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Abstract The two-dimensional ¯ow of a viscous ¯uid over
an etched hole is computed with a boundary-element
method. The etch-hole geometry contains sharp corners at
which the solution of the traction boundary-integral
equation is singular. Therefore, only the regular part of the
solution is computed with the boundary-element method,
using a singularity-subtraction method, and the singular
part of the solution is added. However, there are regions in
which these regular and singular parts are of almost equal
magnitude, but different in sign. To avoid the subtraction
and addition of large quantities where quantities of smaller
order are computed a domain-decomposition technique is
introduced. We show that the accuracy indeed increases
by the described techniques. After extrapolation the results
for a rectangular geometry agree very well with results
obtained earlier with a semi-analytical method. A new
integral formulation is derived for the stream function in
the form of a boundary integral over the velocity and
shear-stress components. Finally we show some results for
arbitrary etch holes.

1
Introduction
The mathematical modelling of ¯uid ¯ow in combination
with mass or heat transport in cavities has been a topic of
active research for the last three decades. Several articles
have been written for a wide range of applications varying
from the evolution of corrosion pits, heat transfer along

rough surfaces, crystal-growth processes, electro-deposi-
tion, and mass transfer from cavities in artery walls. In
most of the literature the computation of the ¯uid ¯ow is
combined with a computation of heat or mass transfer
from the cavity to the surrounding ¯uid or, alternatively,
from the ¯uid to the cavity walls.

In wet-chemical etching an almost similar problem
arises, namely that of the ¯uid ¯ow in a partially covered
cavity as depicted in Fig. 1. Wet-chemical etching is an
important technique in modern technology as can be ex-
empli®ed by the production of oil ®lters, shadow masks
for color TV sets, lasers and integrated circuits. An etching
process of this kind can be described in the following way:
A thin piece of metal is covered with a mask. A chemical
solution is sprayed onto it, dissolving the metal which is
not covered. Using this method we are able to make very
detailed small products in an easy way. Because dissolu-
tion will occur in all directions, geometries such as that
depicted in Fig. 1 will arise. Sideways etching under the
masks is called the `undercut' effect. The result of this
effect is that the etch hole is larger, and the size of the
etched product is smaller than the original mask pattern.
These differences between products and masks can be-
come very large, especially when we think of products with
sizes which are of the same order as the thickness of the
material. Therefore, research is necessary to obtain infor-
mation about this effect in etching processes.

One of the subproblems in a numerical etching simu-
lation is the computation of the ¯uid ¯ow. The diffusion
coef®cient of the dissolution of metal in a wet-chemical
etching process is very small (order 10ÿ10 m2 sÿ1). There-
fore the etching simulation can be performed in a quasi-
stationary way. Since the boundary of the etch hole moves
very slowly in comparison with the ¯uid ¯ow, we can
compute the ¯ow in each time step as if the boundary were
stationary. As a possible application of wet-chemical
etching, we can think of the etching procedure of small
grooves in rotating disks, such as depicted in Fig. 2. These
disks are used as electrodes. When the width W of the
groove is small in comparison to the distance to the center
of the disk, a two-dimensional approximation can be made
as shown in Fig. 1. The ¯uid ¯ow in this application is
described by the incompressible Navier±Stokes equations.
These equations are scaled by the model parameters and
the inertial terms are neglected on account of the Reynolds
number being small, thus resulting in the Stokes equa-
tions. However, since the diffusion coef®cient is much
smaller than the kinematic viscosity, the etching process is
still convection-dominated. In the case of a uniform ¯ow
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along a cavity a vortex will arise in the interior. Due to the
convection-dominated character of the process, transport
of the `polluted' solution takes place in a thin boundary
layer along the rim of the vortex Kuiken [17]. The ex-
change of etching products occurs by means of diffusion
across the streamline that separates the vortex from the
outer ¯ow.

In the simulations of Shin and Economou [24, 25] the
velocity components and the concentration in an etch-hole
geometry are computed by means of a ®nite-element
method. However, since mass transport occurs only near
the boundary and the dividing streamlines, it is more ef-
®cient to use methods which need only information from
the boundary. These methods have the advantage that a
computational grid for the interior is not required. In
Kuiken [17] it is described how to compute the concen-
tration in an etch hole without overhanging masks from
the velocity and shear-stress components. The shear-stress
components are needed at the boundary of the cavity, and
the velocity components are needed at the separating
streamline. These quantities required for the computation
of the concentration can be computed with the boundary-
element method which is presented in this paper.

The boundary-element method was ®rst applied in
linear elastostatics and potential problems and later also to
two-dimensional Stokes ¯ow and the associated bihar-
monic equation for the stream function. BeÂzine and Bon-
neau [1] were among the ®rst to use the boundary-element
method for the computation of Stokes ¯ow in rather
standard geometries. In Higdon [11] and Bohou [2] the
method is applied to ¯ow over rectangular holes.

When the geometry includes sharp corners, singular-
ities arise near those corners. This problem was ®rst
encountered by Moffatt [20], who derived an expression
for the singular behavior. This behavior can be included
in the integral equations, to regularize the integrals near
the corners. This singularity-subtraction method was
used in Bohou [2], Hansen and Kelmanson [10] and

Kelmanson [16] to increase the accuracy of the com-
putations.

We have applied a boundary-integral equation method
of the second kind as described in Ingber and Mondy [14]
and Chien, Rajiyah and Atluri [3] to different etch-hole
geometries. These geometries include sharp corners. We
apply the singularity-subtraction technique as described in
[20, 2, 10, 16] to regularize the integrals near these corners.

The singularity subtraction in our application has a
disadvantage. The velocity near the bottom of the etch hole
is the sum of two contributions, the regular part and
singular part, which are of almost equal magnitude but
different sign. Hence, small relative errors in the two
contributions may result in large relative errors. One
method to avoid this loss of accuracy is to use domain
decomposition. In this paper we introduce two sub-do-
mains as shown in Fig. 3 to improve the accuracy of the
integrals. We believe that it is the ®rst time that a domain-
decomposition method is used in a boundary-element
method applied to the Stokes equation. In De Haas [4],
Hsiao and Wendland [13] and Greenbaum and Greengard
[9] domain decomposition was already applied to a po-
tential problem. In general, in a domain-decomposition
method for boundary-element methods, a new boundary
arises by splitting the domain. At this new boundary, all
quantities are unknown. The solution is then obtained by
an iterative process. In this paper, we ®rst choose initial
values for the velocity components. We compute an ap-
proximation for the shear-stress components with the
equations for the ®rst sub-domain. These stress compo-
nents are used in the second sub-domain to compute a
new approximation for the velocity components, and so
on. The construction of a sequence of boundary conditions
which is used here is also known as the Neumann±Di-
richlet preconditioner [4], Funaro, Quarteroni and Zanolli
[8, 9] and Hribersek and Skerget [12]. One advantage of
domain decomposition in this application of the bound-
ary-element method is that the results are more accurate,
which is shown in Sect. 3. Another advantage is that CPU-
time is saved when this method is used in a numerical
simulation of wet-chemical etching. In such a simulation
the ¯ow needs to be computed in each time step for a
geometry in which the etch-hole grows. However, the ge-
ometry of the ®rst sub-domain of Fig. 3 remains the same.
When we apply domain decomposition, it is not necessary
to recompute the matrix for the unknown quantities of this
sub-domain, which saves much CPU-time.

Using the boundary-element method with domain
decomposition and a special treatment of the singularities
we obtain accurate results for velocity and shear-stress

Fig. 1. Etch hole with undercut

Fig. 2. Etching a groove in a rotating disk

Fig. 3. De®nition of sub-domains for the etch-hole geometry
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components. The accuracy is validated by grid re®nement
and a comparison with the results of Driesen [6]. In [6] the
®rst accurate solutions of the biharmonic equation were
computed for rectangular approximations of etch-hole
geometries. The authors used a technique involving the
matching of biorthogonal in®nite eigenfunction expan-
sions in different parts of the domain. Truncated versions
of these series were used to compute a ®nite number of
unknown coef®cients. In this way the stream function and
its derivatives were determined accurately in an arbitrary
point. The validation shows an excellent agreement
between semi-analytical and boundary-element results.

In order to apply the boundary-element method for a
computation of concentration of dissolved material in a
semi-analytical way following [17], it is necessary to know
the positions of the free streamlines between the vortices
inside of the etch-hole geometry. To obtain these posi-
tions, different methods can be used. For example, it is
possible to compute velocities in a number of points, and
obtain the position of the dividing streamlines by nu-
merical integration. However, it is faster and more accu-
rate to compute the stream function directly as a boundary
integral. Therefore, a new integral formulation is derived.
With this new formulation the stream function can be
computed as a boundary integral over the shear-stress and
velocity components.

Summarizing, the purpose of this paper is to provide an
accurate solution method for the stream function and the
velocity and shear-stress components in etch-hole geom-
etries. These quantities are needed for a numerical simu-
lation of wet-chemical etching, which will be the subject of
future research.

In the next section, we give the mathematical formula-
tion of the ¯uid-¯ow problem and we describe the integral
equations for the unknown quantities. The singularity-
subtraction method is described, as well as the domain
decomposition. In Sect. 3 the implementation of the nu-
merical integrations is described. We consider the accu-
racy of the computations by comparing them to the results
derived in [6]. We show that the combination of singu-
larity subtraction and domain decomposition leads to
improved results, which are very accurate. Finally, in
Sect. 4 we show some results for different geometries,
which give insight in the character of the ¯uid ¯ow inside
holes of different shape.

2
Mathematical formulation
In this section we describe the integral equations used in
this paper. We give the problem de®nition, the de®nitions
of the standard integral equations and we derive the
boundary-integral expression for the stream function. We
describe the singularity-subtraction technique to remove
the singularities at the sharp corners. Finally, in the
last part of this section the domain decomposition is
presented.

2.1
Problem definition
The ¯uid ¯ow in this application is described by the Stokes
equations

r � r � 0 ; �2:1�
and the continuity equation

r � u � 0 : �2:2�
The stress tensor r is de®ned in the standard form:

rij � ÿpdij � oui

oxj
� ouj

oxi

� �
; �2:3�

where Cartesian tensor notation is employed. Here p de-
notes the scaled pressure and ui denotes a scaled velocity
component. We use the following boundary conditions:
(1) the velocity at the edges of the etched hole is equal to
zero; (2) above the etched hole, there is a uniform shear
¯ow which we consider undisturbed at a ®xed distance
from the hole.

2.2
Boundary-integral equations
In this subsection, we derive the standard boundary-in-
tegral equations. A fundamental identity for Stokes equa-
tions, analogous to Green's identity, may be written as

o
oxj

uir
�
ij ÿ u�i rij

� �
� 0 : �2:4�

In this expression, u and u� are any two solutions of (2.1)
and (2.2) with associated stress tensors r and r�. This
identity is easily veri®ed by direct substitution of (2.3).
When the identity is integrated over any bounded volume
of ¯uid with boundary S, the divergence theorem may be
applied to yield an integral formula known as the recip-
rocal theoremZ
S

�uir
�
ijnj ÿ u�i rijnj�dl�y� � 0 ; �2:5�

where n is the outward unit normal. This integral relation
(2.5) was ®rst written down by Lorentz [18].

To obtain an integral formula we choose u� to be the
fundamental solution for two-dimensional Stokes ¯ow.
This solution was also derived in [18]. We shall use the
representation which is given in [11]:

u�i �y� � Sil�x; y� ql�x�
4p

; �2:6�
where r � jy ÿ xj and

Sil�x; y� � ÿdil ln r � �yi ÿ xi��yl ÿ xl�
r2

: �2:7�
Physically, this may be interpreted as the velocity at po-
sition y induced by a two-dimensional point force q at
position x. From (2.6) and (2.1) the pressure can be ob-
tained as:

p��y� � 2
yl ÿ xl

r2

ql�x�
4p

: �2:8�
The stress tensor associated with the velocity (2.6) is given
by

r�il�y� � Tikl�x; y� qk�x�
4p

; �2:9�
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where the elements of Tikl, which can be derived from
(2.3), are de®ned by

Tikl�x; y� � ÿ4
�yi ÿ xi��yk ÿ xk��yl ÿ xl�

r4
: �2:10�

When the integral formula (2.5) is applied, with u� and r�
given by (1) and (4), the boundary surface includes two
components: S which represents all surfaces bounding the
domain and S�, which is a circle or semi-circle (see Fig. 4)
with radius � and midpoint x. Evaluating the integral over
S� in the limit as �! 0, we have

ui�x� � 1

4p

Z
S

�Sil�x; y�fl�y� ÿ Tikl�x; y�uk�y�nl�y��dl�y� ;

�2:11�
when the point x is in the volume of ¯uid, and

ui�x� � 1

2p

Z
S

�Sil�x; y�fl�y� ÿ Tikl�x; y�uk�y�nl�y��dl�y� ;

�2:12�
when x is located on a smooth part of the boundary of the
domain. In (2.11) and (2.12), fj�y� is the surface-force
vector de®ned as fj�y� � rjk�y�nk�y�. Because, for this ¯ow
problem, the velocity components are known at the
boundary, (2.12) is a Fredholm integral equation of the
®rst kind for the unknown f at the boundary S. With the
solution of f (2.11) can be used to compute u in an arbi-
trary point inside the domain.

A disadvantage of numerical methods which solve
(2.12) for the unknown f is that the resulting matrix be-
comes more and more singular as the number of boundary
elements is increased. To avoid this we use a Fredholm
integral equation of the second kind instead of (2.12). An
equation similar to the Fredholm integral equation of the
®rst kind can be derived for the surface-force vector. To
arrive at such an equation we de®ne

P�x� � 1

2p

Z
S

pl�x; y�fl�y� ÿPkl�x; y�uk�y�nl�y�� �dl�y�

�2:13�
for a point x on a smooth part of the boundary of the
domain. Here, Pkl is given by:

Pkl�x; y� � 2 ÿ dkl

r2
� 2
�yk ÿ xk��yl ÿ xl�

r4

� �
: �2:14�

By substitution of (2.13) and (2.12) in (2.3) a Fredholm
integral equation of the second kind is found for the

surface-force vector f (i.e. for a point x on the boundary)
[14]:

fi�x� � dij

"
1

2p

Z
S

�ÿpl�x; y�fl�y�

�Pkl�x; y�uk�y�nl�y��dl�y�
#

nj�x�

� o
oxj

"
1

2p

Z
S

�Sil�x; y�fl�y�

ÿ Tikl�x; y�uk�y�nl�y��dl�y�
#

nj�x�

� o
oxi

"
1

2p

Z
S

�Sjl�x; y�fl�y�

ÿ Tjkl�x; y�uk�y�nl�y��dl�y�
#

nj�x� :

�2:15�
Equation (2.15) can be rewritten as

fi�x� �
Z
S

"
Wil�x; y�fl�y� � p�ikl�x; y�uk�y�nl�y�

#
dl�y� ;

�2:16�
where

Wil � 1

2p
ÿdijpl � oSil

oxj
� oSjl

oxi

� �
nj ; �2:17�

and

p�ikl �
1

2p
dijPkl ÿ oTikl

oxj
ÿ oTjkl

oxi

� �
nj : �2:18�

Using the theory as described by [3] Eq. (2.16) can be
transformed to

fi�x� �
Z
S

�Wil�x; y�fl�y� � p�ikl�x; y��uk�y�

ÿ uk�x��nl�y��dl�y� : �2:19�
The singularity in the kernels of (2.19) is removed in a
similar way as described in Okada et al. [21], Kaya and
Ergodan [15] and Chien et al. [3]. Equation (2.19) will be
the basic equation for the computations.

2.3
Boundary-integral expression for the stream function
In this subsection, a new boundary-integral expression for
the stream function will be derived to complete the set of
equations described in the previous subsection. This der-
ivation starts with the de®nition of the stream function W:

u1 � oW
ox2

and u2 � ÿ oW
ox1

: �2:20�

Fig. 4. De®nition of S� for a point inside the domain and on the
boundary
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We assume that the stream function can be written as a
boundary integral of the form

W�x� � 1

4p

Z
S

�Ij�x; y�fj�y� � Hjk�x; y�nk�y�uj�y��dl�y� ;

�2:21�
for a point x inside the ¯uid domain. When (2.11) and
(2.21) are substituted in (2.20), equations can be derived
for the unknown kernels Ij�x; y� and Hjk�x; y�:
oIj

ox1
� ÿS2j

oHjk

ox1
� T2jk

oIj

ox2
� S1j

oHjk

ox2
� ÿT1jk :

A solution is given by

I1�x; y� � �y2 ÿ x2� ln r ÿ �y2 ÿ x2� ;
I2�x; y� � ÿ�y1 ÿ x1� ln r � �y1 ÿ x1� ;
and

H11�x; y� � ÿ2
�y1 ÿ x1��y2 ÿ x2�

r2
ÿ 2 arctan

y2 ÿ x2

y1 ÿ x1
;

H12�x; y� � H21�x; y� � �y1 ÿ x1�2 ÿ �y2 ÿ x2�2
r2

;

H22�x; y� � �y1 ÿ x1��y2 ÿ x2�
r2

ÿ 2 arctan
y2 ÿ x2

y1 ÿ x1
:

This expression is only valid if the arctan function is
treated in a special way. In the formulation for the stream
function the path over which is integrated encircles the
point �x1; x2�. On this path the arctan function has two
jumps at y1 � x1: One for a positive and one for a negative
value of y2 ÿ x2. One jump can be removed by addition of
a constant to the values with y2 ÿ x2 larger than zero. By
addition or subtraction of a constant, the position of the
second jump is placed at a ®xed boundary point. In this
way, we can compute the stream-function value in every
interior point.

Together with this boundary-integral formulation, we
have a complete set of expressions for the stream function
and the velocity and shear-stress components.

2.4
Singularity subtraction
In the geometry as depicted in Fig. 1 there are sharp
corners. For the second derivatives of the stream function
singularities arise at these corners. This problem was en-
countered by Moffatt [20] and later discussed for several
examples by Lugt [19]. In both papers, expressions are
derived for the singular behavior. To regularize the inte-
grals near the corners, this behavior can be included in the
integral equations. This singularity-subtraction method
was used in [2, 10, 16] to increase the accuracy of the
computations. In this subsection the application of this
method to the etch-hole geometry is described.

In [19] solutions for the biharmonic equation around a
corner in plane polar coordinates (r,h) are determined:

W � rk�1�A cos�k� 1�h� B sin�k� 1�h
� C cos�kÿ 1�h� D sin�kÿ 1�h�; k 6� 1 ;

�2:22�
and

W � r2 A cos 2h� B sin 2h� Ch� D� �; k � 1 ;

�2:23�
where r is the distance to the corner, k may be called the
exponent of the solution and h is the angle as shown in
Fig. 5. In the boundary-element computations, second
derivatives of the stream function are used. These quan-
tities are singular if k < 1. Solutions with Re�k� < 0 are
physically irrelevant. The boundary conditions at a mask-
edge corner are

W � 0 and
oW
oh
� 0 at h � ÿc and h � c ;

where 2c is the mask-edge corner, which will normally
vary between p and 2p. To obtain equations for the sin-
gular exponents k, (2.22) is divided into so-called sym-
metric solutions with A and C equal to zero, and skew-
symmetric solutions with B and D equal to zero [19].
When the boundary conditions are substituted in the
symmetric solutions the equation for k becomes

sin 2ck � k sin 2c ; �2:24�
and for the skew-symmetric solutions this equation is

sin 2ck � ÿk sin 2c ; �2:25�
The value k � 1 is a special case. It can be derived from
(2.23) together with the boundary conditions that this
solution of k can only be found for corners 2c1 with

tan 2c1 � 2c1 �2:26�
in the symmetric case and

tan 2c1 � 0 �2:27�
in the skew-symmetric case. For the symmetric case 2c1 is
approximately equal to 1:4303p. For different corners 2c
the ®rst solutions of ka in the skew-symmetric case, and ks

in the symmetric case, are given in Table 1. There is one
singular solution for corners 2c � 2c1 and there are two
singular solutions for corners 2c1 � 2c � 2p. For a corner

Fig. 5. De®nition of c and h
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2p, which corresponds to an in®nitely thin mask, there is
one double solution. For every singular k, an eigenfunction
can be derived with an unknown coef®cient. In our ap-
plication 2c is equal to 3p=2 and we include the two cor-
responding singular solutions in the integral formulations.
The solutions at the corners satisfy the Stokes equations,
so we can subtract the integral equations for these solu-
tions from the integral equations [16, 10]. This results for
example for the shear-stress component fi in case of two
singular exponents in

f r
i � fi ÿ Aaf s1

i ÿ Asf
s2

i ; �2:28�
where f s1

i is the behavior near the corner which results
from ka, and f s2

i is the behavior near the corner which
results from ks. In the boundary-element computations we
start with the equation for the resulting shear-stress
components f r

i , which are regular near the corners. In
further computations we will denote them also as the
regular quantities. The introduction of the two coef®cients
Aa and As in (2.28) necessitates the use of two additional
equations. These are extracted from the assumption that
the shear stress near a corner is completely determined by
the singular behavior. When we consider a geometry with
only one sharp corner, the extra equation

0 � fi ÿ Aaf s1

i ÿ Asf
s2

i �2:29�
is obtained. This equation is applied to the component fi

which does not include the pressure.
The shear stress has one component in which the

pressure appears. From the Stokes equations it is clear that
we may add a constant to the pressure without changing
the values of the velocities. In the ®rst step in this iterative
solution scheme, which will be described in the next
subsection, velocities are prescribed at the boundaries, but
the shear stress is not prescribed anywhere. To obtain a
unique solution for these shear-stress components, we
have to prescribe the pressure at a certain point. For the
analytical description of the stream function near the
mask-edge corners, the same theory holds. An expression
for the pressure can be determined up to a constant. This
is the reason for prescribing the equations for the un-
known coef®cients near the corner only for that part of the
shear stress which does not include the pressure.

In the numerical computations, there is no collocation
point at the corner. The value for the regular shear stress
at the corner is extrapolated from the three nearest points.
This is done from both sides of the corners, which results
in two equations for the two unknown coef®cients. In this
way, the system is solved for the regular quantities. Af-
terwards, the values of the quantities we want to know are
computed by addition of the singular parts of the solution.
Only corners 2c � 3p=2 are encountered in the computa-
tions presented, but it is clear that the method is applicable
to other corners.

2.5
Domain decomposition
The last step needed for the computations is a description
of the domain decomposition. In the previous subsections
equations for the boundary-element method including the
singular behavior are described. The singular behavior is
subtracted from the equations, and afterwards added to
the regular parts of the solution. However, this approach
has a disadvantage. In parts of the domain where the ve-
locity is very small, e.g. near the bottom of the etch hole,
the regular and singular parts of the solution are of almost
equal magnitude, but different sign. Hence, small relative
errors in the two contributions may result in large relative
errors in the velocity components. This behavior can be
avoided by domain decomposition. We divide the etch-
hole geometry in two sub-domains as depicted in Fig. 3.
We compute solutions for the ¯uid ¯ow in both sub-do-
mains. An advantage of this computation is that in sub-
domain II we do not have to take into account the be-
havior of the ¯uid ¯ow near the corners in sub-domain I.
At the interface of these sub-domains the shear-stress as
well as the velocity components are unknown. We have to
compute these quantities with an iterative procedure. In
this paper, we ®rst choose initial values for the velocity
components. We compute an approximation for the shear-
stress components with the equations for the ®rst sub-
domain. These stress components are used in the second
domain to compute a new approximation for the velocity
components, and so on. This so-called Neumann±Dirichlet
preconditioning [4, 8, 9, 12] is used to compute the un-
known quantities:

� In sub-domain I new approximations of the shear
stresses at the domain interface are computed. In these
computations, integral equation (2.19) is used for the
shear-stress components. With these new approxima-
tions of the shear stresses, new boundary conditions for
the second sub-domain are computed by

f new
i � af old

i � �1ÿ a�f new
i : �2:30�

� In sub-domain II new approximations of the velocity
components at the domain interface are computed. In
these computations, integral equation (2.12) is used for
the interface, while (2.19) is used for the unknown shear
stresses at the boundaries of this sub-domain. With
these new approximations, new boundary conditions
for the ®rst sub-domain are computed at the domain
interface by

unew
i � auold

i � �1ÿ a�unew
i : �2:31�

This algorithm is repeated until the old and new velocity
and shear-stress components have converged. In the next
section, different values of a are compared and it is shown
that the convergence is independent of the number of
boundary elements and of the shape of the etch hole.

This domain decomposition has a second advantage: to
compute a numerical simulation of wet-chemical etching,
the ¯ow needs to be computed in each time step for a
geometry in which the etch-hole grows. However, during
the etch process the geometry of the ®rst sub-domain of
Fig. 3 remains the same. With domain decomposition it is

Table 1. First two values of k for a number of angles

2c 7p/6 8p/6 2c1 9p/6 10p/6 11p/6 2p

ka 0.75197 0.61573 0.56829 0.54448 0.51222 0.50145 0.50000
ks 1.48581 1.14891 1.00000 0.90853 0.73090 0.59819 0.50000
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not necessary to recompute the matrix for the unknown
quantities of this sub-domain which saves much CPU-
time.

Instead of using two sub-domains one could think of an
algorithm with a sub-domain around each singular corner.
This would have the disadvantage that the iterative process
becomes much more complicated. With the two sub-do-
main algorithm as described in this section, the largest
order differences of the singular quantities are separated.
The accuracy of the results obtained with this algorithm
shows that it is not necessary to increase the number of
sub-domains.

3
Numerical implementation and validation
In Sect. 2 we derived the equations used to compute the
stream function and the velocity and shear-stress com-
ponents. In this section the numerical implementation is
described and validated.

To obtain a numerical solution the continuous bound-
ary is represented by a number of discrete boundary ele-
ments and u and f on the boundary are expressed in terms
of their values at a number of discrete boundary points.
The elements are chosen in such a way that the corners lay
at the end of a line segment. Equation (2.19) combined
with the discretized boundary conditions, leads to a sys-
tem of linear algebraic equations for the unknown shear-
stress f at the discrete boundary points. For the second
sub-domain we discretize (2.12) for the domain-decom-
position boundary. These linear systems are solved using
Gaussian elimination.

Quadratic polynomials are used to describe the shape of
the boundary elements. For the approximation of un-
known quantities f or u at the boundary quadratic poly-
nomials are used too. The numerical integration for the
regular integrals is evaluated by using standard Gaussian
Quadrature.

In this section we ®rst show the improvement of the
accuracy of the computed solution when singularity sub-
traction is used. We apply this subtraction to a geometry
without domain decomposition.

As the authors could not ®nd an earlier application of
domain decomposition in Stokes ¯ow, it is shown in the
second subsection that the iterative algorithm, as it is
described in the previous section, converges to the known
solution for a standard problem. We show some conver-
gence results for different values of the iteration parameter
a, for different grid sizes and for different shapes of the
etch hole.

Domain decomposition improves the accuracy of the
solution in the etch-hole approximation. This is shown in
the third subsection.

In the last subsection the accuracy is veri®ed by com-
parison with the semi-analytical results from [6].

3.1
Improved accuracy with singularity subtraction
In this subsection we will show that singularity subtraction
improves the accuracy of the results. A rectangular ge-
ometry of a cavity is considered, which can be described
by Fig. 6.

In [6] the velocity component in 5 interior points was
presented (see Fig. 6 for locations). These results are very
accurate, and will be used as a benchmark for the
boundary-element method.

In the ®rst group of results of Table 2 the velocity
components are computed with a standard boundary-ele-
ment method (BEM I) with an equidistant grid distribu-
tion for different numbers of elements. In Table 2 also the
values of the velocity components as computed in [6] are
given. By comparison it is easy to see that the boundary-
element computations are inaccurate, especially in points
inside the hole. In this geometry, four sharp corners are
present to which singularity subtraction can be applied.
The second group of results is computed with a boundary-
element method with a standard grid and singularity
subtraction (BEM II), as described in Sect. 2.4. We see that
singularity subtraction improves the results considerably.

Another possibility to improve the results is grid re-
®nement. We have made a new grid in which the bound-
ary-element size is a quadratic function of the distance r to
the corner. The idea is that the ¯uid ¯ow is dominated by
the singularities at the corners. By putting more elements
near these corners, we hope to get better results. The re-
sults of this boundary-element computation (BEM III) is
given in the third group of results. With respect to the ®rst
situation the results are better, but the singularity sub-
traction still gives the much better results at locations
where the velocity is small.

One could think of the possibility of moving more
collocation points towards the corner. The disadvantage is
that the number of boundary elements further away from
the corner would become very low, which will affect the
accuracy in these regions.

In the last group of results the algorithm uses a re®ned
grid near the corners as well as singularity subtraction
(BEM IV). The results are of a similar order of accuracy as
the results with a normal grid. This could be expected
because the singularity subtraction avoids the singular
behavior near the corners and thus the need for grid
re®nement.

Fig. 6. Geometry used for validation at dashed line and at the
interior points
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We can conclude from Table 2 that singularity sub-
traction is a useful tool to increase the accuracy of the
computations. A similar conclusion was stated in Floryan
and Czechowski [7] for the singularity subtraction using a
streamfunction-vorticity formulation.

3.2
Convergence of the domain-decomposition algorithm
Since we were unable to ®nd an earlier application of the
domain-decomposition technique to Stokes ¯ow, we will
show the convergence of the iterative procedure as de-
scribed in the previous section for a standard problem.

The Stokes equations are solved by the domain-de-
composition algorithm for an etch-hole geometry as de-
picted in Fig. 6 with all geometric parameters equal to
unity. The boundary conditions are modi®ed. We assume
a linear velocity pro®le u1 � y=2 for all boundary points.
Thus, the solution is known beforehand, and we can check
whether the iterative procedure converges to this solution.
The extra boundary which is the interface between the
sub-domains is chosen at the same position as in the etch
problem: in the middle of the mask-edges.

In the scheme described in subsection 2.5 the algorithm
stops if the approximations of the velocity and shear-stress
components computed on the interface in the sub-do-
mains have converged. We measure this convergence by
computing the l2-norm for the differences of the quantities
from the sub-domains.

In the scheme a parameter a is used to compute new
approximations of the velocity and shear-stress compo-

nents. In Fig. 7 the convergence of the procedure is shown
for several values of a. The l2-norm of the differences of
the velocity components uold

i and unew
i , as described in

(2.31), is shown as a function of the iteration number k.
From this ®gure we infer that a value of a around 0:5
works well. In the remainder of this paper we choose
a � 0:5.

3.3
Improved accuracy with domain decomposition
In the previous section the domain-decomposition tech-
nique is described. With the iterative scheme the unknown

Table 2. Velocity components at given points as a function of the number of boundary elements (N) computed with a normal
boundary-element method (I), with singularity subtraction (II), with grid re®nement (III), with singularity subtraction and grid
re®nement (IV) and computed with the method of series expansions [6]

Point 1 Point 2 Point 3 Point 4 Point 5

x )1.5 0.5 )0.5 )2.5 )1.0
y 0.5 1.5 )1.5 )2.5 )3.5

BEM N u (10)1 m s)1) v (10)3 m s)1) v (10)3 m s)1) u (10)6 m s)1) v (10)5 m s)1)

640 2.53959 4.1555 2.0906 )571.27 )38.269
960 2.53941 4.1197 2.3998 )430.72 )35.947

I 1280 2.53957 4.0945 2.6219 )353.78 )33.754
1920 2.54006 4.0606 2.9262 )269.45 )30.285
2560 2.54051 4.0381 3.1304 )222.93 )27.735

640 2.54643 3.8567 4.8507 )6.6162 )2.4186
960 2.54644 3.8550 4.8604 )6.0597 )2.2365

II 1280 2.54644 3.8544 4.8639 )5.8588 )2.1708
1920 2.54644 3.8539 4.8665 )5.7105 )2.1230
2560 2.54644 3.8537 4.8674 )5.6569 )2.1063

640 2.54612 3.8747 4.6828 )37.676 )4.6597
960 2.54622 3.8654 4.7619 )22.219 )3.6024

III 1280 2.54627 3.8613 4.7974 )16.162 )3.1097
1920 2.54633 3.8578 4.8284 )11.264 )2.6689
2560 2.54636 3.8563 4.8419 )9.2736 )2.4760

640 2.54659 3.8518 4.8911 )5.0576 )1.7632
960 2.54650 3.8528 4.8769 )5.4097 )1.9712

IV 1280 2.54647 3.8531 4.8728 )5.5013 )2.0290
1920 2.54645 3.8533 4.8702 )5.5544 )2.0640
2560 2.54644 3.8534 4.8694 )5.5570 )2.0747

[6] 2.54631 3.8543 4.8685 )5.5879 )2.0775

Fig. 7. Convergence behavior of the domain-decomposition
method for several values of a
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quantities are computed for both sub-domains. We will
show in this subsection that domain decomposition im-
proves the accuracy. In Table 2 the results for a normal
grid without domain decomposition are given in the ®rst
group of results computed with a normal boundary ele-
ment method (BEM I). In Table 3 the results for a normal
grid with domain decomposition are given in the ®rst
group of results (BEM V). From these results we can
conclude that for a normal grid without singularity sub-
traction, domain decomposition improves the results sig-
ni®cantly. Another possibility to avoid domain
decomposition could be a grid re®nement near the sin-
gular corners, which was already shown in Table 2 with
BEM III. The upper points are more accurate with grid
re®nement (BEM III) because with grid re®nement the
singular behavior at the corners is approximated better.
The lower points are more accurate with domain decom-
position (BEM V).

The best results can be obtained when grid re®nement
as well as domain decomposition are used (BEM VI).
These results are shown in the second group of results of
Table 3.

For these computations, singularity subtraction can be
applied too. As mentioned in the previous subsection,
when singularity subtraction is used it does not make
much difference whether we use a re®ned grid or not. The
third group of results in Table 3 is the boundary-element
method with a normal grid, using domain decomposition
and singularity subtraction (BEM VII). The last group of
results is a similar boundary-element method with a re-
®ned grid (BEM VIII). The method with a re®ned grid
seems to be slightly more accurate for the computations
with a low number of grid points.

One may wonder whether it is really necessary to use a
domain decomposition when singularity subtraction is
applied. Comparing BEM IV and BEM VIII with the semi-

analytical results from [6], it is dif®cult to see from these
®ve points which method is more accurate. We have to
look at this in more detail.

First we can consider the differences between the
computed velocity components and the semi-analytical
results in some extra points. In Table 4 the differences are
given for some points at the line y � ÿ3:5. The method
with domain decomposition as well as singularity sub-
traction (BEM VII) is the most accurate. We can see that
the method with grid re®nement near the singular corners
is less accurate in regions far away from the corners than
the method without grid re®nement. This can be explained
by the fact that, as a result of the re®nement near the
corners, there are less points further away.

Another comparison can be made for the shear stress.
We compute the second shear-stress component f2 at the
dashed line at the left-hand side along the etch-hole
boundary (see Fig. 6). In Fig. 8 the results are plotted for
computations with BEM VII (solid line), BEM II (dashed
line) and the semi-analytical solution. The computation
without domain decomposition shows large deviations
from the semi-analytical solution. In contrast, the results
of the system with domain decomposition agree very well
with the semi-analytical solution. From the presented
tables and ®gures is it clear that the results are improved
by the use of domain decomposition.

Table 3. Velocity components
at given points as a function of
the number of boundary ele-
ments (N) computed with a
boundary-element method
with domain decomposition
(V), with domain decomposi-
tion and grid re®nement (VI),
with domain decomposition
and singularity subtraction
(VII) and with domain de-
composition, singularity sub-
traction and grid re®nement
(VIII) and computed with the
method of series expansions
[6]

BEM N Point 1 Point 2 Point 3 Point 4 Point 5
u (10)1 m s)1) v (10)3 m s)1) v (10)3 m s)1) u (10)6 m s)1) v (10)5 m s)1)

640 2.55167 3.9914 4.7456 )8.7123 )1.2129
960 2.55035 3.9709 4.7602 )7.3280 )1.4188

V 1280 2.54964 3.9575 4.7705 )6.7431 )1.5308
1920 2.54886 3.9406 4.7844 )6.2392 )1.6542
2560 2.54843 3.9299 4.7936 )6.0224 )1.7232

640 2.54663 3.8670 4.8967 )5.7958 )2.1466
960 2.54648 3.8612 4.8892 )5.5679 )2.1148

VI 1280 2.54644 3.8588 4.8849 )5.5526 )2.1020
1920 2.54641 3.8566 4.8801 )5.5662 )2.0928
2560 2.54641 3.8556 4.8774 )5.5762 )2.0897

640 2.54621 3.8599 4.9069 )6.1757 )2.0740
960 2.54627 3.8573 4.8949 )5.8535 )2.0810

VII 1280 2.54631 3.8561 4.8886 )5.7432 )2.0834
1920 2.54635 3.8551 4.8821 )5.6633 )2.0852
2560 2.54637 3.8546 4.8787 )5.6341 )2.0859

640 2.54617 3.8576 4.9058 )5.4716 )2.1851
960 2.54626 3.8562 4.8942 )5.5544 )2.1356

VIII 1280 2.54630 3.8555 4.8882 )5.5023 )2.1156
1920 2.54634 3.8548 4.8819 )5.5460 )2.1002
2560 2.54636 3.8544 4.8786 )5.5655 )2.0946

[6] 2.54631 3.8543 4.8685 )5.5879 )2.0775

Table 4. Differences of velocity in y-direction (10)7 m s)1) at
points with y = )3.5 computed with the ®nest grid and the results
from [6]

x )2.5 )2.0 )1.5 )1.0 )0.5

BEM II 1.78 2.49 2.47 2.82 0.74
BEM IV 2.28 2.52 2.19 0.34 0.60
BEM VII 0.05 0.13 0.14 0.84 0.58
BEM VIII 1.18 1.56 1.46 1.72 0.01
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3.4
Accuracy
From the computed quantities in Tables 2 and 3 it can be
inferred that the overall convergence of the computed
results is linear as a function of the element size. Some of
the quantities seem to converge quadratically which can be
explained by the following theory.

In general, the computed values can be written as a
function of the number of boundary-elements N as

V
�N�
ij � V

�1�
ij � c=N � f=N2 � o�1=N2� : �3:32�

By application of Richardson extrapolation the values of c
and f can be computed. In some cases, c is so small that
c=N is small compared to f=N2. In these cases, it looks like
quadratic convergence. The same convergence behavior
can be seen for the singular coef®cients. In the computa-
tions for the rectangular geometry four singular corners
are present. For each corner, the ®rst two singular values
k1 and k2, as computed in Sect. 2, are included in the
computations. Hence, there are four pairs of coef®cients
A1;A2 as mentioned in (2.28). Because of the symmetry of
the ¯ow problem, the coef®cients of the corners at the left
mask-edge in Fig. 6 are directly related to the coef®cients
of the corners at the right mask-edge. Therefore, we only
present the values of the ®rst two pairs of coef®cients. The
coef®cients at the upper corner are called A11 and A12 and
the coef®cients at the lower corner are called A21 and A22.
In Table 5 the values are given as a function of the number
of boundary elements (N), computed with BEM VII. It is
clear that the convergence of the coef®cients A11 and A12 is
linear. In contrast, it appears that A21 converges quad-
ratically. This can be explained by the argument above.

The coef®cient A22 converges very slowly, but the dif-
ferences in the values of this coef®cient as N increases are
small. We can conclude that this value is already accu-
rately computed for the larger boundary-element sizes.

In Table 6 the values of u�1�, computed with the three
®nest boundary-element sizes from the boundary element
computations (BEM VII), are shown along with the cor-
responding results from [6]. When we compare the values
from the method of series expansions with the results of
the boundary-element method small differences are no-
ticed. Although the differences are small, especially in the
®rst 4 points, they can be explained in the following way.

The most important reason for these differences is the
difference in boundary conditions for both methods. In
the boundary-element computations we assume that the
uniform shear ¯ow is undisturbed at a ®xed distance from
the hole. However, in the method of series expansions, we
assume that the ¯ow reaches an undisturbed pro®le at
in®nity. To check whether this may be a reason for the
differences, the velocity components were computed again
with the boundary-element method, but now with new
boundary conditions: With the method of series expan-
sions, the velocity components at the mentioned ®xed
distance from the hole are computed and used as bound-
ary conditions for the boundary-element method. This
computation is repeated for every boundary-element size.
In Table 5 the values of u�1� (BEMB), computed by ex-
trapolation of the three ®nest boundary-element sizes, are
shown along with the corresponding results from [6] and
the boundary-element results from the method with the
undisturbed boundary conditions (BEM). It is clear that
for points 1 and 2 the results are improved by the new
boundary conditions. From points 3±5 it can be inferred
that the results between and under the masks do not
change signi®cantly.

Another reason for the differences in the results is the
numerical truncation error. A part of this error is removed
by extrapolation, but when this extrapolation is repeated
for different boundary-element sizes, the results are dif-
ferent too. It can be concluded that the results still change
as the boundary-element size decreases.

Fig. 8. Boundary-element method results without (dashed line)
and with (solid line) domain decomposition and the results of the
method of series expansions (circles)

Table 5. Values of singular coef®cients as a function of the
number of elements N

N A11(10)1) A12(10)1) A21(10)4) A22(10)3)

640 )3.73359 8.96975 8.37946 )8.20534
960 )3.74407 8.96856 7.86911 )8.20352

1280 )3.74994 8.96799 7.76675 )8.20154
1920 )3.75637 8.96748 7.75148 )8.19807
2560 )3.75985 8.96725 7.74624 )8.19550

Table 6. Extrapolated velocity components from the boundary-element method (BEM VII), the boundary-element method with
modi®ed boundary conditions (BEMB) and the values computed in [6]

Point 1 Point 2 Point 3 Point 4 Point 5
u (10)1 m s)1) v (10)3 m s)1) v (10)3 m s)1) u (10)6 m s)1) v (10)5 m s)1)

BEM 2.54643 3.85334 4.86850 )5.58919 )2.08705
BEMB 2.54630 3.85409 4.86856 )5.58888 )2.08677
[6] 2.54631 3.85434 4.86846 )5.58793 )2.07749
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When we study the differences between the extrapolated
boundary-element results and the extrapolated results of
the method of series expansions, the largest relative error
can be found in point 5. There is a reason for this error
which was already mentioned in [6]: In the method of
series expansions, the domain is subdivided in seven
rectangular sub-domains. In each of these sub-domains,
the solution is prescribed by a series expansion. These
series converge fast for the interior points of these regions,
which gives convergence results which are much more
accurate than the boundary-element results. However, the
series converge slowly for the points at the interfaces of
these regions. Point 5 lies exactly on such an interface, so

the result of the method of series expansions is less ac-
curate in this point.

For the etching process, the differences in the results
above the etch hole are not so important. Therefore, the
boundary-element method without modi®ed boundary
conditions is good enough to use in the etch simulation.
When we look at the errors between the methods, we see
that the difference between the ®nest extrapolated result in
point 3 from BEM and the result from the method of series
expansions is very small. The relative difference in point 4
is about 0.02%. This difference is not that big either, and
taking into account that the absolute difference is in the
order of 10ÿ9 msÿ1, we can conclude that the agreement

Fig. 9a-f. Iso lines of the stream function for various etch-hole
geometries
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between the results of both methods con®rms the quality
of the boundary-element method.

In a numerical simulation of wet-chemical etching, the
boundary-element method will be used each time step to
compute the ¯uid ¯ow. In such an application, with a
boundary-element size of approximately h � 1=40, one
computation for the ¯uid ¯ow takes approximately 1 min
on a single R10000 processor.

4
Results and conclusions
With the domain-decomposition method including the
singularity-subtraction as described in Sect. 2 the shear-
stress and velocity components are computed at the
boundary and at the domain-decomposition interface.
Afterwards the stream function is computed with the new
integral formulation as described in Subsection 2.4.

The number of boundary elements is chosen in such a
way that all elements have about the same size, which is
equal to h � 1=N � 1=80. In this section we show the re-
sults of the algorithm for different kinds of etch-hole ge-
ometries. The ®rst con®guration we present in Fig. 9a can
be related to a situation in which etching has just started.
There is not yet a central vortex in the middle of the cavity.
On both sides near the masks, small vortices arise, which
gives a result which is rather similar to the results of [11].
In such a situation, etching will proceed very fast in the
center of the cavity because the dissolved metal is directly
transported away.

In Fig. 9b it is shown that a thick mask decelerates the
etching process. When the mask is thick in comparison to
the width of the etch pattern, a vortex arises between the
mask edges.

During the etching process, stream-function patterns
such as shown in Fig. 9c or Fig. 9d will arise. Fig. 9c shows
a symmetric pattern, while Fig. 9d gives an antisymmetric
pro®le. The last one is more realistic, since the ¯uid near
the bottom of the central vortex is ¯owing from right to
left. Soon after the ¯uid has reached the etch-hole bottom,
it will be more and more saturated with dissolved material,
which will result in a decrease in etch-speed along the
bottom of the etch-hole.

The last two stream-function ®gures show some
possibilities of the algorithm. In Fig. 9e the antisym-
metric geometry is very extreme. In practice, such a
situation will not occur. Near the lowest point of the
etch hole, no ¯uid ¯ow can be detected, so etching will
proceed very slowly near this point. Fig. 9f shows the
vortices arising in a geometry with an extreme undercut
effect.

The domain-decomposition algorithm as presented in
this paper is very robust for the shown geometries. In
Fig. 10 the l2-norm of the differences of the velocity
components at subsequent iterations is shown as a func-
tion of the iteration number from the computations for
Fig. 9f. The convergence behavior for the other geometries
presented is similar. The number of boundary elements
does not make a difference in convergence either. We can
conclude that the domain-decomposition algorithm is
hardly dependent on the shape of the grid or the number
of elements.

As mentioned in the introduction, in [17] it is described
how to compute the concentration in an etch-hole geom-
etry without overhanging masks from the velocity and
shear-stress components. The shear-stress components are
needed at the boundary of the cavity, and the velocity
components are needed at the separating streamlines. In
Fig. 11 the normal stress is depicted along the boundary of
the cavity shown in Fig. 9d for different boundary-element
sizes. It is clear that already for a small number of
boundary elements the results are rather accurate.

Summarizing, we have described an accurate boundary-
element method for the computation of Stokes ¯ow in
complex geometries. We have shown that the domain-
decomposition method converges properly for all ¯ow
cases considered. The accuracy of the results is increased
by using domain decomposition as well as singularity
subtraction. A new integral formulation for the stream
function is developed, which makes it very easy to com-
pute dividing streamlines. The method used can be applied
to all sorts of etch-hole geometries. The results are veri®ed
by comparison with semi-analytical computations for a
rectangular etch-hole approximation. The similarity be-
tween both results con®rms that the described method is
very accurate.

Fig. 10. Convergence of the domain-decomposition algorithm

Fig. 11. Normal stress along the boundary of the cavity for
h � 1=20 (circles), h � 1=40 (crosses) and h � 1=80 (solid line).
The geometry is the same as in Fig. 9d
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For the construction of an etch simulation, a model can
be developed which uses the boundary-element method
results to compute the concentration of dissolved material.
This model is described in [5].

The presented boundary-element method can be ex-
tended to three-dimensional situations too. Examples are
given in [22, 23]. It is easy to extend the domain-decom-
position method to three-dimensional geometries [4]. A
description of the singular behavior near a sharp corner in
three-dimensional formulations can be derived in some
special cases. For straight grooves and for axisymmetric
holes analytical descriptions of the singular behavior near
the sharp rims can be found. These formulations will be
published in the near future.
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