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Abstract In this paper, the problem of minimizing the total completion time on a
single machine with the presence of release dates is studied. We introduce two
different approaches leading to very large-scale neighborhoods in which the best
improving neighbor can be determined in polynomial time. Furthermore,
computational results are presented to get insight in the performance of the
developed neighborhoods.
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1 Introduction

Many optimization problems in the practical world are computationally intractable.
For these problems, it costs too much time to solve them to optimality. Hence, there
is need for practical approaches to solve such problems. Away to achieve this is the
development of heuristic (approximation) algorithms that are able to find
satisfactory solutions within a reasonable amount of computation time. In the
literature concerning heuristic algorithms, two different classes can be distin-
guished. The first class of heuristic algorithms consists of constructive algorithms.
These algorithms build solutions by assigning values to one or more decision
variables at a time. The second class is the improvement algorithms that start with a
feasible solution and iteratively try to advance to a better solution. In this class,
local search and neighborhood search algorithms play a crucial role.

A local search heuristic starts, roughly spoken, with some solution and
iteratively replaces the current solution by some solution in a neighborhood of this
solution. Thus, for a local search approach, a method for calculating an initial

T. Brueggemann (*) . J. L. Hurink
Department of Applied Mathematics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: t.brueggemann@math.utwente.nl, j.l.hurink@math.utwente.nl

OR Spectrum 29:513–533 (2007)



solution, a neighborhood structure of a given solution and a method to select a
solution from the neighborhood of a given solution are needed.

The neighborhood structure of a given solution has an important influence on
the efficiency of the local search heuristic. It determines the navigation through the
solution space during the iterations of the local search method, and the computation
time of one iteration is affected by the choice of the neighborhood structure as well.
Therefore, one expects that the size of the neighborhood has influence on the
quality of the final solution of a local search approach, because a larger
neighborhood covers more solutions and, of course, affects the running time.
Therefore, a compromise between size, quality, and running time has to be found.

A possible way to do this is to restrict the neighborhood of a solution to
promising solutions, i.e., to solutions which may have a good objective value.
Another possibility is to develop efficient methods to find the best solution in a
given neighborhood, which is often an interesting optimization problem itself.

Over the last time, very large-scale neighborhoods that can be exhausted in
reasonable time were considered. These very large-scale neighborhoods mostly
contain an exponential number of solutions but allow a polynomial exploration. A
nice survey about very large-scale neighborhood techniques is given by Ahuja et al.
(2002). They categorize those into three not necessarily distinct classes. Their first
category of neighborhood search algorithms consists of variable-depth methods.
These algorithms partially exploit exponential-sized neighborhoods using heuristics.
The second category consists of improvement algorithms based on network flow.
Thesemethods use network flow techniques to identify improving neighbors. Finally,
their third category consists of neighborhoods for N P -hard problems obtained by
considering subclasses or restrictions that can be solved in polynomial time.

Although the concept of very large-scale neighborhoods sounds promising, the
practical relevance of these neighborhoods is not so clear (see, e.g., Hurink 1999).
In this paper, we develop two very large-scale neighborhoods for a single-machine
scheduling problem and study their usage in local search. The goal is to present for
one problem different concepts to reach very large-scale neighborhoods and to get
more insight under which conditions of very large-scale neighborhoods may be of
practical use.

To be more precise, we present two different approaches for obtaining very
large-scale neighborhoods for the problem of scheduling n jobs with release dates rj
and processing times pj on a single machine to minimize total completion timeP

Cj without preemption. In the classical scheduling notation by Graham et al.
(1979), this problem is denoted by 1jrjj

P
Cj. The considered problem is N P -hard

in the strong sense as stated in Lenstra et al. (1977). Since for a fixed sequence π
there is an efficient method for calculating the best schedule in OðnÞ, local search
may be applied by considering sequences as solutions.

The first neighborhood we present is an extension of the adjacent pairwise
interchange neighborhood (API). This extension is based on the idea of combining
independent operators. Congram et al. (2002) and Potts and van de Velde (1995)
applied the idea of combining independent SWAP operators to the single-machine
total weighted tardiness scheduling problem and the traveling salesman problem,
respectively. They call their approach iterated dynasearch. In the paper of Congram
et al. (2002), the authors show that the size of their neighborhood isOð2n�1Þ and they
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give a dynamic programming recursion to find the best neighbor in Oðn3Þ. Hurink
(1999) applies compounded API operators in the context of single-machine batching
problems, and he shows that an improving neighbor can be obtained in Oðn2Þ by
calculating the shortest path in an improvement graph, that is a structure, defined by
the possibility of combining API operators and their change of the objective value.

For problem 1jrjj
P

Cj , the independency of changes gets a bit more com-
plicated due to the presence of release dates. Therefore, we first examine in which
situations we may combine several API operators to modify a sequence π de-
scribing a solution for 1jrjj

P
Cj . We exploit the locality of API operators, indi-

cating that such an operator causes only small changes to a schedule. It turns out,
that the problem of finding a best-combined move to a neighboring solution can be
solved by calculating the shortest path in an improvement graph, as described by
Hurink (1999). According to Ahuja et al. (2002), this extension of the API
neighborhood belongs to their second category of very large-scale neighborhoods.

The second neighborhood we introduce is based on a dominance rule that may
also be used in a branch-and-bound algorithm for solving the considered problem.
This dominance rule states that for a given solution, the problem is locally not very
different from its relaxation 1j jPCj , which can be solved by the shortest
processing time first (SPT) rule from Smith (1956). This second neighborhood
belongs to the third category of Ahuja et al. (2002).

The outline of this paper is as follows. In Section 2, we give a brief description
of the problem and introduce some notations. Section 3 describes the two very
large-scale neighborhoods and their main conceptual differences. In Section 4, we
give some computational results for these neighborhoods and discuss the
possibilities and limitations of the two concepts. Finally, some concluding remarks
are given.

2 Problem description

We consider the single machine scheduling problem, where n jobs 1; . . . ; n with
nonnegative release dates r1; . . . ; rn and processing times p1; . . . ; pn are given. A
job j is not available before time rj and needs to be processed for pj time-units
without preemption. Without loss of generality, we reorder the jobs such that
r1 � . . . � rn and, if rj ¼ rjþ1, that pj � pjþ1.

A schedule for this problem can be described by a vector S ¼ ðS1; . . . ; SnÞ of
starting times. It is called a feasible schedule, if and only if:

– Sj � rj for j ¼ 1; . . . ; n,
– Either Sj � Si þ pi or Si � Sj þ pj for all pairs i; j ¼ 1; . . . ; n with i 6¼ j.
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Furthermore, by C , we denote the vector of completion times for a feasible
schedule S , i.e., Cj :¼ Sj þ pj for j ¼ 1; . . . ; n. The goal is to find a feasible
schedule S, such that the objective function

f ðSÞ :¼
Xn
j¼1

Cj

is minimized.
A solution of this problem can be characterized by a sequence of the jobs,

which represents a processing order of the jobs. For a given sequence π, the
corresponding feasible schedule S is given by:

Sπð1Þ :¼ rπð1Þ and
SπðjÞ :¼ maxfrπðjÞ; Sπðj�1Þ þ pπðj�1Þg for j ¼ 2; . . . ; n:

(1)

The calculation of this schedule needs OðnÞ time. From now on, let π ¼ ðπð1Þ; . . . ;
πðnÞÞ be a given sequence and Sπ the corresponding feasible schedule. Often, we
omit π if it is clear which sequence is considered.

3 Very large-scale neighborhoods

In this section, we present two very large-scale neighborhoods for the problem
1jrjj

P
Cj . The neighborhoods rely on two different principles. First, in Section

3.1, we build up neighbored solutions by combining several independent pair-
interchange operators to one compounded neighborhood operator. Next, in Section
3.2, we use a reordering of subsequences as the base of building up a neighborhood
structure. Both neighborhoods can have an exponential (in n ) number of neighbors
and allow efficient exploration. Finally, in Section 3.3, we compare the two
approaches.

3.1 Compounded API

In this subsection, we develop a neighborhood, which is based on adjacent-pair
interchanges (API). First, we analyze the effects of a single API operator. We
examine which jobs are affected and how the objective function is influenced.
Later on, this will be used to combine several API operators to a compounded
operator, which results in a neighborhood that may have exponential size and can
be searched in polynomial time. Before presenting the mentioned results, we first
introduce some notations.

If we consider a schedule Sπ, this schedule decomposes uniquely in a set of so-
called blocks. Hereby, a block consists of jobs that are scheduled without idle-times,
such that the first job of its block starts after an idle period at its release date and all
other jobs start at the completion time of their predecessor. We denote by bðπÞ the
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number of blocks and by B1; . . . ;BbðπÞ the blocks of the form Bβ ¼ fπðiβÞ; . . . ;
πðiβ þ kβÞg with iβ þ kβ þ 1 ¼ iβþ1.

In addition, we denote by gβ the amount of idle-time between the jobs πðiβÞ
and πðiβ�1 þ kβ�1Þ; if β � 2 , or the idle-time before the job πð1Þ; if β ¼ 1 . In
Fig. 1 an example for blocks and their gaps in a schedule is given.

The neighborhood NAPI of a sequence π consists of all sequences received by
applying one of the adjacent-pair interchange operatorsAPI1; . . . ;APIn�1; where the
operator APIj interchanges the elements in positions j and jþ 1 of a sequence, i.e.,

APIjðπÞ :¼ ðπð1Þ; . . . ; πðj� 1Þ;πðjþ 1Þ; πðjÞ;πðjþ 2Þ; . . . ; πðnÞÞ:

In the following, we examine how a single API operator affects a given
solution. Considering the two jobs πðjÞ and πðjþ 1Þ involved in APIj , there are
different cases to handle, depending on the position of job πðjÞ in the block and the
release date rπðjþ1Þ of job πðjþ 1Þ.

Consider an operator APIj where index j belongs to a position of block
Bβ ¼ fπðiβÞ; . . . ;πðiβ þ kβÞg. Clearly, if j ¼ iβ þ kβ , the application of APIj leads
to an increase of the objective value, since the job πðiβ þ kβ þ 1Þ is the first job of
the next block and, therefore, starts at its release date. Thus, if we are interested in
operators APIj , which may lead to better solutions, we only have to consider jobs j
which are not the last job of a block. To calculate the consequences of the exchange
of the jobs πðjÞ and πðjþ 1Þ; let S′ be the schedule corresponding to APIjðπÞ.
Furthermore, let

1. d1 :¼ S′πðjÞ � SπðjÞ.
2. d2 :¼ Sπðjþ1Þ � S′πðjþ1Þ.
3. d3 :¼ C′πðjÞ � Cπðjþ1Þ.

Herewith, d1 describes the absolute value of the change in starting time of job
πðjþ 1Þ, d2 gives the change for job πðjÞ, and d3 presents the effect of the
exchange for the succeeding jobs πðjþ 2Þ; . . . ; πðnÞ (see Fig. 2). The value d2 is
given by

d2 ¼ minfpπðjÞ; Sπðjþ1Þ � rπðjþ1Þg for j 6¼ iβ and
minfpπðjÞ þ gβ; Sπðjþ1Þ � rπðjþ1Þg for j ¼ iβ:

�

Furthermore, by scheduling job πðjÞ directly after the finishing of job πðjþ 1Þ, the
starting time S0πðjÞ of job πðjÞ becomes S0πðjÞ ¼ SπðjÞ þ pπðjÞ � d2 þ pπðjþ1Þ. Taking
into account the release date of job πðjÞ, this leads to

d1 ¼ maxfpπðjÞ þ pπðjþ1Þ � d2; rπðjÞ � SπðjÞg:
Based on these considerations, d3 becomes:

d3 ¼ d1 � pπðjþ1Þ:
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If j > iβ , d3 is always greater or equal to 0. However, if j ¼ iβ , d3 may also be
negative due to the gap gβ before job πðiβÞ. The parameter d3 is useful to calculate
the effects of APIj on the jobs πðjþ 2Þ; . . . ; πðnÞ.

Applying operator APIj changes the objective value by

δj :¼ f ðS′Þ � f ðSÞ ¼ Pn
μ¼1

ðS′πðμÞ þ pπðμÞ � SπðμÞ � pπðμÞÞ

¼ d1 � d2 þ
Pn

μ¼jþ2
S′πðμÞ � SπðμÞ:

(2)

To calculate δj , it remains to calculate

penalty :¼
Xn
μ¼jþ2

S′πðμÞ � SπðμÞ:

As mentioned before, the effects of APIj on the jobs πðjþ 2Þ; . . . ; πðnÞ are
characterized by d3. If d3 ¼ 0, then penalty :¼ 0. Otherwise, not only jobs of Bβ

but also jobs of subsequent blocks may be involved. If d3 > 0, all jobs πðμÞ with
jþ 2 � μ � iβ þ kβ have to be shifted by d3 units to keep a feasible schedule.
This results in penalty :¼ d3ðiβ þ kβ � j� 1Þ. If d3 > gβþ1, the shift also affects
the next block. Thus, we have to shift all jobs πðiβþ1Þ; . . . ; πðiβþ1 þ kβþ1Þ of the
next block by d3 :¼ d3 � gβþ1 , resulting in penalty :¼ penaltyþ d3kβ . Such a
shifting of complete blocks has to be repeated until the gap is sufficiently big.

On the other hand if d3 < 0, we have to shift jobs to the left in the new schedule,
beginning with job πðjþ 2Þ. The involved jobs are only the jobs jþ2; . . . ; iβþkβ ,
and the calculation of penalty has to be done by calculating the new starting times

S

S

π( j) π( j+ 1) π( j+ 2)

Sπ( j) Sπ( j+ 1) Sπ( j+ 2)

π( j+ 1) π( j) π( j+ 2)

Sπ( j) Sπ( j+ 2)Sπ( j+ 1)

t

t

d1
d2 d3

Fig. 2 Effect of APIjð�Þ

Block B1 B2 B3

π(1) π(2) π(3) π(4) π(5) π(6) : : :S

g2g1 g3

t
0

Fig. 1 Blocks and gaps in a schedule S
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for all these jobs by applying Eq. 1. Note that in this case, the penalty is neg-
ative and the block Bβ may split into several new blocks.

All in all, the effects of such an API operator are computable in time OðnÞ;
however, in the average, we expect a much lower running time. The neighborhood
NAPI has size OðnÞ. Hence, we need in the worst case Oðn2Þ to compute the best
solution in NAPI .

In the following, we investigate the possibility of combining API operators.
More precisely, we search for pairs of operators APIi and APIj, where the
consecutive application of these two operators to a sequence π leads to a change of
δi þ δj in the objective value. Such an independence of operators allows to
evaluate the effects of a combined execution of the operators, based on the effects
of the single operators and, therefore, allows a combined execution of several
different APIs in one iteration of the local search algorithm leading to a
compounded neighborhood. To find candidates for combined operators, we have to
analyze which APIs do not have an effect on each other.

Consider indices i and j with 1 � i < j � n� 1 and iþ 2 � j . We are
interested in those cases where the effect of APIjðAPIiðπÞÞ and APIiðAPIjðπÞÞ are
equal to δi þ δj , i.e., we look for indices i and j where

f ðSπÞ þ δi þ δj ¼ f ðSAPIjðAPIiðπÞÞÞ:
A sufficient condition for this independency is that after applying APIi to π , the
resulting schedule around the jobs in position j and jþ 1 must be the same as in π.
To formalize this, we introduce a variable Fi denoting the first position after iþ 1
where the application of APIi to π has no effect.

If by applying APIiðπÞ the interval which is occupied by the jobs πðiÞ and
πðiþ 1Þ does not change, we have Fi ¼ iþ 2 . On the other hand, if the starting
time of job πðiþ 2Þ or the idle period before πðiþ 2Þ is changed by applying APIi
to π , we determine the index of the last affected job

Li :¼ maxfk : i � k � n; SππðkÞ 6¼ SAPIiðπÞπðkÞ g;

and we define Fi :¼ Li þ 2 (we have to add 2 , since there might be a change in the
amount of idle time before πðLi þ 1Þ after applying APIi ). The value for Li can
easily be determined during the calculations of penalty .

Based on the above considerations, we call APIj π -independent of APIi if

1. Neither πðiÞ nor πðjÞ is a last job of its block.
2. j � Fi .

In addition, we call APIi and APIj π -independent if either APIj is π -independent
of APIi or APIi is π -independent of APIj .

Summarizing, for two π -independent operators APIi and APIj , we have

f ðSπÞ þ δi þ δj ¼ f ðSAPIjðAPIiðπÞÞÞ:
An important property of π -independency is its transitivity. If for i < j < k APIj is
π -independent of APIi and APIk is π -independent of APIj , then APIk is also π -
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independent of APIi . Thus, we call a setM � f1; . . . ; n� 1gπ -independent if the
API operators belonging to the elements of M are pairwise π -independent.

Hence, for a given π -independent set M :¼ fv1; . . . ; vkg, we can calculate the
objective value of the schedule APIvk � APIvk�1 � . . . � APIv1ðπÞ by

f ðSAPIvk �APIvk�1
�...�APIv1 ðπÞÞ ¼ f ðSπÞ þ

X
i2M

δi:

We define the neighborhood NCAPI (CAPI is short for compounded adjacent-
pair interchange) of a sequence π to consist of all possible sequences resulting
from applying all possible combinations of π-independent operators to π . This
neighborhood at least contains all API -operators, i.e., NAPI ðπÞ � NCAPI ðπÞ, but
there may generally be an exponential number of sequences in NCAPI .

In the following, we develop an efficient method to calculate a set of
independent operators that gives the best gain in the objective value over all
possible independent operators. For this, we define a structure called improvement
graph, which depends strongly on the given sequence π.

For a given sequence π , let Gπ ¼ ðV ;AπÞ be a graph with vertices V ¼ f0;
1; . . . ; n� 1; �g and a set Aπ � V � V of directed arcs, where each arc ði; jÞ 2 Aπ

receives a cost cij . The vertices 0 and � are called source and sink, respectively.
The set Aπ contains the following arcs.

– Arcs ð0; iÞ with cost c0i ¼ δi for all 1 � i � n� 1 where πðiÞ is not a last job
of a block in Sπ

– Arcs ði; jÞ with cost cij ¼ δj for all 1 � i < j � n� 1 where APIj is π -
independent of APIi

– Arcs ði; �Þ with cost ci� ¼ 0 for all 0 � i � n� 1

An arc leading to a vertex i � n� 1 corresponds to an application of the
operator APIi . Furthermore, a directed path P ¼ ð0; v1; . . . ; vk; �Þ with 1 � vi �
n� 1 corresponds to a combined operator APIvk � APIvk�1 � . . . � APIv1ðπÞ of π -
independent operators, and the sum of the costs of the arcs on the path describes the
gain to the objective value. Hence, if we have a shortest directed path from the
source to the sink, this determines the best possible combined operator of π -
independent operators.

Because our graph has no directed cycles, we can use Dijkstra’s algorithm to
obtain the shortest path in this graph. With this algorithm, we are able to calculate
the best possible combined operator of π -independent APIi operators in Oðn2Þ.

3.2 Neighborhood PAV

In this subsection, we develop a very large-scale neighborhood based on a
dominance criteria for the problem 1jrij

P
Ci . The basis of this approach is that

each schedule defines in a unique way so-called peaks and valleys. Here, jobs with
high indices form the peaks in the sequence and the indices of the jobs between two
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peaks form a valley. More precisely, the peaks of a sequence π are a unique set of
indices 1 ¼ i1 < . . . < ik < ikþ1 ¼ nþ 1 with

πðjÞ < πðiμÞ for j ¼ iμ þ 1; . . . ; iμþ1 � 1;
πðiμÞ < πðiμþ1Þ forμ ¼ 1; . . . ; k:

(3)

Furthermore, we have πðikÞ ¼ n.
From now on, let π be a given sequence of jobs and i1; . . . ; ik; ikþ1 be the

peaks belonging to π. We define sets Vμ :¼ fπðiμ þ 1Þ; . . . ; πðiμþ1 � 1Þg for
μ ¼ 1; . . . ; k . Observe, that

[k
μ¼1

Vμ [ fπði1Þ; . . . ; πðikÞg ¼ f1; . . . ; ng:

The sets Vμ are called valleys and contain the jobs between the peaks. In the
following lemma, we show three important properties for the jobs of a valley in the
schedule Sπ.

Lemma 1

(P1) In the schedule Sπ, the job πðiμÞ, together with the jobs of a valley Vμ , are
scheduled without idle times, i.e.,

SππðkÞ ¼ Cπ
πðk�1Þ for k ¼ iμ þ 1; . . . ; iμþ1 � 1:

(P2) Within the set of all sequences resulting from π by a reordering of the jobs of
a valley Vμ , the sequence obtained by reordering these jobs by nondecreasing
processing times has minimal objective value.

(P3) Reordering the jobs of Vμ [ fπðiμÞg by nondecreasing processing times does
not increase the objective value.

Proof

(P1) The properties of the peaks in Eq. 3 imply that for all l 2 fiμþ1; . . . ; iμþ1�1g
holds l < iμ , i.e., rπðlÞ � rπðiμÞ. This again implies Cj � ri for all j; i 2 Vμ

leading to SππðlÞ ¼maxfrπðlÞ;Cπ
πðl�1Þg¼Cπ

πðl�1Þ for all l 2 fiμþ1; . . . ; iμþ1�1g.
(P2) Due to (P1) of the lemma, the jobs of Vμ are scheduled in Sπ in the interval

I ¼ ½Sππðiμþ1Þ; S
π
πðiμþ1Þ þ

X
j2Vμ

pj	:

Furthermore, we have rj � SππðiμÞ for all j 2 Vμ . Thus, reordering the jobs of

Vμ still allows to schedule the jobs of Vμ in I. According to Smith’s rule, a
reordering to nondecreasing processing times is best possible.

(P3) Due to (P2) of the lemma, we first may reorder the jobs of Vμ by
nondecreasing processing times without increasing the objective value. Since
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rj � rπðiμÞ , interchanging job πðiμÞ with jobs of Vμ , which have a smaller
processing time, leads to a decrease of the objective value. □

Consider a given initial sequence π , peaks i1; . . . ; ik; ikþ1 , and valleys
V1; . . . ;Vk . Based on (P2) of the lemma, it is possible to find a best sequence
respecting the peaks and valleys in time O n log nð Þ by simply sorting the jobs of Vμ

by increasing processing times. If we allow a change in the peaks and valleys, we
might even get a better solution by sorting the whole sets Vμ [ fπðiμÞg. In the latter
case, it may happen that the new sequence does not have the same peaks and
valleys as before and, therefore, again may be optimized by resorting the valleys.

In summary, if peaks i1; . . . ; ik; ikþ1 , and valleys V1; . . . ;Vk are given, we can
easily find an optimal sequence π that respects these peaks and valleys. However,
as the next theorem shows, it is not easy to find an optimal sequence π respecting
the given positions i1; . . . ; ik; ikþ1 of the peaks and corresponding jobs πði1Þ; . . . ;
πðinÞ without the knowledge of the valleys.

Theorem 2 Let 1 ¼ i1 < . . . < ik < ikþ1 ¼ nþ 1 be a given set of integers and
πði1Þ < . . . < πðikÞ the jobs to be scheduled on the positions i1; . . . ; ik . The
problem of completing the sequence π so that the objective function

P
Cj is

minimized and

πðjÞ < πðiμÞfor j ¼ iμ þ 1; . . . ; iμþ1 � 1

is N P -hard in the strong sense.

Proof The proof is given in Appendix.
Based on the properties of peaks and valleys given in Lemma 1, a second very

large-scale neighborhood called PAV (short for peaks and valleys) is defined. Given
a solution π with corresponding peaks and valleys, we define the neighborhood
NPAV of a sequence π to contain all reorderings of the valleys. Hence, NPAV
may have an exponential size depending on the instance and the sequence.
According to (P2) of Lemma 1, the best neighbor in NPAV can be determined by
sorting the jobs of the valleys by nondecreasing processing times in Oðn log nÞ.

The neighborhood NPAV is not directly suited for an iterative improvement
process. If the best neighbor in NPAV is determined, we are in a local optimum,
i.e., (P2) of Lemma 1 does not yield any further improvement. To circumvent this,
(P3) of Lemma 1 can be applied to the best sequence of NPAV to obtain a different
peak and valley structure. The peak in front of a valley has to be inserted in the
valley on the basis of its processing time (which can be realized in linear time). This
process can be repeated and stops if all peaks have a processing time smaller or
equal to the minimum processing time in their valley.
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3.3 Comparison of the neighborhoods

The two approaches, NCAPI together with the block structure and NPAV with its
peaks and valleys, are somehow related. The jobs that belong to a block are
processed without idle times and so are the jobs of a valley defined by the peaks.
The difference results from the fact that valleys for two adjacent peaks may be
processed without idle time in between, whereas two blocks are always separated
by an idle time. Therefore, there are at least as many valleys as blocks for a given
sequence π, but there may be more.

However, the underlying ideas to develop the very large-scale neighborhoods
are quite different. The neighborhood NCAPI is built upon the simple neigh-
borhood NAPI and has, in principle, the same navigation behavior as that
neighborhood. The only difference to NAPI is that the API operators are not chosen
and executed sequentially but in parallel. Thus, from a quality point of view, we
may expect from NCAPI only a better behavior than from NAPI , if the parallel
choice fits better to the problem. From a computational point of view, both
neighborhoods have a worst case complexity of Oðn2Þ to compute a best neighbor.
However, because the chosen operator of NCAPI may contain several API
operators, one may suppose that the total time to reach a certain solution quality
may be shorter for algorithms using NCAPI . Both of these aspects are investigated
via computational tests, which are reported in the next section.

The neighborhood NPAV is based on a local priority criteria, which allows the
interchange of two jobs under certain conditions (the first job has a larger
processing time and, after the interchange, the first scheduled job does not start
later). Thus, in principle this neighborhood also relies on NAPI . However, in
contrast to NCAPI , we do not restrict to independent operators but allow a complete
reordering of certain subsets of jobs. This may indicate that an algorithm using
NPAV is able to reach (good) local optima in short time. On the other hand, if one

has reached a local optima, NPAV may not be a good choice to navigate further,
because within this neighborhood a job is interchanged only with successors with
smaller processing times; i.e., we have a monotone behavior. Note, that under NAPI
also an interchange with a succeeding job with larger processing time may lead to
an improving neighbor. Again, computational results have to give insight to these
questions.

4 Computational results

In this section, we report on computational experiments to indicate how the two
approaches perform regarding solution quality and running time for small and large
instances. Furthermore, for smaller instances, we compare the results with optimal
solutions found by a branch-and-bound algorithm. We use the branch-and-bound
algorithm of Yanai and Fujie (2004) to obtain these exact solutions. As an initial
heuristic, we use, besides some simple methods, the APRTF-heuristic, which was
presented by Chu (1992).
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The APRTF-heuristic iteratively extends a partial schedule by

1. Either scheduling a non-planned job having minimal earliest starting time (ties
broken by choosing the job with minimal processing time)

2. Or scheduling a non-planned job having minimal sum of earliest starting time
and earliest completion time

The second option is chosen if either the release date of the corresponding job is
smaller or equal to the earliest starting time of the job corresponding to the first
option, or if some dominance criteria is fulfilled. For details, we refer to the work of
Chu (1992). The two simple initial heuristics are called RSORT and RND. The first
sorts all jobs by nondecreasing release dates and the second sorts the jobs
randomly. APRTF is superior over RSORT regarding solution quality, and RSORT
again retrieves better results than RND.

To get some insight in the quality of the obtained solutions, we use a lower
bounding scheme LB resulting from a relaxation of the problem by allowing
preemption. In this case, the problem becomes solvable in time O n log nð Þ by the
shortest remaining processing time (SRPT) priority rule (see Baker 1974). The
optimal solution of the relaxed problem given by the SRPT rule has been shown by
Ahmadi and Bagchi (1990) to be a good lower bound for the considered problem
regarding running time and quality.

The problem instances are generated as described by Yanai and Fujie (2004)
and Chu (1992). The processing times are uniformly randomly chosen between 1
and 100. The release dates are generated between 0 and 101nλ

2 , where λ is a
parameter indicating somehow the density of the problem and n denotes the number
of jobs. The tests done by Yanai and Fujie (2004) show that the hardest instances are
received for 0:6 � λ � 1:2 . To get an idea of the influence of λ, we show in Fig. 3
the average optimal values of 100 randomly generated instances with n ¼ 100
jobs and different values of λ . With a constant number of jobs, the optimal
objective value increases with λ due to the increasing range of release dates.
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Fig. 3 Average objective values of optimal solutions
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To get an indication of the effectiveness of the neighborhoods in practice, we
implemented them in ANSI-C with an iterative improvement method. We have
chosen not to use tabu search or simulated annealing as we are interested in the
structural behavior of the neighborhoods and not in the potentials of local search
methods. In the following, we denote with BAPI (best API), CAPI, and PAV the
iterative improvement process using the neighborhood NAPI , NCAPI , and NPAV ,
respectively. Hereby, each method advances in every iteration to the best solution
in the corresponding neighborhood as introduced. In addition, because the best
solution of the neighborhood NPAV constitutes a local optimum, we use the prior
described method to receive a new peak and valley structure in each iteration of
PAV. As a fourth approach, we combine PAVand BAPI. This means, that we apply
PAV until we receive a local optimum and afterwards, advance to the best
improving neighbor in NAPI (i.e., applying one BAPI move). This algorithm we
call PAVBAPI. The computational tests were done on a PC with an Intel Pentium
IV processor running at 2:4 GHz.

In a first series of tests, we use the APRTF-heuristic as initial solution for the
iterative improvement methods. In Fig. 4, the performance of the considered
approaches are given, besides the results of some other approaches, which are
described further on. For n ¼ 100 and different values of λ , the average absolute
deviation of the objective values of the solutions to the optimal value for 100
randomly generated instances is given. Since a solution received by the APRTF-
heuristic is mostly locally optimal in the neighborhood NPAV , the values obtained
by PAV are almost identical in average to the values of APRTF. The figure also
shows that BAPI, CAPI, and PAVBAPI perform nearly identical in average. The
corresponding solutions are similar in structure, and there is not much difference to
the initial solution. This may be caused by the fact that APRTF often delivers local
optima or a solution of good quality.

BAPI and CAPI arrive at solutions of similar quality. This indicates that, for
problem 1jrij

P
Ci , the possibility of the very large-scale neighborhood NCAPI to

combine several moves and to look at their overall performance does not help for
navigation. Because BAPI also delivers solutions of similar quality compared to

Fig. 4 Iterative improvement using APRTF to obtain initial solutions
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PAVBAPI, it seems that mainly BAPI moves are applied in PAVBAPI, if an initial
solution of good quality is used.

To get more insight in the navigational behavior of the neighborhoods around
solutions of good quality, we added an extra component to the local search
approach. After iterative improvement stops, we give the resulting local optima a
kick and restart the iterative improvement procedure. This kick simply takes one of
the jobs not starting at its release date and reinserts it at a position in the sequence
so that this job will start at its release date. By doing so, we slightly perturb the
solution and arrive at a different, but not necessarily better, solution compared to
the original local optimal solution. Then we again start iterative improvement
possibly arriving at a better solution. We apply the kick to every job where it is
possible, and the best-received solution from this kick followed by iterative
improvement is taken as the next solution. We iterated this process and stopped if
no kick to a job followed by iterative improvement leads to a better solution. In the
following, we call the corresponding methods kick-BAPI, kick-CAPI, kick-PAV, and
kick-PAVBAPI.

The average solution quality received by using the kick method is also
presented in Fig. 4. Here, one can see that the kick method generally has a big
impact on solution quality. Although PAV was hardly able to improve the initial
solution given by the APRTF-heuristic, it now improves this solution considerably.
The other methods kick-BAPI, kick-CAPI, and kick-PAVBAPI perform nearly the
same, but much better than kick-PAV.

The above-mentioned test gives some indications of the navigational behavior
of the neighborhoods in regions of high-quality solutions. In a further series of
tests, we investigate how they behave if a weak initial solution obtained by RSORT
is chosen. In Fig. 5, we compare the initial solutions and local optima with the
optimal solution for the generated instances. Due to the nature of PAV, an initial
solution received by RSORT already constitutes a local optimum. By looking at
λ � 0:6 , the methods BAPI and CAPI perform the same and, this time, PAVBAPI
delivers solutions of better quality compared to BAPI. By using the kick methods,

Fig. 5 Iterative improvement using RSORT to obtain initial solutions
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we get the same ranking between the different neighborhoods except that the
differences to the optimal values become smaller.

At last, we conducted tests using RND to obtain initial solutions. The initial
solutions are of very bad quality, and the differences to the optimal solutions are
big. The simple methods BAPI, CAPI, and PAV (as well as PAVBAPI) very soon
get stuck in a local optima and, thus, deliver solutions of bad quality. BAPI, CAPI,
and PAVBAPI perform superior over PAV alone and give solutions of compara-
ble quality. They reduce the gap of the initial solutions to the optimum by roughly
50% . In Fig. 6, we only present the results using the kick methods. The solutions
of the simple methods are far off limits. We again get a situation, where kick-BAPI
and kick-CAPI perform the same and slightly better than kick-PAVBAPI. One
observation is that the kick methods are successful in improving on randomly
generated initial solutions.

The additional tests confirm that the navigation behavior of the very large-scale
neighborhood NCAPI is not better than that of the underlying basic neighborhood
NAPI . Always taking in a greedy way the best solution of the neighborhood NAPI
does not generally cut off possible moves, which are contained in the best solution
of NCAPI . Furthermore, a priority-based, very large-scale neighborhood is not very
strong by itself. However, to incorporate these priorities in other neighborhoods
(either via switching between the neighborhoods or by directly incorporating them)
seems to be a good idea. The presented results, until now, only give a qualitative
judgment of the neighborhoods. Although the very large-scale neighborhoods were
not superior in this direction compared to NAPI , they still may be efficient if they

Fig. 6 Iterative improvement using RND to obtain initial solutions

Fig. 7 Average running time per instance averaged over �

Two very large-scale neighborhoods for single machine scheduling 527



reduce the computational effort. Therefore, in the following we investigate this
aspect in more detail.

In Fig. 7, the average running time is presented for iterative improvement using
an initial solution received by RND on instances with 100 , 200 , 500 , and 1000
jobs. The outcome is averaged over all considered values for λ. It can be seen that
the running times for CAPI is roughly twice as long as BAPI, and PAV and
PAVBAPI are fast compared to the other methods.

Thus, also in this aspect, the very large-scale neighborhood NCAPI does not
outperform its simple counterpart NAPI. To get an explanation for this, we calculate
the average number of iterations needed for iterative improvement to reach a local
optimal solution (see Fig. 8) and the average number of API moves, which were
contained in one CAPI move for n ¼ 1000 and different values of λ (see Fig. 9).
The results show that almost the same number of iterations is needed for BAPI and
CAPI. Furthermore, CAPI is not able to significantly combine several API moves.

Finally, we calculated for n ¼ 1000 in cases that the improvement of a solution
in the combined approach PAVBAPI was achieved by BAPI (see Fig. 10). The
average need for BAPI increases for higher values of λ because of the structure of
these instances. To rearrange a local optima with respect to NPAV by BAPI moves
to achieve a solution, which is no longer locally optimal with respect to NPAV , in
average more than one step of BAPI is needed. Hence, it takes some iterations
using BAPI before PAV can again improve the given solution. This is specially the
case for instances with higher values of λ . These instances have a wider range of
release dates; hence, it is more likely to receive empty valleys. And if a nonempty
valley is obtained by BAPI, mostly either the valley and the corresponding peak are
already sorted by processing times or it would not improve the objective value if
this sorting is done by PAV.

5 Conclusions

The very large-scale neighborhood NCAPI received by combining independent
API moves, does not automatically lead to solutions of better quality. In addition,
the hope for a faster running time of iterative improvement because of the
execution of several moves did not come out at once. In fact, NCAPI is not able to
combine enough moves in any testing to beat NAPI regarding computational time.

Fig. 8 Average number of iterations per instance averaged over �

λ 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0
API 1.02 1.02 1.02 1.03 1.03 1.03 1.04 1.05 1.05 1.06 1.07

Fig. 9 Average moves per iteration in CAPI-neighborhood
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Furthermore, the second very large-scale neighborhood NPAV alone is not able
to deliver good results. This neighborhood is only useful to improve unstructured
feasible solutions to some better solution in a very fast way. It does not succeed on
solutions of good quality since these solutions have a near optimal structure
regarding NPAV. But in combining NAPI and NPAV, iterative improvement is able
to improve an initial solution of bad quality in a fast way in comparison to the
stand-alone neighborhood NAPI and reaches solutions of comparable quality.
Therefore, NPAV is only useful in combination with other neighborhoods.

Since iterative improvement is not a clever local search algorithm and depends
strongly on the initial solution, we added a simple restart technique by perturbing
the received local optima. By doing this, we observed a vast increase in the solution
quality. Hence, we expect that with other more elaborated methods, as simulated
annealing or tabu search, it will be possible to receive even better local optima with
the two introduced neighborhoods.

The results of this paper somehow confirm the conclusions drawn by others on
the practical use of very large-scale neighborhoods (see, e.g., Hurink 1999). Very
large-scale neighborhoods are not good for making local search efficient
beforehand. On the basis of our experiences, we may conclude that the size of
the neighborhood does not guarantee a better quality. Very large-scale neighbor-
hoods may be successful only if structural properties of the considered problem
make it useful to combine different neighborhood operators. This means that these
combined neighborhood operators lead to different and better solutions as a
sequence of (greedy) chosen neighborhood steps in the underlying basic
neighborhood (for our problem, this was not the case!). On the other hand, large
neighborhoods resulting from dominance rules are not useful as stand-alone
methods. They may help to improve the quality only when combined with other
neighborhoods.

A second possible advantage of very large-scale neighborhoods, consisting of
combined operators of a basic neighborhood, can be speed in computational time.
On the basis of our results, we may conclude that this can only be the case if most
of the executed combined neighborhood operators combine several basic
neighborhood operators, and if the extra computational effort for searching the
combined neighborhood in comparison with the basic neighborhood is not large.

All in all, we suggest to develop and use very large-scale neighborhoods of the
considered types only if problem-specific properties or computational arguments
give an indication beforehand that the very large-scale neighborhoods have some
potential to be a success.
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Fig. 10 Average amount of cases the improvement is made by BAPI in PAVBAPI
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Appendix

Review on complexity

We present the N P -hardness proof for Theorem 2. The proof is based on the
N P -hardness proof of the considered scheduling problem. In Lenstra et al.
(1977), it is mentioned that a reduction of 3 -Partition to the decision version of the
scheduling problem 1jrj � 0jPCj can be obtained by adapting the transformation
of Knapsack to 1jrn � 0jPCi presented by Rinnooy Kan (1976). This can be
carried out in a straightforward way and leads to a similar construction.

We prove that 3 -Partition can be reduced pseudopolynomially to 1jrj � 0jPCj .
For 3 -Partition positive integers a1; . . . ; a3t and b are given with

b
4 < aj < b

2 ; j ¼ 1; . . . ; 3t and
P3t
j¼1

aj ¼ tb:

It is asked if there exists a partition of T ¼ f1; . . . ; 3tg into pairwise disjoint sets
T1; . . . ; Tt � T , such that X

j2Ti
aj ¼ b

for all i ¼ 1; . . . ; t . We define b :¼ bþ 1.
The instance of 1jrj � 0jPCj corresponding to a given instance of 3 -Partition

is defined as follows. The set of jobs is given by J ¼ S [ B with

S :¼ f1; . . . ; 3tg;
Bi :¼ fði; kÞ : k ¼ 1; . . . ;mg; i ¼ 0; . . . ; t � 1;
Bt :¼ fðt; kÞ : k ¼ 1; . . . ;Mg;
B :¼ B0 [ . . . [ Bt;

where the concrete values of m and M are

m :¼ 3b
2 tðt þ 1Þ þ 1;

M :¼ m 3b
2 tðt þ 1Þ ¼ 9b

2

4 t2ðt þ 1Þ2 þ 3b
2 tðt þ 1Þ:

The jobs have the following release dates rj and processing times pj; j 2 J :

rj :¼ 0 and pj :¼ aj for j 2 S;
rði;kÞ :¼ ibþ ðk � 1Þ" and pði;kÞ :¼ " for ði; kÞ 2 B;

with " :¼ 1
m . It is asked if a schedule of the jobs exists with an objective value of at

most

f � ¼ bm2 þ 3bm

2m
t2 þ m2 � bm2 þ 2bMmþ 3bmþ m

2m
t þM2 þM

2m
:
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Observe that if the jobs of all sets Bi are scheduled at their release dates, they
leave free time windows Ii :¼ ½ib� b; ib; 	i ¼ 1; . . . ; t, for the remaining jobs (Fig.
11).

Because of the release dates, the contribution fBi and fBt of jobs of Bi and Bt to
the objective value can be bounded from below, as follows:

fBi :¼ Pm
k¼1

Cði;kÞ �
Pm
k¼1

rði;kÞ þ pði;kÞ
� �

¼ bmiþ mþ1
2 ¼: f �Bi

for i ¼ 0; . . . ; t � 1; and

fBt :¼ PM
k¼1

Cðt;kÞ �
PM
k¼1

rðt;kÞ þ pðt;kÞ
� �

¼ bMt þ M2þM
2m ¼: f �Bt

:

With this, we receive for the contribution of jobs of B to the objective value the
following lower bound:

fB :¼ fBt þ
Xt

i¼0

fBi �
bm

2
t2 þ 2bM � bmþ mþ 1

2
t þM2 þM

2m
¼: f �B :

Furthermore, if all jobs from B0; . . . ;Bt start at their release date, we have fB ¼ f �B .
Now assume that we have a solution T1; . . . ; Tt of 3 -Partition. In this case, we

can schedule the jobs of Ti � S completely in the corresponding window Ii and
they contribute at most

fS :¼ Pt
i¼1

P
j2Ti

Cj �
Pt
i¼1

P
j2Ti

ib ¼ Pt
i¼1

3ib

¼ 3b
2 tðt þ 1Þ :¼ f �S

to the objective value. Furthermore, since the jobs of S fit completely into the time
windows I1; . . . ; It , we can schedule the jobs of B at their release dates. Thus, their
contribution to the objective value is given by f �B , and the objective value of the
whole schedule is bounded by f �S þ f �B ¼ f �.

Consider now that we have an optimal schedule for the jobs of J with objective
value of f � ¼ f �S þ f �B at most. We show that 3 -Partition has a feasible solution.
Since all jobs of B have the same processing time, we may assume that, in the
optimal schedule, the jobs of B are processed according to the order of their release
dates.

Now, assume that, in the optimal schedule, two jobs ði; kÞ and ði; k þ 1Þ from
B are not scheduled next to each other. This implies that a subset S � S of jobs is

B0 B1 B2I1 I2 It Bt

2b tb
t

0 1 b b+ 1 2b+ 1 tb b tb+- εM

Fig. 11 Sets B and I
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scheduled in between these two jobs. However, since the jobs of S have far larger
processing times than the jobs from B and rði;kþ1Þ ¼ rði;kÞ þ pði;kÞ � Cði;kÞ , an
interchange of job ði; k þ 1Þ with S reduces the optimal value. As a consequence,
all jobs of each set Bi , i ¼ 0; . . . ; t � 1 are scheduled together in a block of
length 1, and the jobs of Bt are scheduled together in a block of length M=m .

Next we prove, that in each schedule with an objective value of at most f � ¼
f �S þ f �B all the jobs of B are scheduled at their release dates. Assume that job ði; 1Þ
is the first job of B not scheduled at its release date. This implies Sði;1Þ ¼ rði;1Þ þ
δ ¼ ibþ δ; where δ � 1, since all jobs from S have integer processing times. This
leads to a contribution of the jobs from Bi of at least f �Bi

þ mδ. Since

m >
3b

2
tðt þ 1Þ ¼ f �S ;

this leads to an objective value of more than f �B þ f �S ¼ f �, which is a contradiction.
As a consequence for the optimal schedule, the jobs of S can only be scheduled

in the intervals I1; . . . ; It , and after tbþ "M . If we can prove that the latter is not
possible, we get that the optimal schedule contains a solution of 3 -Partition.

Assume that there is at least one j 2 S with Cj � tbþ "M . This leads to an
objective value of at least Cj þ f �B � tbþ "M þ f �B . Since " ¼ 1

m and

tbþM

m
>

3b

2
tðt þ 1Þ ¼ f �S ;

this contradicts that the objective value of the given schedule is bounded by f �S þ f �B .
In summary, 3 -Partition pseudopolynomially reduces to 1jrj � 0jPCj .

Therefore, the decision problem of 1jrj � 0jPCj is N P-complete in the strong
sense.

In order to prove Theorem 2, we now identify the positions of the jobs of B as
the indices i1; . . . ; ik (of Theorem 2), and the corresponding jobs of B as the peaks
(of Theorem 2). Finding a schedule respecting these peaks with objective value less
than f � solves the 3-Partition problem. This proves Theorem 2.
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