does not exist 
then if i:~j then - ~ else 0 fl 
else if a rc(a ,  aj) has label L 

then 0 else 1 
fi 

fi 
od; 
for k from 1 to n 
do 

�9 o ld  If Ckk > 1 
then for l<i , j<n 

do n e w  * o l d  o l d  Cij : = i f  Cik  = --0(3 o r  C k j  = - - 0 0  

then C ~ else + oo 
fi 

od 
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else for 1 <i,j<n 
n e w  �9 o l d  _ _  o l d  _ _  do C~j :=lfCik - - o o  or Ckj - - ~  

then CiCJ d else max(COJd, Ci kold ~_ Ck jold) 
fi 

od 
fi; 
C ~  : = C n e w  

od; 
{cost(ai, a j) = Ci7 w} 
for l <i<n 
do 

COST(al)= max C77W; 
l~j<=n 

if COST(al) is finite then pass(ai)=COST(al)+ 1 
else pass(al)= + 

fi 
od 

end 

If we count the number of times Ci~ d is examined for any i,j then Algo- 
rithm7.1 takes time O(r/3), just as Algorithm6.1. Notice however that Algo- 
rithm7.1, since it not only computes the COST-function but also the cost- 
function, gives more information than Algorithm6.1. The cost-function in- 
dicates the attributes that are involved in an L-cycle. 

Instances of attributes involved in an L-cycle have to be evaluated by 
another strategy (for example the pure L R  multi-pass strategy), but the in- 
stances of all other attributes can be computed by the simple L R  multi-pass 
strategy as soon as the attributes involved in an L-cycle on which they depend, 
have been computed. 

Notice that Algorithm 7.1 can be used to develop such a mixture of evalua- 
tion strategies. Let A' be a subset of the set A of attributes of attribute 
grammar AG. Suppose we want to know whether AG is simple L R  multi-pass 
under the assumption that the instances of all attributes of A' have already 
been computed. For  each A' Algorithm 6.1 has, in order to compute the values 
of this new COST-function, to do its work over again completely. Algo- 
rithm 7.1 contains already to a large extent for all A' the necessary information 
in the cost-function. For  all a(EA' the new COST-function is easily computed 
as follows: COST(a)=max cost(b,a). Notice that the value of cost(b, a) is con- 

b~A' 
tained in the matrix C new. 

Evaluation by mixing the simple L R  multi-pass strategy with other (more 
powerful) strategies is illustrated in the following example. 

Example  7.2. For grammar AG5 the L R  precedence graph PLR(AG5) is given in 
Fig. 12. Algorithm7.1 finds the LR-correct not complete pass-function pass(a) 
=1 and pass(b)=2. It also indicates that attributes c and d are involved in an 
L-cycle and that these attributes do not depend on other attributes, besides a 
and b. So after two simple L R  passes for the evaluation of instances of a and b 
a more powerful strategy has to be applied in order to evaluate the instances 
of c and d. Now, under the assumption that the instances of all attributes of A' 
= {a, b, c, d} have already been computed, the result of Algorithm 7.1 is applied 
again to recompute the COST-function. We then find the LR-correct complete 
pass function pass(e)= 1 and pass ( f )=2 .  []  
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a b c #  "~d e f 
[ L ~ L [ 

Fig. 12. PLR(AG5) 

8. Simple Alternating Multi-Pass Evaluation 

By simple alternating multi-pass evaluation we mean simple BD multi-pass 
evaluation where left-to-right and right-to-left passes strictly alternate. 

Definition 8.1. An attribute grammar is simple A L T  m-pass if with respect to the 
sequence ( L , R , L , R , . . . )  of pass directions a BD-correct complete partition of 
the set A of attributes exists. 

An attribute grammar simple A L T  multi-pass if it is simple A L T  m-pass for 
some m. [] 

With respect to simple alternating multi-pass evaluation we make the 
following observations. 

i. By definition, if an attribute grammar is simple A L T  m-pass, then it is 
simple BD m-pass. 

2. Let AG be simple BD m-pass with respect to the sequence 
(d  1 . . . . .  dl,di+ ~, . . . ,d , , )  of pass directions. This means that with respect to this 
sequence a correct complete partition (A~ . . . . .  Ai,A~+ x . . . .  ,A,,,) of the set A of 
attributes exists. Let d~ = d~ + ~ = L. Notice that the partition 
(A1 . . . . .  A~,0,AI+I . . . .  ,A,,) is correct and complete with respect to 
(d l , . . . ,d~,R,d~+~ . . . . .  din). Hence, clearly a grammar which is BD m-pass is 
simple A L T  n-pass for some n < 2 m - 1 .  From these two observations we 
immediately conclude the following theorem. 

Theorem8.1. An attribute grammar is simple BD multi-pass if and only if it is 
simple ALT multi-pass. [] 

From the strict alternation of the pass directions it follows that for each 
path only two different decompositions have to be distinguished. The decom- 
position where the first subpath is a longest possible L-subpath will be called 
the L-start  decomposition, and the decomposition where the first subpath is a 
longest possible R-subpath will be called the R-start  decomposition of the path. 

In both cases the number of barriers of the decomposition is the number of 
alternations of longest possible L- and R-subpaths. 

These considerations lead to the following particular cas6s, of Definitions 6.3, 
6.4 and 6.5. 

Definition 8.2. The L-start cost of a path is the number of barriel~s of the L-start 
decomposition of the path. 

The R-start  cost of a path is the number of barriers of the /~-start decom- 
position of the path. [] 
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Definition 8.3. For each pair of attributes a and b, 

the maximal L-start cost over all paths from a to b: 

cost/.(a, b )=  ] if a path from a to b exists. 

[ -  oo : if no path from a to b exists. 

the maximal R-start cost over all paths from a to b: 

costR(a, b) = ~ if a path from a to b exists. 

[ - o o :  if no paths from a to b exists. []  

Notice that for each path, 

c o s t = f  the L-start cost: if I is odd 
the /-start 

l the  R-start cost: if I is even. 

Also for each pair of attributes a and b, 

costt(a,b)=~costL(a,~ b): i f / i s  odd. 
{costR(a,b): i f / i s  even. 

So, we can use the following definition as a particular case of Definition 6.5. 

Definition8.4. For  each attribute a, COST(a)=maxcostL(b,a ) for b an at- 
tribute. []  b 

Since Theorems 6.1 and 6.2 hold for any infinite sequence of pass direc- 
tions, they also hold for the particular sequence (L,R,L,R, ...). Combining 
Theorems 8.1 and 6.3 we find that an attribute grammar  is simple ALT multi- 
pass if and only if its BD-precedence graph has no L-/~-cycles .  

At the end of this section we sketch a new algorithm to compute minimal 
pass numbers for simple alternating multi-pass evaluation. For the explanation 
of that algorithm we need the following lemma on circular paths. 

Lemma 8.1. For  each attribute a, the pair [costL(a, a), costR(a, a)] = 
either [0, 0] iff all arcs of all paths from a to a are labeled L and R. 
or [0, 1] iff all arcs of all paths from a to a are labeled L and at least 

one arc of one path from a to a is labeled/~. 
or [1, 0] iff all arcs of all paths from a to a are labeled R and at least 

one arc of one path from a to a is labeled L. 
or [ + oo, + oo] iff at least one arc of one path from a to a is labeled L and at 

least one arc of one path from a to a is labeled/~. 

Proof Follows immediately from Definition 8.3 and Corollary 6.1. [] 

Parallel to the algorithms to calculate minimal pass numbers for simple 
left-to-right multi-pass evaluation we discuss two algorithms to calculate mini- 
mal pass numbers for simple multi-pass evaluation where left-to-right and 
right-to-left pagses strictly alternate. 

Firstly w e  indicate how to adapt  Algorithm 6.1 for this particular case. The 
criterion for /ansuccessful termination is concluded from the observation that 
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successive passes have opposite directions. Hence, when the deletion process 
delivers two empty subsets S,,_I and S m, while the set of remaining attributes 
is still not empty, all succeeding subsets will also be empty. 

Hence the termination condition becomes: 

either for all a COST(a) is defined 
or no vertices b and c exist such that COST(b)= m and COST(c)= m - 1 .  

Notice that this version of Algorithm 6.1 is essentially the algorithm of Ja- 
zayeri and Walter in [8]. It takes time O(mln2)=O(n3). 

Now we sketch, parallel to Algorithm 7.1, a new algorithm to calculate 
minimal pass numbers for simple alternating multi-pass evaluation. It first 
computes costL(a,b ) and costg(a,b) for each pair of attributes a and b and 
then, using Definition 8.4, it calculates the values of the COST-function and 
from this the pass function. 

If the grammar is not simple ALT multi-pass the values of the cost L- 
function can be used to indicate the attributes that are involved in an L- / • -  
cycle (Lemma 8.1). 

The method is in broad lines the same as for simple LR multi-pass 
evaluation. 

Consider the directed graph PBD(AG) associated with attribute grammar AG 
and let the vertices, associated with attributes, be al, a 2 . . . .  , a,. We define LC~j 
and RC~ i (1 <i,j, k<n) respectively to be the maximum L-start cost and R-start 
cost over all paths from a i to aj such that all vertices on the path except 
possibly the endpoints are in the set {a~,a 2 .... ,ak}. LC~i=RC~j=-~ if no 
such path exists. Thus L Ci~ = cOStL(a~, a j) and R C~"j = costR(a~, a j). 

The computation of LC~j and RC~i (by induction on k) proceeds anal- 
ogously to the computation of C~ for the LR-case. The paths from ai to aj 
with no intermediate vertex higher than k are split up into two groups: 

1) paths with no intermediate vertex higher than k - 1 .  
2) paths composed of a sequence of subpaths: a subpath from a~ to ak, then 

a sequence of subpaths from a k to a, and finally a subpath from a k to a j, where 
each subpath has no intermediate vertex higher than k - 1 .  

If such paths exist, then the maximum L-start cost over all those paths 
L k (abbreviated by Ciiviak) can be computed as follows. 

For reasons of explanation we introduce s e q L C ~  -1 and seqRC~ -~ re- 
spectively defined as the maximum L-start cost and the maximum R-start cost 
over any (possibly empty) sequence of subpaths from a k to ak, where each 
subpath has no intermediate vertex higher than k - 1 .  

From Lemma 8.1 it follows that 

seq L C~- 1 ___ 

oo: 

seq R C~- 1 = 

if LC~[' =0  

if LC~[l>=l and RC~I=O 
if LC~[I>_I and RC~-I>_I,  

if RC~[ 1 = 0  

if R C ~ [ ~ I  and L C ~ = O  
if RCkk~>_l and LCkk'>=l. 
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Now, the computation o f  LCkjviak can be expressed as follows. 

k . _ _ *  k - 1  seq L C k k  1 = + 0 0  LCijviak.-If LCik = + O0 or  

{seq LCRR 1 = + oo m e a n s  t h a t  a l so  seq RCRk ' = + o0} 
then + oe 

else LC~R 1 + i f  e v e n ( L C k k  1) 

then if  seq L Ckk 1 = 0 

then LcR-lkj else I +RCR7 1 

fi 
else if  s e q R C ~ k  I = 0  

then R c k 7  1 else 1 + L C~]- 1 

fi 

fi 

k RCijviak is computed in a similar manner. 

Thus LC~j and RCkj can be computed as follows. 

k �9 k - I  LCi j :=l fLCik  >OandLCkfl>=Othen x k 1 k m a  (LCIj , LC i j v iak  ) 
else LCIR7 1 fi, 

RC~j:=if R C ~  1 >=0 and RCk~ t >0 then x k-1 k m a  (RCIj , RCijviak ) 
else R C k-  1 ft. ij 

To initialize the induction, note that for i#-j 

{OCt: ifarc(al, aj) does notexist. 
LC~ �9 if a r c  (ai, aj) exists and has label L. 

: if arc (al, a j) exists and has label L. 
and 

0 / 0: if arc (az, aj) does not exist or exists and has label L. 

LC~I=, 1: if arc (ai, ai) exists and has label L. 

For RC ~ (i4=j) and RC ~ similar definitions can he given. 
A complete description of the algorithm can be found in [2]. 
Notice that the algorithm sketched above takes the same time as the 

algorithm of Jazayeri and Walter in [8], but gives more information since it 
computes not only the COST-function but also the costL-function. The latter 
indicates the attributes that are involved in an L-/~-cycle.  

From Theorem 8.1 we know that this algorithm indicates whether an 
attribute grammar is simple BD multi-pass. However, since the algorithm 
requires strict alternation, in general not the sequence of pass directions with 
the minimal number of passes is found. 

An algorithm that finds an optimal evaluation strategy in most practical 
cases, is presented in [12]. 

Observe that the algorithm sketched can be used to develop a mixture of 
evaluation strategies in a similar manner as has been described for left-to-right 
multi-pass evaluation at the end of Sect. 7. 
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9. Conclusions and Further Research 

We discussed attr ibute evaluat ion in passes, made a clear distinction between 
pure and simple multi-pass evaluat ion a nd  especially investigated simple multi- 
pass evaluat ion strategies. 

We gave a graph theoretic characterizat ion showing in which cases an 
attr ibute g rammar  meets the simple multi-pass requirements and developed, for 
part icular  sequences of  pass directions, algori thms that associate minimal pass 
numbers  with attributes and in case of  failure indicate the attributes that  cause 
the rejection of  the grammar .  

To characterize g rammars  we proved that  an attr ibute g rammar  is simple 
multi-pass if and only if none of  its attributes are involved in a cycle whose 
labels are not consistent with one of  the possible pass directions. This criterion 
was independently found by R~iih~i and Ukkonen  [12]. They were mainly in- 
terested in finding an optimal evaluat ion strategy where it is not  dictated that 
left-to-right and right-to-left passes strictly alternate. 

In this paper we also discussed the mixing of  the simple multi-pass strategy 
with other  evaluat ion strategies in case the g r ammar  is not  completely simple 
multi-pass. 

Another  approach  is to t ransform a g r ammar  that is pure multi-pass but 
not  simple multi-pass into a g r a m m a r  that  is simple multi-pass. In 1-4] it is 
proved that such a t ransformat ion is always possible, but  because of  the 
increased number  of  attributes of  the resulting attr ibute g rammar  the method  
suggested in [4] is in its generality (without optimizations) not very attractive. 
It is subject for further research to find more  efficient transformations.  
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