Actual and Imagined Movement in BCI Gaming

Abstract. Most research on Brain-Computer Interfaces (BCI) fo-
cuses on developing ways of expression for disabled people who are
not able to communicate through other means. Recently it has been
shown that BCI can also be used in games to give users a richer ex-
perience and new ways to interact with a computer or game console.
This paper describes research conducted to find out what the differ-
ences are between using actual and imagined movement as modali-
ties in a BCI game. Results show that there are significant differences
in user experience and that actual movement is a more robust way of
communicating through a BCL.

1 INTRODUCTION

In the field of BCI, brain activity is recorded and automatically inter-
preted to be applied in various applications. Measuring brain activity
is already well known in medicine using the electroencephalogram
(EEG). EEG is a proven method, which has a number of advantages
over other methods: it is non-invasive, has a high temporal resolu-
tion, does not require a laboratory setting, is relatively cheap, and it
is even possible to create wireless EEG head-sets.

BCI systems need to make decisions based on very short seg-
ments of EEG data to make it useful for different applications such as
wheelchairs, robots, and personal computers. In the case of software
applications, BCI can be used as an additional modality of control,
for evaluation of the user or the application, or to build adaptive user
interfaces (Nijholt et al.| |2008a).

Games are usually the first applications to adopt new paradigms,
driven by the gamers continuing search for novelty and challenges
(Nyjholt et al., 2008b). Apart from them being a suitable platform to
bring this new interaction modality to the general population, games
also provide a safe and motivational environment for patients dur-
ing training or rehabilitation (Graimann et al., 2007; Leeb et al.|
2007). Research has shown that using BCI instead of the conven-
tional mouse and keyboard can add to the user experience by making
a game more challenging, richer, and more immersive (Oude Bos and
Reuderinkl, 2008).

Before BCI can be adopted by the general population there are still
a number of issues that need to be addressed: artifacts in the recorded
brain data (signals that do not stem from the brain), inter and intra-
subject variability, inter and intra-session variability, long training
periods, low transfer rates (of commands), and BCI illiteracy (San-
nelli et al.| 2008). Apart from that, more attention from the Human
Computer Interaction community is required on how this new input
modality influences the user experience, and how the interaction can
be improved (Lecuyer et al.| [2008)).

While most research into using movement for BCI has focused on
imagined movement, some clinical research shows that actual move-
ment in fact elicitates a more pronounced and therefore better dis-
cernable signal in the motor cortex (McFarland et al., | 2000).

Actual movement can also be used with other interfaces than a
BCI. Interfaces such as a motion tracking system, for example, which
is probably more reliable at this moment. One big potential advan-
tage of a BCI however is that the measured EEG signals at the brains
are always preceding actual muscle activity at the limbs. This ad-
vantage is amplified by the onset of a potential in preparation of a
movement, the so called Bereitschaftspotential, or Readiness Poten-
tial (Kornhuber and Deeckel |1965). Krauledat et al. showed that this
lateralized readiness potential can be used to classify actual move-
ment even before the movement itself is carried out (Krauledat et al.,
2004). This could give a gamer an advantage over other interfaces
especially in fast paced, highly reactive games.

2 RELATED WORK

A few BCI games based on imagined or actual movement do already
exist. [Pineda et al.| (2003) designed a first-person shooter game in
which the user could move using the keyboard, and turn by imagined
movement. Players learned to control the BCI by experimenting; no
instructions were given beforehand. Other examples include the vir-
tual environments of |Leeb et al|(2005), the board game of |[Kayagil
et al|(2007), and the game BrainBasher (Oude Bos and Reuderinkl}
2008) that we used in this study.

Both actual and imagined movement can be used for BCIs. Obvi-
ously, actual movement is a more natural and intuitive way for users
to communicate and express themselves. All these games involve
movement tasks, and are based on a neurological process known as
Event-Related Desynchronization (ERD) (Pfurtscheller;[2001). ERD
is detectable as a decrease in power in the 3-frequency band on cor-
responding motor cortices. Before use the BCI has to be adapted to
person-specific examples of the ERD using machine learning tech-
niques.

Actual movement is characterized by a more pronounced and re-
liable signal in the motor cortex (McFarland et al.,|2000). This more
pronounced signal is a very welcome advantage in the world of BCI
where every extra percent of accuracy is appreciated.

When looking at the success of the Nintendo Wii, it becomes clear
that actual movement is well enjoyed by gamersm Moreover, imag-
ined movement in adulthood is not as trivial as actual movement
is. Although for example professional sportsmen and musicians use
imaginary movement for training an actual motor skill it still is not as
trivial to do as actual movement (Jeannerod, |1994). Though one can
think of various applications in which imagined movement is used,
these are almost always associated with skills which require a lot
of training. Actual movement might therefore be a more natural and
easier way of interacting with a BCL

1 “Nintendo wiining the console war”, December 2008.
http://www.igizmo.co.uk/articles/news/744-gaming-nintendo-wiining-
console-war



3 METHODS

The main question in this study is whether there are differences be-
tween imagined and actual movement in a BCI gaming environment.
Some of the differences that will be looked into are the gaming expe-
rience for the user and the detectability of the signal from the EEG.
We also looked at the generalizability of these BCI modalities for
different user groups based on demographical characteristics.

3.1 Experiment Setup

To answer these questions an experiment has been carried out
in which users communicate with the BCI game BrainBasher
(Oude Bos and Reuderinkl 2008) using both kinds of movement.
First, users fill in a form regarding demographics including hand-
edness as well as characteristics that could influence their ability
to focus on the task (like alcohol and caffeine consumption habits).
This data is used to check for group differences during analysis. Our
experiment consists of two parts: Actual movement and imagined
movement. The order of performing actual and imagined movement
is randomly assigned for each subject. Each part consists of two ses-
sions.

For the system to be able to recognize the user’s actions, a train-
ing session is required to create a user-specific classifier. This is fol-
lowed by a game session, after which the subject fills in a user expe-
rience questionnaire. This questionnaire has been designed based on
the Game Experience Questionnaire (GEQ) developed at the Game
Experience Lab in Eindhoven (IJsselste1jn et al.| [ 2007). With this in-
formation the user experience for actual and imagined movement can
be compared. Between all sessions are breaks in which the user can
relax for a minute or two.

The experiment is set up as a randomized cross-over experiment
to eliminate sequence and learning effects induced by the succession
of both tasks. After all experiments are done we compare the re-
sults of the actual movement sessions versus the results of the imag-
ined movement game sessions. The new questionnaire has also been
evaluated so it can be used for assessments of other BCI games and
modalities.

The setup is situated in a normal office environment, in contrast
to a shielded room. This setting was chosen deliberately as it is a
more representative setting for home use. Besides this, the EEG sys-
tem used has active electrodes which pick up a lot less noise than
passive electrodes would. During the experiments themselves, only
the researcher and the subject will be in the room. This way distrac-
tions will be kept to a minimum, while still being able to provide help
when needed.

3.2 BrainBasher

The BCI game used for this research is BrainBasher (Oude Bos and
Reuderink, [2008). The goal of this game is to perform specific brain
actions as quickly as possible. For each correct and detected action
you score a point. Game control is achieved by two mental tasks: left
hand movement versus right hand movement. For the actual move-
ment task both hands are laid on the desk in front of the user. When
the appropriate stimulus appears they have to perform a simple tap-
ping movement with their whole hand. When performing the imag-
ined movement task users are instructed to imagine the same move-
ment, without actually using any of their hand muscles.

Before the user can play however, they will have to undergo a
training session in which stimuli (in the form of symbols denoting

Figure 1. The symbols for left and right hand movement.

the user actions, see Figure[T) and breaks are alternated. During the
stimulus the subject performs the indicated action: movement of the
left or right hand. The user is instructed to stay relaxed and not to
move, excluding the break periods, to prevent artifacts in the EEG.
This is of course with the exception of the hand movement in the case
of the actual movement sessions. In our system, the training consists
of two short sessions, taking ten minutes in total. The EEG data from
both training sessions are concatenated and used for training the clas-
sifier of the BCI system.

During the game session the user is instructed to take care that
they carry out precisely the same movement (be it actual or imag-
ined) as in the preceding training session. The difference is that they
have to react as fast as they can to each new symbol popping up by
performing the action right away. Bashing a symbol is accomplished
when the classifier recognizes the action, according to a confidence
level of at least 60%. Every bash results in one point added to their
total score. The goal of the game is to bash as many symbols in the
allocated three minutes, to achieve a maximum score. (Figure2)
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3.3 The BrainBasher BCI

A schematic view of the total system is shown in Figure 3] The user
interacts with the system by executing brain actions, and also by key-
board to traverse the menu. Brain activity is acquired with a BioSemi
EEG setup using 32 electrodes, sampled at 256Hz. For training the
system, examples of the ERD for both the left hand and right hand
are used to derive a linear classifier to be used during the online game
session. The EEG data is processed as shown in Figure [ First the
raw data is re-referenced to the common average reference (CAR) to
remove far away sources of noise. After re-referencing a bandpass-
filter isolates the frequency range in which the ERD occurs. Then
we train spatial filters with the Common Spatial Patterns (CSP) algo-
rithm (Koles| |1991)) to extract activity on the motor cortices. These
spatial filters are used to extract the band power in the most discrim-
inative sources. Linear Discriminant Analysis (LDA) is applied to
make a final prediction based on the band power features. After train-
ing the BCI generates four new predictions every second, based on
the real-time EEG data. These predictions are used to play the game.
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Figure 4. BrainBasher BCI Pipeline

3.4 BCI performance evaluation

After the training session, we evaluate the accuracy of the classifier
by a cross-validation procedure. It is to be expected that a classifier
has to have a certain minimum performance for pleasurable experi-
ence. Another frequently used performance measure for BCIs is the

information transfer rates (ITR), representing communicated infor-
mation measured in bits per minute. The ITR more directly expresses
the utility of a BCI for a user that intends to use the BCI to communi-
cate. The advantage of the ITR measure is that the ITR incorporates
both the quality of the recognition and the time needed to make a
decision — a faster but less accurate BCI could be preferred over a
precise, but slow BCI. Current BCI are reported to obtain ITRs of up
to 10-25 bits per minute (Wolpaw et al.}[2002). Unfortunately, differ-
ent formulas to calculate the ITR have been used. The most popular
formula is:

1-P
B:log2N+Plog2P+(l—P)long, (1)

where NN is the number of classes, P is the probability of cor-
rect recognition, defining B, the number of bits communicated with
one trial. When given the number of trials per minute one can calcu-
late the ITR. This formula is frequently used due to it simplicity, but
this simplicity comes at the expense of a number of assumptions: all
classes have the same prior probability, and all classes have the same
probability for correct and for incorrect selections (Wolpaw et al.l
1998). These assumptions are often violated in practice, sometimes
leading to inflated ITRs.

A more precise way to measure the amount of information per trial
is based on mutual information:

166Y) = 303 plasy) log, 2

Y
—_— 2
2.2 nwee 2

where X and Y are the predictions and the ground truth respec-
tively, p(x, y) is the joint probability distribution function of X and
Y, and pl(z) and p2(y) are the marginal probability distribution
functions of X and Y respectively. Mutual information measures the
decrease in uncertainty in a signal Y (the desired action) given signal
X (a derivation of the EEG).

As with Equation [I] the duration of a trial is needed to calculate
the ITR, but it does not depend on its assumptions. In our analysis,
we will calculate the ITR using Equation 2] For another view on the
differences between ITR formulas see (Kronegg et al.l[2005)).

3.5 Questionnaire design

To evaluate the user experience a questionnaire based on the GEQ
(Jsselsteijn et al., 2007) is developed. Although the GEQ consists of
a lot of useful questions for evaluating various games, its main pur-
pose is evaluating complex and immersive 3D virtual games. There-
fore the questionnaire has been adapted to evaluate the user experi-
ence especially in BCI games. Questions that are not applicable, (e.g.
the questions about the storyline, the complexity and the flow of the
game) were left out. On the other hand we added questions, specif-
ically on the amount of control the user experiences. The amount of
control is a trivial aspect when using mouse and keyboard. These are
reliable ways of communicating with the computer compared to a
BCI system which is not so reliable. Also items about user concen-
tration and alertness were added. This is an important aspect because
users will have to concentrate to use a BCI game and possibly get
tired more quickly than normal.

The questionnaire consists of statements to which users can re-
spond on a 5 point Likert-scale ranging from ‘completely disagree’
to ‘completely agree’. Some examples of items in the questionnaire
might be: “I liked playing the game.”, “I felt the computer recognized
my actions.” or “I’m exhausted.”



To analyse the results of the questionnaire, we will use Cronbach’s
Alpha (Cronbachl |1951). Alpha is a measure of internal consistency.
It is (to a certain extent) a measure of how reliably a scale constructed
out of the selected items will measure one concept. This does not
necessarily mean that you are measuring the concept you intended
to measure, therefore further (qualitative) validation is needed. Al-
pha is only an estimator of reliability: it measures to what extent the
different items are correlating and are consistent, taking subject and
environment variance into account. In this research the Standardized
Alpha will be used because we want to sum standard scores to con-
struct scales from Likert scale items. A commonly accepted thresh-
old for Alpha of 0.7 is the goal for every scale (Cortinal |1993).

4 RESULTS

First we describe the demographics of the test subject pool, then we
analyse the questionnaire used for evaluation. Using the results from
the questionnaire we can look at the differences in user experience
between actual and imagined movement.

Participants Twenty healthy persons participated as test subjects
in this study. The average age across the group was 26.8 (standard
deviation: 12.3, minimum: 13 and maximum: 58). Of the twenty par-
ticipants 10 (50%) were male and 10 (50%) were female. Test sub-
jects were randomly assigned to either group A or group B. Group A
would do imagined movement as their first task and actual movement
second, group B would do exactly the opposite. Each group had ten
(50%) participants. 19 (95%) participants were Dutch, 1 (5%) partic-
ipant German. Apart from standard demographics we also asked par-
ticipants their handedness, because this characteristic might be of in-
fluence: 5 (25%) participants were dominantly left-handed 15 (75%)
were right-handed. 14 (70%) received an education higher than av-
erage. Computer usage and game experience varied a lot among par-
ticipants: 8 (40%) participants used a PC for more than six hours a
day, 5 (25%) used a computer on a less than daily basis. The same
variance goes for game experience: 2 (10%) played games two hours
a day, 8 (40%) on a weekly basis, 6 (30%) on a monthly basis and 4
(20%) never played a video game.

Questionnaire construction All participants filled in the ques-
tionnaire after both tasks without missing any questions. The re-
sponses on the same items for both movement tasks were stored
in the same respective variables for scale analyses and in separate
variables to analyse the differences in user experience between both
tasks. Scale reliability analysis was carried out in order to evaluate
if the newly developed questionnaire would be useful as a reliable
tool to assess user experience in BCI games. The total user experi-
ence questionnaire consisted of 42 items over § scales. Each item
consists of responses to a statement on the user’s experience on a 5
point Likert-scale.

Some items were recoded to avoid an expected negative correla-
tion. Correcting the scales for items that did not constitute to the
scales consistency, e.g. deleting items with a low or negative Inter-
Item Correlation, Standardised Alpha’s ranged from 0.620 tot 0.865
and all scales consisted of at least three items.

To evaluate the usefulness and dimensionality of the resulting
scales, a factor analysis was done on all scales separately. The first
dimensions in the factor analyses of every scale explained more than
56% of the variance in the data, except for the Negative Experiences
scale. Scree plots (Catell and Vogelmannl|1977) also indicated strong

unidimensionality across all scales except for the Negative Experi-
ences scale, which turned out to be a two dimensional scale. The
corrected questionnaire consisted of 32 items divided over 8 scales.
An overview of all corrected scales with their respective Alpha’s and
variance explained by the first dimension in factor analysis can be
found in Table 1. The variance explained by the first factor measures
to what extent a scale is measuring only one underlying attribute or
construct.

Construction of Scales

No. of Alpha Var explained

items
Alertness 3 0.783 70.4%
Challenge 5 0.777 56.4%
Control 3 0.783 69.9%
Goals 3 0.754 67.7%
Fatigue 3 0.759 67.6%
Immersion 3 0.620 57.0%
Negative Experiences 5 0.638 41.9%
Positive Experiences 7 0.865 55.8%

Table 1. Constructed Scales including alpha and variance explained by 1th
principal component

Differences in user experience The final corrected scales were
used to compare the user experience for users performing both kinds
of movements. A direct comparison by means of paired #-tests was
done. The results of these test can be seen in Table 2. The first col-
umn is the difference of the means of both scales, the second column
is the total standard deviation, the third the 7-score and the last col-
umn is the two-tailed significance of the difference. The data show
that the differences in the user experience for the Alertness as well
as the Challenge scales are significant. Actual movement scored sig-
nificantly higher on the Alertness scale (#(19)=-2.42, p=0.03) which
could be attributed to mental tiring process of performing imagined
movement. The same trend is also shown in the Fatigue scale, while
there is no significant difference between actual and imagined move-
ment (p=0.12). One possible explanation for this can be found in the
correlation between the Fatigue and Alertness scale. These show a
strong negative correlation in actual movement (r=-0.707, p<<0.001).
Challenge also significantly differs between both kinds of movement
(1(19)=2.17, p=0.04). User experience data therefore indicates that
performing imagined movement is more of a challenge than actual
movement is.

Differences of Imagined vs. Actual Movement

Diff of  StDev t Sig (2-tail)
avg
Alertness -.65 1.20 =242 .03
Challenge 40 .83 2.17 .04
Control -30 1.34 -1.00 .33
Goals -.18 .50 -1.63 12
Fatigue 40 1.11 1.62 12
Immersion -.15 .60 -1.12 28
Negative Experiences .00 .59 .00 1.00
Positive Experiences -.24 .89 -1.22 24

Table 2. Paired ¢-Tests Scales, comparing imagined and actual movement

Performance Using the error rate calculated by the classifier from
the EEG data we can compare the performance achieved on different



subjects. For each subject two error rates are available, one for actual
and one for imagined movement. The average rate for actual move-
ment is 38.67%, while the average error rate for imagined movement
is 42.28%. A Wilcoxon signed-rank test showed that actual move-
ment error rates are significantly lower (W4 (20) = 48, p = 0.0328).
Looking at performance across different groups there are no signif-
icant differences between men and women in actual (#(19)=0.584,
p=0.570) or imagined (#(19)=0.205, p=0.840) movement. Comparing
left handed with right handed test subjects also didn’t show any sig-
nificant differences in actual or imagined movement (#(19)=-0.876,
p=0.403 and #(19)=0.99, p=0.923 respectively).

The Information Transfer Rate or ITR (see Section[3.4) is another
performance measure we calculated for every subject. This makes
our results more comparable with other BCI’s as well it is more infor-
mative than purely an accuracy rate. Note that the ITRS are calculated
just for the training data and that therefor the maximum achievable
ITR is 15 bits per minute. In the actual game session the bitrate can
be higher, for the best subjects probably over 30 bits per minute. It
is however difficult to give accurate numbers for this prediction be-
cause our BCl is self paced without a definite window time.

The calculated ITR’s can be seen in table[d (Due to an unfortunate
loss of data we were not able to calculate the ITR for all subjects.)

ITR for all subjects
Subject | AM IM Subject | AM M
Al 38 42 || Bl 2.0 4.1
A2 87 23| B2 2.6 2.1
A3 24 20 || B3 3.8 2.1
A4 45 3.8 || B4 48 105
A5 65 38 || B5 6.0 23
A6 4.1 1.8 || B6 2.6 4.2
A7 23 23 || B7 2.7 53
A8 33 39 || B8 2.3 2.3
A9 X 24 || B9 5.1 1.7
A10 X X B10 5.7 2.6

Table 3. ITR for actual and imagined movement for all subjects (in
bits/minute), missing data is marked with x

These findings support the accuracy measure in that actual move-
ment provides a more usable signal on average.

5 CONCLUSIONS AND DISCUSSION

Results from this study showed that differences in user experience
and in performance between actual and imagined movement in BCI
gaming do exist. Actual movement produces a more reliable signal
while the user stays more alert. On the other hand, imagined move-
ment is more challenging.

To be able to assess the differences in user experience between
actual and imagined movement, we developed a questionnaire for
evaluating BCI games. While this questionnaire was found to be a
numerically grounded tool to be used in this setting, further research
for validation is needed.

User experience data from this questionnaire showed two signif-
icant differences. Users found more challenge in performing imag-
ined movement. This might be due to a higher error rate, which
makes sense; looking at the average error rate, it is harder to perform
imagined movement. If we assume imagined movement is a skill that
can be learned this might be an advantage for using imagined move-
ment. Gamers are always looking for challenges and limitations that
they can overcome by practice (Nijholt et al.| |2008b).

On the other hand, for a few test subjects, the BCI system could
not correctly recognize any movement. This corresponds to an error
rate of 50%, in which case simple random ‘guessing’ would be as
good as classification. Participants who achieved a high error rate
also were not able to score any game points (other than maybe by
chance). This is an issue that frustrates the user and is something
that has to be resolved for wider acceptance of BCI gaming. This
problem of not being able to be understood by a BCl is referred to as
BCl illiteracy (Sannelli et al.| 2008)).

Alertness is the other scale in which a difference was found. This
alertness has to do with the state of mind of the user after they played
the game. The fact that they felt less alert after performing imagined
movement is explainable. Imaginary movement requires more con-
centration and is a less natural action to perform. Doing something
you do everyday does not tire you as much as doing something com-
pletely new. This was also reflected in the Fatigue scale, which scored
slightly higher for imagined movement.

The generalizability over various demographic groups was good
and there were no significant differences in performance. While there
have been some anecdotal findings that women would be better in
communicating through a BCI, results show no significant differ-
ences between men and women. Data also did not show any differ-
ences between left and right handed people. While the gathered data
does not provide a clear view on how age is related to performance in
the game, one might hypothesize that imagined movement is a skill
of young children who mimic movements of others. A child sees
someone performing a certain movement that can be of advantage
to the child, for example grabbing something, they then try to per-
form it themselves. This probably is a skill that fades over time when
a person gets older. While at a higher age humans are still able to
mimic movements, it takes more time to learn them. This is possibly
a ground for older people not performing to well at imagined move-
ment. This was also reported by test subjects to the experimenter.
They don’t know how or what they should imagine.

Future work could include research into the different ways of
imagining movement. As McFarland et al. (McFarland et al.| |2000)
already explain: when given the instruction to imagine a movement,
most people will try to sense the movement. Other kinds of imagina-
tion (e.g. visualizing the movement) might activate different cortical
areas. Some users might even prefer to visualize a movement if they
find it more natural or less tiring. Evaluating the performance and
user experience of these different tasks are a valuable addition.

The developed questionnaire seems to be a instrument that can
aid us in evaluating differences in user experience between different
modalities for BCI, but it might also be of interest for evaluation
of BCI games other than BrainBasher. Then further research on the
validity and generalizability of the questionnaire is needed.

Although the game works in an online manner and the classifica-
tion algorithm is fast enough to be computed realtime, there always is
an inherent delay in feedback. This is due to the fact that the classifi-
cation algorithm needs a measurement of EEG data of a few seconds.
Currently this measurement is two seconds. The consequence is that
users get feedback of what they did with a two second delay. This de-
lay sometimes leads to confusion and a lower positive affect towards
the system. Future research might include shortening the response
time of the underlying system of the game and finding out what this
does for acceptance of and positive affection towards the BCI.

Because of the similarities in brain activity between actual and
imagined movement and the somewhat lacking of intuitivity for
imagined movement one might suggest using actual movement as
a training for using imagined movement. The user of the BCI can



get accustomed to using movements for communications and at the
same time trying to imagine the movement. With the acquired data
from the actual movement, the imagined movement could be classi-
fied.
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