
1 I n t r o d u c t i o n  
To BE ABLE to compute the potential distribution on the 
scalp due to brain activity (as reflected in EEGs) and the 
distribution of a component of the magnetic field (as reflec- 
ted in MEGs), both the source and the volume conductor 
(i.e., the head) have to be modelled. Dipolar current 
sources are commonly used as a model for brain activity. 

In the past it was common practice to describe the head 
by models for which an analytical solution exists. Usually, 
the head is described by a set of concentric spheres 
(CUFFIN and COHEN, 1979; COI-mN and CUEFIN, 1983; 
ROMAN[ et al., 1985). Using this model, the active regions 
within the brains have been localised from the measured 
magnetic field data. These studies have been reviewed by 
OKADA (1983). The localisation of human focal epilepsy 
from measured magnetic field data is of clinical impor- 
tance (SuTHERLING et  al., 1984; BARTH et  al. 1984; RICCI et 
al., 1984). Such a localisation will guide the neurosurgeon 
in those cases which are appropriate for surgical interven- 
tion. The use of a real is t ical ly  shaped volume conductor 
model of the head (MEIJS et  al., 1985), rather than a set of 
concentric spheres is not discussed in this paper. However, 
for this work we use the boundary element method for 
solving the associate forward problem of both the electri- 
cal potential and the magnetic field distribution. In the 
numerical computations some errors are to be expected in 
the approximate solution. These errors never proved to be 
a limitation in similar simulations of the cardiac electrical 
potential distribution and the cardiac magnetic field dis- 
tribution (PETERS et  al., 1983). Realistically chosen conduc- 
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tivity ratios of the successive compartments for the torso 
model in the cardiac studies are of the order of 10 : l, while 
for the head-model this ratio is of the order of 100: 1. 
Because of this high conductivity ratio in the model of the 
head, the errors made in the numerical computation are 
magnified. In this paper this numerical problem will be 
described; it is solved by using the Richardson extrapo- 
lation method. 

To study the numerical errors introduced by the discrete 
approximation of the surface integrals of the boundary 
element method, we restrict ourselves to concentric multi- 
spherical models as for these kinds of model, analytical 
expressions are available (CuWIN and COHEN, 1979). We 
will focus on a model consisting of two concentric spheres, 
because in this case the errors in the approximate solution 
resulting from the discrete computations can be analysed 
and are of a similar nature to more elaborate multi- 
compartment models. 

The location of the source and the dimensions of both 
the spheres and the conductivity ratios are adapted to 
conform to the head. The source is located excentrical, 
simulating a source within the visual cortex. The conduc- 
tivities chosen are equal to those of the skull and brain 
tissue. 

2 Basic equat ions 
The purpose of this section is to give the basic equations 

used for the solution of the potential distribution and the 
magnetic field distribution, produced by dipolar current 
sources embedded in a finite volume conductor consisting 
of a set of compartments. In each compartment the electri- 
cal conductivity has a constant value. The analytical equa- 
tion for the potential distribution on each boundary 
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surface S t within such a multi compartment model reads 
(BARNARD et  al., 1967) 

a~ 1 fs V,(r') = _-- Vo~(r') - ~ ~ Aat 
a k  47C~k t 

with 

(r' - ~') 

where 

S t 

l 
r t 

r = 

A (7  l = 

d~-~kl 

Vt(r)df2kt (1) 

the interfaces between the various compartments 
the summation over all interfaces 

the point of observation on surface S k 

the source point at interface St 
the conductivity of the source region 
the average of the electrical conductivities at both 
sides of boundary Sk 
the conductivity just inside S~ minus that just 
outside 
the solid-angle distribution of surface S t seen from a 
point of observation on surface Sk 

n = the outward normal at r 
dS~ = the infinitesimal surface element on S~ 
V~o = the potential that arises from the primary sources 

only. 

This formulation is known as the boundary element 
method. 

The magnetic field distribution can be calculated from 
this potential distribution on the surfaces. For  the mag- 
netic field the formula, derived by GESELOWITZ (1970), 
holds" 

~o ~ (r' - r) 
B(r') = B~(r') - ~ t ~" Aat Js Vt(r) I r' -- r I " - ' - - - ~  x ridS t (2) 

l 

where 

r' = the point of observation outside the volume conduc- 
tor 

B~ = the magnetic field that arises from the primary 
sources only. 

Both integral equations for V(r') and B(r') form the basis of 
our computational work. The Fredholm integral equation 
of the second kind (eqn. 1), must be solved to find the 
potential distribution on the surfaces S k. When this 
problem is solved the magnetic field can be computed in a 
straightforward manner. 

After decomposing the closed surfaces St into Nt tri- 
anglar elements (LYNN and TIMLAKE, I968) 

NI 
SI = U A[J) 

j = l  

the surface integrals of eqn. 1 can be made discrete and 
eqn. 1 can be rewritten as the linear system 

V = G + _B. V (3) 

The elements of V, G and B are constant for all triangles 
and are defined as an average value over each triangle. 

1 fA V(r)dS(r) 

1 ;A G(r)dS(r) (4) g(2 = . (7  

Aal I Qa,, ,)dS(r) b~ip 
a;, ") #k A~(~, " 
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where 

1 
f~a,,,(,~ is ~ times the solid angle subtended at r' by AI ~ and 

a~k j) is the area of triangle A~ i). 

A straightforward solution of eqn. 3 is impossible as the 
matrix B has an eigenvalue of one. Elimination of this 
singularly (2 = 1), as well as of some known eigenvectors 
with large eigenvalues (I 2[ ~ 1) from matrix B has been 
carried out by using the deflation technique as described 
by LYNN and TIMLAKE (1968). 

Looking more closely at the original continuous Fred- 
holm equation (eqn. 1), and its discrete version (eqn. 3), we 
see that the discrete version of the integral Ss, V~ df~kt is the 
summation 

Nt 

Ankj 
j= l  

The constancy of the potential Vj over each triangle is 
considered to be an acceptable approximation as we have 
chosen a triangulation method such that all triangles 
involved subtend the same solid angle with respect to the 
location of the source. Even after this segmental refine- 
ment, the discrete potential distribution V on surfaces Sk 
may still differ from the continuous potential distribution 
Vk(r' ), as an er ror  will be made in the discrete computation 
of the surface integrals. When the ratios of the conductivi- 
ties at different interfaces Sk is large, these errors can be 
magnified. The handling of this effect is the subject of this 
paper. An example of a spherical surface triangulated in 
the above mentioned way is given in Fig. 1. 

Fig. 1 A discrete representation of a sphere, with a segmental 
refinement such that the solid angles of all triangles 
involved, subtend the same solid angle with respect to the 
source location 

3 T w o  concentr ic  spheres 
The errors which occur when using large conductivity 

ratios for the successive regions within a discrete multi- 
compartment model of the head will now be analysed. We 
restrict ourselves to the simple model consisting of two 
concentric spheres, because for this configuration 

(a) an analytic (exact) solution for the potential distribu- 
tion is available 

(b) the mathematical origin of the magnifying process of 
the discretisation error can be well demonstrated 
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(c) numerical analysis of the error in the approximate sol- 
ution can be carried out easily 

(d) the effects of error-magnifying are essentially the same 
when a model consisting of more than two com- 
partments is used. 

For  the two-sphere model (Fig. 2), we chose for $1 and $2 
the respective surface boundaries of two concentric spheres 
both triangulated as depicted in Fig. 1. 

Fig. 2 Schematic representation of the two-sphere model in which 
R 1 --- 0.075m and R 2 = 0.063m. The source is located in 
(x, y, z) = (0, 0.05, O) in m 

An excentrical located, tangential oriented dipole is 
chosen as a source, as for such a dipole the errors are 
expected to be greatest. When the potential distribution on 
the outer surface (equivalent to the EEG) is mapped we 
find a dipolar pattern. This consists of a line indicating 
zero value and at both sides, symmetrical to this line two 
extremes, namely a maximum and a minimum. Compari-  
son of results based on either the analytical (exact) expres- 
sion (CuFFIN and COHEN, 1979) or the numerical method 
based on eqn. 3 shows that in all maps obtained the posi- 
tion of the zero line and the extremes are correct. To 
evaluate the numerical error we can therefore restrict the 
error analysis by considering only the values of the 
extremes of the potential distribution. 

The evaluation is carried out for the two spheres men- 
tioned having radii R 1 = 0.075 m and R 2 = 0.063 m. The 
distance of the tangentially oriented current dipole from 
the centre of the spheres is 0.05 m. The source strength is 
5 • 10 -6  Am. Choosing several values of the conductivity 
ratio al/a2,  within the system as described above, resulted 
in the set of data as listed in Table 1. E is defined as the 

Table 1 Errors for 
the two-sphere system 

g~ 
al/a 2 per cent 

100 2-6 
10 1"6 

1 1"8 
0.1 14.5 
0"05 30" 1 
0.01 147'0 
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relative error in the extremum on the outer surface: 

E = I VI' extr(nUm)~L~x~(ex-~ I/'1 ext,(exact) I 

where 

V1, extr(exact) is the exact value of the extremum, found 
with the analytical expression and V1, e~t,(num) is the value 
of the extremum computed numerically using eqn. 3. 

With conductivities al  and 0 2 in the successive com- 
partments, eqn. 1 reads 

V1 =--20"s V ~ 20" i 1 fs V l d ~ l l  
0"1 0"x 4re 

2(0" 2 --if1) 1 ~' 
0"1 4/t Js V2 df~12 (5) 

2 

20"1 1 I_ _ _  20"s Voo Vld['~21 
V2 --  0"1 "~ 0"2 0"1 + 0"2 4x .,~ 

2(0"2- 0"1) 1 
V2 d[~22 (6) 

0"1 "~ 0"2 47z JS2 

When 0"1/0"2 ~ 1 it follows from eqns. 5 and 6 that the 
coefficients of the 'auto'-integrals ~ Vld~xl and ~ V2d~22 
have the same order of magnitude. 

The coefficient of ~ Vld~21 is much smaller than the 
coefficent of ~ Vidf~lr 

The high value of the coefficent of ~ V2d[)12 actually 
causes magnification of the error made in the numerical 
computat ion of this integral. When, for example, the inte- 
gral ~ V2d~)i2 is calculated to an accuracy of 1 per cent 
(which can be expected), the error in the second term of the 
right hand side of eqn. 6 will be blown up by a factor 
20"2/o ~ due to the influence of the coefficient as all values 
of V are of the same order of magnitude. 

If a~/0" 2 > l, all coefficients involved would be of the 
same order of magnitude or smaller than the coefficients of 
the 'auto'-integrals. No error-magnification has to be 
expected in this case. From this argumentation the data as 
listed in Table 1 can be understood. 

We have to find a method to eliminate the error mag- 
nification when using a realistical chosen conductivity 
ratio of the order of 0"1/0"2 = 0.01, which is much smaller 
than 1. 

The value of the potential in the extremum on the outer 
surface resulting from the numerical solution method of 
eqn. 3 depends on the total number  of discrete points N. 
Therefore, this value is called V N ext~(num). 1, 

From the results presented in Table 2 it can be easily 
extrapolated that for reaching a final error of 5 per cent in 
V~, ext,(num) the number of discrete points N has to be of 
the order of 104. The minimal amount  of computational 
work for the iterative solution of eqn. 3 is proportional to 
N 2 log N (ScHIePERS, 1982). For  this case this dimension- 
less number will be of the order of 4 •  108 . For  the 
DEC 20 computer which is at our disposal, this number is 

Table 2 Errors as a function of the number of discrete points for 
the two-sphere system 

V~. extr(num), E, V1, ext,(exact)' N • E, 
N mV mV per cent mV 

84 8-92 7-60 576 638 
160 5-33 4'01 304 642 
324 3'27 1'95 147 632 
640 2-32 1-00 75 640 

The analytical found exact solution V1, ex,,(exact)is 1.32 mV 
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equivalent to a CPU-t ime of 3 h for one iteration of eqn. 3. 
Fortunately, the amount  of computat ional  work can be 
decreased substantially by means of the Richardson 
extrapolation technique. 

4 Richardson extrapolation 
We can expand the error in the approximate solution in 

a power series of Nz as follows: 

fs N~ 1 1 VtdQkz - ~ VjAf~kj = el + - -  e2 + ' �9 ' (7) 

where 

N~ is the number  of triangles on surface S~ and e i does not 
depend on NI. 

The Richardson extrapolation procedure may be used 
when the error satisfies the condition (RICHARDSON and 
GUANT, 1927) 

~.~1 1 1 I >)" N-~ e2 + N-7 e3 + ' ' "  (8) 

If this condition is met, eqn. 7, taking two discrete levels 
N~ and N2 on surface Sl, reads: 

fs ~ 1  1 Vl dQu - ~ Vj dQkj = e 1 (9) 
1 j = l  ~ 1  

fs N2 1 v dn ,- Vjdn j = (lO) 
l j = l  ~22 

Elimination of et from eqns. 9 and 10 results in 

NI(N~=I N2~l ) 
Vldnkt - Na Z N2 VjAnk3 - -  - ~ 1  Vj Ankj (11) 

t J= J= 

This means that with the help of two numerical approx- 
imations, the value of the integral Ss~ V~df2k~ can be 
obtained. 

The potential in eqn. 1 on the surfaces k consists (apart 
from the exact term a,/6k V~(r')) of a summation of inte- 
grals, all with weighting factors independent of Nt. We 
choose the number  of discrete points to be the same on all 
surfaces, Nt. The total number of discrete points on n 
surfaces will be N = nNt. One can easily derive that when 
the Richardson condition (eqn. 8) is met for the integration 
over one surface, the total error E will satisfy the Richard- 
son condition. 

In Table 2 we see that N x E has approximately the 
same value for all numbers of N. This means that in the 
case of two spheres the condition necessary for Richardson 
extrapolation is met and that the exact value of the poten- 
tial can be obtained from two numerical approximations 
based on two different discretisation levels. Using the 
Richardson extrapolation procedure for the two-sphere 
model, based on the discretisation levels Nx = 324 and 
N 2 = 640, resulted in an error in the final potential dis- 
tribution which was less than 2 per cent. The computa-  
tional work necessary for the iterative solution is of the 
order 0((324) 2 log 324 + (640) 2 log 640) = 0(1.4 x 106) per 
iteration. This is a factor 285 times faster than without the 
use of the Richardson extrapolation procedure. 

5 Numerical  procedures 
To perform the Richardson extrapolation procedure we 

have to construct two distinct discretisation levels and 
perform two successive iterations, one at each level. As we 
have described our surfaces with plane triangular elements 
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(see Fig. 1), both the vertex points and the centres of mass 
of the triangles can be used as discrete points. This means 
that the same triangulation yields, respectively, N t and 
(2Nz - 4) discrete points on each surface. 

The centres of mass have been used as discrete points 
initially in the numerical solution of eqn. 3 (LYNN and 
TIMLAKE, 1968). The numerical procedure is identical if the 
vertices are chosen as discretisation points although the 
solid-angle terms A~')kl (and especially A~')kk ) have to be 
re-evaluated. 

To speed up the numerical process in the centres of mass 
approach, the interpolated final potential vector resulting 
from the vertex approach can be used as the starting 
vector of the iterative process. By doing so, the number of 
iterations needed in the centres of mass approach can be 
reduced by 20 per cent. 

6 Results 
As shown in this paper the numerical solution of the 

forward problem for EEGs can be speeded up substan- 
tially by using the Richardson extrapolation technique. To 
use this extrapolation technique the error has to be 
inversely proportional to the total number of discrete 
points. We demonstrated that for a model of the head 
consisting of two concentric spheres this condition is met. 

Also in the more general case of a model consisting of 
four concentric spheres, the Richardson condition is met. 
Using the same error analyses as introduced for the two- 
sphere model, we found for the four-sphere model results 
as listed in Table 3. The radii of the four spheres were 
adapted to conform to the bead and were, respectively, 
0.075, 0.071, 0.065 and 0.063 m. The conductivities of the 
compartments  were chosen to be 0.33, 0.0042, 1.00 and 
0.33 Sm -1. These values correspond with those reported 
elsewhere (GEDDES and BAKER, 1967) and represent, respec- 
tively, the conductivities of the scalp, the skull, the CSF 
and the brain tissue. 

We verified that the Richardson condition is also met 
when the shape of the compartment  boundaries within the 
head are chosen more realistically (MEIJS et al., 1985). This 
implies that the numerical methods described in this paper 
can be used for treating all mult icompartment  models of 
the electrical volume conductor decribing the head. 

7 Discussion 
The strategy of using the Richardson extrapolation tech- 

nique to reduce computational  errors, resulting from an 
ill-conditioned Fredholm integral equation of the second 
kind, has been followed in other fields of computational 
research (SATHIARAJ and SANKAR, 1983; DOBROVOL'SKII, 
1981). Until now, it does not seem to have been applied to 
the numerical problem discussed here. This can be 
explained by the fact that the conductivity ratios in dis- 
crete torso models are usually small and so the need for it 

Table 3 Errors as a function of the number of discrete points for 
the four-sphere system 

E 
V~. extr(num), E, I/1 ..... (exact)' N x E, 

N mV rnV per cent mV 

168 2-81 2.25 402 378 
320 1.79 1.23 220 394 
648 1.13 0.57 102 370 

1280 0'86 0-30 54 384 

For this configuration the analytical found exact solution 
11"1, ex~,(exact) is 0"56 rnV 
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is absent. However, using a discrete model of the head 
implies that the conductivities in the successive com- 
partments  are such that the errors will be magnified. 
Richardson's extrapolation technique was shown to ade- 
quately handle this problem. 
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1 I n t r o d u c t i o n  

THE INCREASING sophistication of Doppler  ultrasound sys- 
tems makes it difficult to evaluate their performance. 
Many compute the instantaneous maximum or mean fre- 
quency and use this to obtain the flow (ARTS and ROEVROS, 
1972), estimate the pressure gradient (HATLE et al., 1978), 
or measure parameters such as pulsatility index (JOHNSTON 
et al., 1984). Often, this computat ion is performed by ana- 
logue devices, the operating characteristics of which have 
not been established for different spectral shapes. 

The shape of the instantaneous amplitude against fre- 
quency Doppler  spectrum depends upon the velocity 
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profile in the vessel (GILL, 1979) and the geometrical 
relationship between the ultrasound field and the vessel 
under investigation (EVANS, 1982). Large variations in the 
shape of the instantaneous Doppler  spectrum have been 
demonstrated both in vitro (KALMAN et  al., 1985) and in 
vivo (SHELDON et al., 1983). A simple, stable and low-cost 
method of simulating these Doppler  spectra is described 
and its use is illustrated by obtaining the operating charac- 
teristics of a commercial mean frequency follower. 

2 M e t h o d  
A block diagram of the Doppler  simulator is shown in 

Fig. 1. A National  Semiconductor MM5837 digital noise 
source, based on a pseudorandom sequence generator, is 
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