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1 Introduction

We consider a Markov chain X ≡ {X(t), t ≥ 0} taking values in S ≡ {0, 1, . . .}

with q-matrix Q ≡ (qij , i, j ∈ S) given by

qi,i+1 = λi, qi+1,i = µi+1, qii = −(λi + µi + γi), i ≥ 0,

qij = 0, |i− j| > 1,
(1)

where λi > 0 and γi ≥ 0 for i ≥ 0, µi > 0 for i > 0, and µ0 = 0. The

parameters λi and µi are the birth and death rates in state i, while γi may be

regarded as the rate of absorption, or killing, into a fictitious state ∂, say. A

transition to the absorbing state is sometimes referred to in the literature as a

total catastrophe (see for example Chao and Zheng (2003)).

We will assume that the (standard) transition function P (.) ≡ {pij(.), i, j ∈

S}, where

pij(t) ≡ Pr{X(t) = j |X(0) = i}, t ≥ 0, i, j ∈ S,

is the minimal Q-function, that is, the minimal transition function with q-

matrix Q. As a consequence P (.) satisfies the system

P ′(t) = QP (t) = P (t)Q, t ≥ 0, (2)

of backward and forward equations (see for example Anderson (1991)). We note

parenthetically that imposing the forward equations is equivalent to imposing

“continuity at infinity”, in the sense that almost surely the only discontinuities

of the process (before absorption) are simple discontinuities with saltus ±1,

even if the process goes to infinity in finite time and returns from there (see

Karlin and McGregor (1959)). A prominent role in what follows will be played

by the polynomials {Rn} which are uniquely determined by the transition rates

of X through the recurrence relation

λnRn+1(x) = (λn + µn + γn − x)Rn(x)− µnRn−1(x), n ≥ 1,

λ0R1(x) = λ0 + γ0 − x, R0(x) = 1.
(3)

Karlin and McGregor (1957) have shown that if the killing rates γi are all

zero except γ0 ≥ 0 (in their notation γi = 0 for all i, but µ0 ≥ 0, and the
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absorbing state is labeled −1), then the transition probabilities pij(t) may be

represented in the form

pij(t) = πj

∫ ∞

0
e−xtRi(x)Rj(x)ψ(dx), t ≥ 0, i, j ∈ S. (4)

Here πn are constants given by

π0 ≡ 1 and πn ≡
λ0λ1 . . . λn−1

µ1µ2 . . . µn
, n > 0, (5)

and ψ is a Borel measure of total mass 1 on [0,∞) with respect to which

the polynomials {Rn} are orthogonal. The orthogonalizing measure for {Rn}

is in virtual all practical cases unique, and in many cases known explicitly.

The usefulness of the integral representation (4) derives from the monotonic

properties of e−xt, and from the fact that the dependence on t, i and j is

factored in the integrand.

If we allow for killing rates γi ≥ 0 in each state i ∈ S, the polynomials {Rn}

of (3) still constitute an orthogonal polynomial sequence with respect to a Borel

measure ψ on [0,∞). The main purpose of this note is to point out that also

the representation (4) remains valid in this case.

The remainder of this paper is organized as follows. In Section 2 we will

gather some preliminary results, which are needed in Section 3 to prove our

assertion. In Section 4 we will investigate under which condition on Q the

minimal Q-function P (.) is the only Q-function satisfying both backward and

forward equations. We conclude in Section 5 with an example.

2 An associated birth-death process

We shall have use for the quantities λ̃i and µ̃i, i ≥ 0, recurrently defined by

µ̃0 = 0, λ̃0 = λ0 + γ0

µ̃i = (λi−1/λ̃i−1)µi, λ̃i = λi + γi + µi − µ̃i, i > 0.
(6)

It is easily seen by induction that

λ̃i ≥ λi + γi ≥ λi > 0 and µ̃i+1 > 0, i ≥ 0,
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so that λ̃i and µ̃i may be interpreted as the birth and death rates, respectively,

of a (conservative) birth-death process X̃ ≡ {X̃(t), t ≥ 0} on S with q-matrix

Q̃ ≡ (q̃ij) given by

q̃i,i+1 = λ̃i, q̃i+1,i = µ̃i+1, q̃ii = −(λ̃i + µ̃i), i ≥ 0,

q̃ij = 0, |i− j| > 1.
(7)

We let

π̃0 ≡ 1 and π̃n ≡
λ̃0λ̃1 . . . λ̃n−1

µ̃1µ̃2 . . . µ̃n
, n > 0, (8)

and observe from (1), (6) and (7) that

Π̃1/2Q̃Π̃−1/2 = Π1/2QΠ−1/2, (9)

where Π̃1/2 and Π1/2 denote the diagonal matrices with entries
√
π̃n and

√
πn,

respectively, on the diagonals.

Evidently, X̃ need not be uniquely determined by Q̃, but in what follows

we will assume that X̃ is the minimal Q̃-process, represented by the minimal

Q̃-function P̃ (.) ≡ {p̃ij(.), i, j ∈ S}, which therefore satisfies the system

P̃ ′(t) = Q̃P̃ (t) = P̃ (t)Q̃, t ≥ 0, (10)

of backward and forward equations. Also, Karlin and McGregor’s integral rep-

resentation applies to p̃ij(t), that is,

p̃ij(t) = π̃j

∫ ∞

0
e−xtR̃i(x)R̃j(x)ψ̃(dx), t ≥ 0, i, j ∈ S, (11)

where {R̃n} are the polynomials satisfying the recurrence

λ̃nR̃n+1(x) = (λ̃n + µ̃n − x)R̃n(x)− µ̃nR̃n−1(x), n ≥ 1,

λ̃0R̃1(x) = λ̃0 − x, R̃0(x) = 1,
(12)

and ψ̃ is a Borel measure (of total mass 1) on [0,∞) with respect to which the

{R̃n} are orthogonal. Actually, if Q̃ is such that

∞∑
n=0

(
π̃n +

1
λ̃nπ̃n

)
= ∞, (13)

then the Stieltjes moment problem associated with {R̃n} is determined, which

means that ψ̃ is the unique orthogonalizing measure on [0,∞) for {R̃n}. In this
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case P̃ (.) is the unique Q̃-function satisfying the system (10) of backward and

forward equations. If the series in (13) converges, then the Stieltjes moment

problem is indeterminate, that is, there are infinitely many orthogonalizing

measures for {R̃n}. In this case there are also infinitely many Q̃-functions

satisfying (10). The measure ψ̃ corresponding to the minimal Q̃-function may

now be characterized as the one which is supported by the zeros of the (entire)

function R̃∞(x) ≡ limn→∞ R̃n(x); we will refer to ψ̃ as the minimal measure

for {R̃n} (see Karlin and McGregor (1957) for more details).

It is sometimes desirable for X̃ to be non-explosive, which requires Q̃ to be

such that
∞∑

n=0

1
λ̃nπ̃n

n∑
i=0

π̃i = ∞, (14)

which is stronger than (13). If (and only if) condition (14) is satisfied, then

the minimal Q̃-function P̃ (.) is in fact the unique Q̃-function satisfying just the

backward equations P̃ ′(t) = Q̃P̃ (t).

We conclude this section with the observation that, apart from a multi-

plicative constant, the polynomials R̃n and Rn are identical. Indeed, it follows

readily by induction from (6) and the recurrence relations (3) and (12) that

R̃n(x) =
λ0λ1 . . . λn−1

λ̃0λ̃1 . . . λ̃n−1

Rn(x) =
√
πn

π̃n
Rn(x), n ≥ 0. (15)

So, the polynomials {Rn} of (3) are orthogonal with respect to any measure

which is an orthogonalizing measure for {R̃n}, and with respect to ψ̃ in partic-

ular.

3 Representation

Our main result is expressed in the corollary to the following theorem.

Theorem 1 The minimal Q-function P (.) ≡ {pij(.)} and the minimal Q̃-

function P̃ (.) ≡ {p̃ij(.)} satisfy

P (t) = Π−1/2Π̃1/2P̃ (t)Π̃−1/2Π1/2, t ≥ 0. (16)
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Proof Denoting the right-hand side of (16) by F (t), it follows from (9) and

(10) that F (.) satisfies the system of backward and forward equations (2). F (.)

is also the minimal non-negative solution of (2) since the opposite would imply

that P̃ (.) is not the minimal non-negative solution of (10), and therefore (see for

example Anderson, 1991, Theorem 2.2.2) not the minimal Q̃-function. Hence,

by the same theorem in Anderson (1991), F (.) is the minimal Q-function, that

is, F (t) = P (t), t ≥ 0. 2

Corollary 2 The minimal Q-function P (.) ≡ {pij(.)} of the process X may be

represented in the form (4), where {Rn} are the polynomials defined in (3) and

ψ is the orthogonalizing measure (of total mass 1) for {Rn} on [0,∞) which, if

it is not unique, is the minimal measure.

Proof By (16) and (11) we have

pij(t) =

√
π̃iπj

πiπ̃j
p̃ij(t) =

√
π̃i

πi
πj π̃j

∫ ∞

0
e−xtR̃i(x)R̃j(x)ψ̃(dx).

Substituting (15) and noting, in view of (15), that {Rn} is orthogonal with

respect to ψ = ψ̃ yields the result. 2

So, as announced, we may conclude that the representation (4) remains valid

whether the killing rates γi, i > 0, are zero or not.

As in Karlin and McGregor (1957), certain non-minimal Q-functions (if

there are any) may also be represented in the form (4), with ψ replaced by

an appropriate (non-minimal) orthogonalizing measure for {Rn}. A necessary

and sufficient condition for P (.) to be the only Q-function satisfying (2) will be

derived in the next section, but otherwise we will not pursue this issue.

As an aside we note that the concept of similarity for birth-death processes

introduced in Lenin et al. (2000) may be extended to birth-death processes with

killing. Namely, in view of (16) the transition probability functions pij(.) and

p̃ij(.) differ only by a multiplicative constant. Hence the process X is similar

(in the sense of Lenin et al. (2000)) to the pure birth-death process X̃ .
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4 Uniqueness

If condition (13) is satisfied then the minimal Q̃-function P̃ (.) is the unique

Q̃-function satisfying (10), and, as we shall see in this section, P (.) is the

unique Q-function satisfying (2). On the other hand, (13) is not necessary for

uniqueness of P (.). Before giving a necessary and sufficient condition we need

some preliminary results.

First, we observe from (15) and (6) that for all x

λ̃nπ̃nR̃n(x)R̃n+1(x) = λnπnRn(x)Rn+1(x), n ≥ 0. (17)

It is easily seen from (12) that R̃n(0) = 1 for all n, so, as a consequence of (15)

and (17), we have

π̃n = πnR
2
n(0), n ≥ 0, (18)

and

λ̃nπ̃n = λnπnRn(0)Rn+1(0), n ≥ 0. (19)

It will also be useful to note from the recurrence relation (3) and the fact that

λn−1πn−1 = µnπn that, for n ≥ 1,

λnπn(Rn+1(0)−Rn(0)) = λn−1πn−1(Rn(0)−Rn−1(0)) + γnπnRn(0),

while λ0π0(R1(0)−R0(0)) = γ0π0R0(0), so that

λnπn(Rn+1(0)−Rn(0)) =
n∑

k=0

γkπkRk(0), n ≥ 0, (20)

and

Rn+1(0) = 1 +
n∑

j=0

1
λjπj

j∑
k=0

γkπkRk(0), n ≥ 0. (21)

Our final preliminary result is the following lemma, which is the general-

ization to the setting at hand of (part of) Lemma 6 (on p. 526) of Karlin and

McGregor (1957). Recall that ψ (= ψ̃) is either the unique or else the minimal

orthogonalizing measure for {R̃n}, and hence for {Rn}.
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Lemma 3 We have
∞∑

j=0

γjπj

∫ ∞

0
x−1Rj(x)ψ(dx) = 1− lim

n→∞

1
Rn(0)

. (22)

Proof From Karlin and McGregor, 1957, Lemma 6 we know that∫ ∞

0
x−1ψ̃(dx) =

∞∑
n=0

1
λ̃nπ̃n

,

where both members may be infinite. It subsequently follows by induction from

the recurrence relation (12) that∫ ∞

0
x−1R̃j(x)ψ̃(dx) =

∞∑
n=j

1
λ̃nπ̃n

, j ≥ 0. (23)

Hence, with the help of (15), (19), (18), and (20) we can write

∞∑
j=0

γjπj

∫ ∞

0
x−1Rj(x)ψ(dx) =

∞∑
j=0

γj

√
πj π̃j

∫ ∞

0
x−1R̃j(x)ψ̃(dx)

=
∞∑

j=0

γj

√
πj π̃j

∞∑
n=j

1
λ̃nπ̃n

=
∞∑

j=0

γjπjRj(0)
∞∑

n=j

1
λnπnRn(0)Rn+1(0)

=
∞∑

n=0

1
λnπnRn(0)Rn+1(0)

n∑
j=0

γjπjRj(0)

=
∞∑

n=0

(
1

Rn(0)
− 1
Rn+1(0)

)
,

which yields the required result. 2

We can now give a necessary and sufficient condition for P (.), the minimal

Q-function, to be the unique Q-function satisfying (2).

Theorem 4 In order that there be only one Q-function P (.) satisfying the com-

bined system of backward and forward equations it is necessary and sufficient

that at least one of the two conditions

lim
n→∞

Rn(0) = ∞ (24)
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or
∞∑

n=0

(
πn +

1
λnπn

)
= ∞ (25)

be satisfied.

Proof As in the proof of Theorem 15 of Karlin and McGregor (1957), we

consider the Laplace transform D(s) ≡ (Dij(s)) of the difference of any two

Q-functions satisfying (2) and find that

Dij(s) = πjRi(−s)Rj(−s)D00(s), s ≥ 0.

Since the zeros of R̃n(x), and hence Rn(x), are all positive (see Karlin and

McGregor (1957)), while, by (21), Rn(0) is increasing in n, we have

Rn(−s) ≥ Rn(0) ≥ 1, s ≥ 0,

for all n. Hence, if (24) is satisfied then Ri(−s) → ∞ as i → ∞. But since

Dij(s) is bounded we must have D00(s) = 0, and hence Dij(s) = 0 for all

i, j. On the other hand, if (24) is not satisfied then
∑

j(λjπj)−1 < ∞ as a

consequence of (21). So if, at the same time, (25) is satisfied, we must have∑
j πj = ∞, and hence

∑
j πjRj(−s) = ∞ for s ≥ 0. But, since

∑
j Dij(s) must

be bounded, it follows again that D00(s) = 0, and hence Dij(s) = 0 for all i, j.

Now suppose neither (24) nor (25) are satisfied. Then, in view of (18) and

(19), also (13) is not satisfied. As a result there is a number ξ1 > 0 and a

one-parameter family {ψξ, 0 ≤ ξ ≤ ξ1} of so-called extremal solutions to the

Stieltjes moment problem associated with {R̃n}. The index ξ in ψξ denotes the

smallest point in the support of the measure, and the minimal measure ψ = ψ̃

should be identified with ψξ1 (see Karlin and McGregor (1957) or van Doorn

(1987) for more details). Next letting

φ(ξ) ≡
∞∑

j=0

γjπj

∫ ∞

0
x−1Rj(x)ψξ(dx), 0 ≤ ξ ≤ ξ1,

we note that, by Lemma 3, the boundedness of Rn(0) amounts to φ(ξ1) < 1.

The proof of Theorem 15 of Karlin and McGregor (1957) can now be copied

to show that φ(ξ) is continuous, so that there must be a number ξ0 such that
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φ(ξ) < 1 for ξ ∈ (ξ0, ξ1]. As in Karlin and McGregor (1957) the extremal

measures ψξ, ξ0 < ξ ≤ ξ1, can subsequently be used to construct infinitely

many distinct Q-functions satisfying (2). 2

If only finitely many γi are positive then, by (21), statement (24) is equiva-

lent to
∑∞

n=0(λnπn)−1 = ∞, so that (25) alone is necessary and sufficient for

uniqueness. Thus we have regained the necessary and sufficient condition for

uniqueness given in Theorem 15 of Karlin and McGregor (1957) in the case that

killing is possible in state 0 only.

In general, the first condition in the above theorem does not imply the

second one. Indeed, from (19) we obtain

Rn+1(0) = Rn(0) +
γn

λn
Rn(0) +

1
λnπn

n−1∑
k=0

γkπkRk(0).

Hence, we may choose λn and µn such that the series in (25) converges, and

subsequently γn successively so large that Rn+1(0) ≥ Rn(0) + 1. As a result

(24) does hold.

We also note that if Rn(0) is bounded then (13) and (25) are equivalent, in

view of (18) and (19). So, in accordance with our assertion at the beginning

of this section, if P̃ (.) is the unique Q̃-function satisfying (10), then P (.) is the

unique Q-function satisfying (2). (The reverse does not necessarily hold true.)

The integral in (22) seems enigmatic, but has in fact a clear probabilistic

interpretation. Namely, let T∂ denote the killing time, that is, the (possibly

defective) random variable representing the time at which absorption in the

absorbing state ∂ occurs. Since, by the forward equations,

Pr{T∂ ≤ t |X(0) = 0} =
∞∑

j=0

γj

∫ t

0
p0j(u)du,

we have

Pr{T∂ <∞|X(0) = 0} =
∞∑

j=0

γj

∫ ∞

0
p0j(u)du,

so that, by substituting the integral representation (4) and interchanging the

integrals, we get

Pr{T∂ <∞|X(0) = 0} =
∞∑

j=0

γjπj

∫ ∞

0
x−1Rj(x)ψ(dx). (26)
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So Lemma 3 tells us that absorption at ∂ from state 0 (and hence from any

state) is certain if and only if Rn(0) is unbounded. More information about the

killing time T∂ is given in van Doorn and Zeifman (2005).

5 Example

If the killing rates are constant, γi = γ, say, then, by conditioning, the transition

probabilities pij(.) of the process with killing can simply be expressed in terms

of the transition probabilities p̃ij(.) of the process with the same birth and death

rates, but zero killing rates. Namely,

pij(t) = e−γtp̃ij(t), i, j ∈ S, t ≥ 0.

So interesting cases arise when the killing rates are state dependent.

As an example we will consider the process X with linear birth, death and

killing rates, namely,

λi = λi+ θ, µi = iµ, γi = iγ, i ∈ S,

with λ, θ, µ, γ > 0. It is easy to see that (25) is satisfied, so X is uniquely

determined by its rates. Karlin and Tavaré (1982) have analysed the process

by adroitly relating it to an honest birth-death process with known transition

probabilities. We shall see that a direct approach based on the integral repre-

sentation (4) yields the same result. Indeed, the recurrence relation (3) becomes

(λn+ θ)Rn+1(x) = (θ + (λ+ µ+ γ)n− x)Rn(x)− µnRn−1(x), n > 1,

θR1(x) = θ − x, R0(x) = 1.

Now writing

β ≡ θ

λ
, ρ ≡

√
(λ+ µ+ γ)2 − 4λµ, κ ≡ θ

(
1− 2µ

λ+ µ+ γ + ρ

)
and

Pn(x) ≡
(

2λ
λ+ µ+ γ − ρ

)n

(β)nRn(ρx+ κ), n ≥ 0,

where (β)n ≡ Γ(β + n)/Γ(β), we see after a little algebra that {Pn} satisfies

the recurrence

cPn+1(x) = ((c− 1)x+ (c+ 1)n+ cβ)Pn(x)− n(n+ β − 1)Pn−1(x),
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where

c =
λ+ µ+ γ − ρ

λ+ µ+ γ + ρ
.

The polynomials Pn can now be identified (see Chihara, 1978, Section VI.3) with

the Meixner polynomials of the first kind, which are orthogonal with respect to

a discrete measure with masses at 0, 1, . . . . Specifically,

(1− c)β
∞∑

x=0

Pm(x)Pn(x)
cx(β)x

x!
= δm,n

(β)nn!
cn

, m, n ≥ 0.

As a consequence the orthogonality relation for the polynomials {Rn} may be

given as

(1− c)β
∞∑

x=0

Rm(ρx+ κ)Rn(ρx+ κ)
cx(β)x

x!
= δm,n

µnn!
(β)nλn

, m, n ≥ 0.

By elementary substitution of these findings in the integral representation (4)

we regain the result obtained earlier in Karlin and Tavaré (1982).
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Karlin, S. and Tavaré, S. (1982), Linear birth and death processes with killing,

J. Appl. Probab. 19, 477-487.

Lenin, R.B., Parthasarathy, P.R., Scheinhardt, W.R.W. and van Doorn, E.A.

(2000), Families of birth-death processes with similar time-dependent behaviour.

J. Appl. Probab. 37, 835-849.

12


